Placement Papers Aptitude Prep
 Interview Prep
 Ask Questions
 Buy Now

Home > SAIL > Test paper : 40615

SAIL Placement-Paper : 40615

Views : 1948	Paper Type : Question-Paper
Rating :	Test Location :
	ECE,EEE,CSE,Mech,English 2012-2013
	Posted By : Swarang pardeshi
	Updated Date : Apr 10, 2013

SAIL English paper for MT Management trainee Examination electronics and electrical verbal ability English) solved question papers, SAIL MT written examination previous years solved question papers,SAIL free solved sample placement papers with solutions, SAIL technical job interview question for fresher job management trainee recruitment notification and details 2012-2013 SAIL CSE,EEE,ECE Mechanical engineering cse and all branch wise solved question papers,All IT companiesTCS,Infosys,Wipro,HCLNon IT companies ...BHEL,BEL.ECIL EIL ONGC....Bank IBPS PO CWE clerks,IBPS gramine Banks RRB solved question papers SAIL Mental ability,anlytical,english reasoning aptitude questions with answers and solution

SAIL Technical Papers Electronics-Engineering MT2010,2011,2012 question papers

1. Two coils in differential connection have self-inductance of 2 mH and 4 mH and a mutual inductance of 0.15 mH . The equivalent inductance of the combination is
A. 5.7 mH
B. 5.85 mH
C. 6 mH
D. 6.15 mH .
1.A. When two inductors are connected in series, the effective inductance is

Leff = L1 + L2 $\pm \mathbf{~ m}$.
In this case, Leff = L1 + L2-2 M
$=2+4-2 \times 0.15$
$=5.7 \mathrm{mH}$.
2. Two point charges Q and $-Q$ are located on two opposite corners of a square as shown in figure. If the potential at the corner A is taken as 1 V , then the potential at B, the centre of the square will be

[^0]2.C. The plane midway between a and -a, i.e., the one passing through $A B C$ and perpendicular to the plane of the paper is an equipotential plane. Hence the potential at B is the same as that of A or C, i.e., 1V.
3. Optocouplers combine
A. SITs and BJTs
B. IGBTs and MOSFETS
C. Power transformers and silicon transistor
D. Infrared light-emitting diode and a silicon phototransistor
3.D. In optocouplers the input signal is applied to the ILED and the output is takes from the phototransistor. These are used to isolate the gate signals from the power circuit.
4. The difference between the indicated value and the true value of a quantity is known as
A. Gross error
B. Absolute error
C. Dynamic error
D. Relative error
4.C. The difference between the indicated value and the true value of a quantity is known as dynamic error.
$12,455_{\text {Paceement Papess }}$

Most viewed papers of SAIL

SAIL Placement-Paper Candidate-Experiences
By :s pandey,Dec 11, 2012
By :s pandey
26988 views
SAIL Placement-Paper Technical-Other By :DEBESH KUMAR ,Dec 13, 2012 19742 views

SAIL Placement-Paper Whole-Testpaper By :Sethu Parvathy ,Dec 12, 2012 18868 views

SAIL Selection-Procedure
By :Sreejith ,Dec 12, 2012
18287 views
SAIL Placement-Paper Candidate-Experiences By :sruthi ,Dec 13, 2012
16577 views

```
Most viewed practice tests
Level1 Quantitative Practice Test \(8{ }^{\text {paid }}\) 30 questions 30 min 2263 students taken
```

Wipro Placement Paper free
50 questions 60 min 2778 students taken

Cognizant (CTS) Placement Paper free 55 questions 60 min 1912 students taken

Employability Assessment Test ${ }^{\text {free }}$ 25 questions 25 min 3604 students taken

Current affairs - Test 6 paid
30 questions 30 min 4 students taken

Unlock the complete placement preparation

Buy Now Placement Preparation Unlimited access fo uninterrupted complete access
Prepare for companies tests \& interviews
Buy Now

5. The principles of homogeneity and super-position are applied to :
A. linear time variant systems
B. non-linear time variant systems
C. linear time invariant systems
D. non-linear time invariant systems.
5.C. The Principles of homogeneity and superposition are applied to linear time invariant systems.
6. In a 8085 microprocessor system with memory mapped I / 0 ,
A. I/ 0 devices have 8 -bit addresses
B. I/ 0 devices are accessed using IN and OUT instructions
C. there can be a maximum of 256 input devices and 256 output devices
D. arithmetic and logic operations can be directly performed with the I/ 0 data
6.D. In an 8085 microprocessor system with memory mapped I/ 0 arithmetic and logic operations can be directly performed with I/ 0 data.
7. The transistor shown in figure below, is biased

1. at cut-off
2.at saturation
3.well into saturation
4.well into cut-off
7.B. Neglecting VBE, $I B=10 / 100=0.1 \mathrm{~A}$.
$I C=100 \times 0.1=10 \mathrm{~A}$. Drop over RL= 10 v .
Hence, VCE $=0$ which is the condition for saturation.
7.B. Neglecting VBE, $\mathrm{IB}=10 / 100=0.1 \mathrm{~A}$.
$I C=100 \times 0.1=10 \mathrm{~A}$. Drop over $\mathrm{RL}=10 \mathrm{v}$.
fence, VCE $=0$ which is the condition for saturation.

$$
\eta=\frac{R_{r}}{R_{y}+R_{d}}
$$

8. In any transmitting antenna system, efficiency primarily depends upon
A. ohmic losses of various conductors
B. radiation resistance
C. ground conductivity
D. atmospheric conditions.
8.B. whereRr is radiation resistance and Rd is the total loss resistance of the antenna.
9. An instruction used to set the carry Flag in a computer can be classified as
A. data transfer
B. arithmetic
C. logical
D. program control
9.B. Arithmetic
10. The binary representation of 5.375 is
A. 111.1011
B. 101.1101
C. 101.011
D. 111.001
10.C. $101.001=(4+0+1)$
($0+0.25+0.125$)
$=5.375$
11. Dislocations in materials are
A. point defect
B. line defect
C. planer defect
D. surface defects.
11.B. Dislocations in materials are line defects.
12. In TV system, vertical pulses are separated out from horizontal pulses by the use of
A. integrator
B. differentiator
C. sweep credit
D. sync separator.
12.A. Integrator
13. Frequency in the UHF range propagate by means of
A. Ground waves
B. Sky waves
C. Surface waves

D. Space waves

3.D. Frequency in the UHF Range propagate by means of space waves.
14. 200 MHz may be classified as
A. VHF
B. SHF
C. UHF
D. EHF
14.A. VHF.
15. A communication satellite is a repeater between
A. a transmitting station and a receiving station
B. a transmitting station and many receiving stations
C. many transmitting stations and many receiving stations
D. none of the above
15.C. a communication satellite is a repeater between many transmitting stations and many receiving stations
16. The power in a series R-L-C circuit will be half of that at resonance when the magnitude of the current is equal to
16. The power in a series R-L-C circuit will be half of that at resonance when the magnitude of
the current is equal to
A. $V / 2 R$
B. $\mathrm{V} / \sqrt{3} R$
C. $\mathrm{V} / \sqrt{2} R$
D. $\sqrt{2} V / R$
17. A point charge Q is located on the surface of a sphere of radius R as shown in the figure.

The average electric field on the surface of the sphere will be

1. infinite

$$
\frac{Q}{4 \pi \varepsilon_{0}} \frac{1}{R^{2}}(-\vec{n})
$$

$$
\text { 3. } \frac{Q}{8 \pi \varepsilon_{0}} \frac{1}{R^{2}}(-\vec{n})
$$

A. $V / 2 R$
B. $\mathrm{V} /$
C. V/
16.C. V/Ö2R
17. A point charge Q is located on the surface of a sphere of radius R as shown in the figure. The average electric field on the surface of the sphere will be
17.C. The point charge Q emanates a total electric displacement flux of Q. If a plane is passed through the point of location of charge and tangential to the sphere, half the flux is on one side and half on the other. The first half of flux is passing through the spherical surface. Thus the average displacement density has a direction opposite to that of n and the magnitude is
17.C. The point charge Q emanates a total electric displacement flux of Q. If a plane is passed
through the point of location of charge and tangential to the sphere, half the flux is on one side and
half on the other. The first half of flux is passing through the spherical surface. Thus the average
displacement density has a direction opposite to that of n and the magnitude is

$$
\begin{aligned}
& \qquad \frac{Q / 2}{4 \pi R^{2}} \\
& \text { I Average electric } \\
& \text { field is: } \\
& \qquad \frac{Q}{3 \pi \in R^{2}}(-n)
\end{aligned}
$$

18.D. The efficiency of a practical chopper varies from 92 to 99 percent.
19.B. Electrostatic voltmeter should be used to measure 600 kV a.c. voltage.
20.A. it can easily be checked that the corresponding function is
$G(s)=(1-s) /(1+s)$
Average electric
field is :
Eav =
18. The efficiency of a chopper can be expected in the range
A. 50 to 55 percent
B. 65 to 72 percent
C. 82 to 87 percent
D. 92 to 99 percent
18.D. The efficiency of a practical chopper varies from 92 to 99 percent.
19. Which one out of the following instruments should be used to measure 600 kV a.c. voltages?
A. Hot wire instrument
B. Electrostatic voltmeter

C. Moving coil voltmeter

19.B. Electrostatic voltmeter should be used to measure $\mathbf{6 0 0} \mathbf{~ k V}$ a.c. voltage. D. Moving iron voltmeter
20.

Which one of the following transfer functions represents the Bode plot shown in the
above figure

```
            \(G=\frac{1-s}{1+s}\)
            \(G=\frac{1}{(1+s)^{2}}\)
    \(G=\frac{1}{s^{2}}\)
        \(G=\frac{1}{s(1+s)}\)
20
```

Which one of the following transfer functions represents the Bode plot shown in the above figure :
20.A. it can easily be checked that the corresponding function is
$G(s)=(1-s) /(1+s)$
It is seen immediately that $|\mathbf{G}(\mathrm{jw})|$
$=1$ and hence gain is $\mathrm{db}=0$.
21. The following programme is run on an 8085 microprocessor

Memory address in Hex Instruction
2000 LXI SP, 1000
2003 PUSH H
2004 PUSH D
2005 CALL 2050
2008 POP 2050
2009 HIT
As the completion of execution of the program, the program the program counter of the 8085 contains \ldots. , and the stack pointer contains

2050, OFFC
2251, OFFC
1025, OCCF
1025, OCCF
21.A. Memory address in hex Instruction Remarks

2000 LXI SP 1000
2003 PUSH H
2004 PUSH D We do not
2005 CALL 2025 know the
contents of
subroutine
at 2050.
200650
200720

2008 POP H

2009 HALT
At the completion of the execution of the program, the program counter of the 8085 contains 2050 and the stack pointer contains OFFC.
22. With reference to figure, value of VCE is
22. With reference to figure, value of VCE is

1. 0 V
2. 5 V
3. none of the above

0 V
 5 V

-5V
none of the above

```
22.B. Neglecting, VBE
        \(I_{C}=\frac{V_{C C}}{R_{L}+R_{B} / \beta}=\frac{10}{10+1000 / \sqrt{10}}\)
            \(=0.5 \mathrm{~mA}\)
\(V_{C B}=V_{C C}-\left(I_{C}+I_{B}\right) R_{Z}\)
    \(=V_{C C}-I_{C} R_{L}\)
    \(=5 \mathrm{~V}\)
or \(I_{B}=\frac{V_{C C}}{R_{B}+\beta R_{L}}\)
    \(=\frac{10}{2}=5 \mathrm{~mA}\)
\(I C=\beta I_{z}=500 \mathrm{~mA}=0.5 \mathrm{~A}\)
\(V_{C P}=V_{C C}-I_{C} R_{Z}\)
    \(=10-0.5 \times 10=5 \mathrm{~V}\)
```

23. The smallest change in sound intensity that can be detected
A. 1 dB
B. 3 dB
C. 10 dB
D. 20 dB .
24. . Increase $=10 \log 10 P 2 / P 1=10 \log 102=10 \times 0.3=3 \mathrm{~dB}$.
25. In a generic microprocessor, instruction cycle time is
A. shorter than machine cycle time
B. larger than machine cycle time
C. exactly double the machine cycle time
D. exactly the same as the machine cycle time
24.D. Instruction cycle time is exactly the same as the machine cycle time.
26. The value of M in the end will be

Do $100 \mathrm{I}=1,2$
DO $200 \mathrm{~J}=1,2$
$M=M+I+J$
200 CONTINUE
100 CONTINUE
STOP
END
10
11
12
14
25.C. Taking index of $\mathrm{I}=\mathbf{1}$ and $\mathrm{M}=\mathbf{0}$ computing the value of M with
$\mathrm{J}=1,2$
$\mathrm{J}=1$
$M=0+1+1=2$
$\mathrm{J}=2$
$\mathrm{M}=2+1+2=4$
Taking index of $\mathrm{I}=2$ and computing the value of M with $\mathrm{J}=1,2$
$\mathrm{J}=1$
M = $5+2+1=8$
$J=2$
$\mathrm{M}=1+2+2=12$
26. Resistivity of electrical conductors is most affected by
A. temperature
B. pressure
C. composition
D. all of the above
26.A. Resistivity of electrical conductors is most affected by temperature
27. In CCIR B-system of TV, blanking pulse is placed during
A. equalizing pulse
B. retrace interval between each line
C. retrace period of vertical line
D. none of the above.
27.B. In CCIR B-system of TV, blanking pulse is placed during retrace interval between each line
28. The polarization required in ground wave propagation is
A. Horizontal (linear)
B. vertical (linear)
C. Circular
D. Elliptical
28.B. The polarization required in ground wave propagation is vertical (linear).
29. Multicavity Klystron
A. is not a microwave device
B. is not a good low level amplifier because of noise
C. is not suitable to pulse operation
D. has a high repeller voltage to insure small transit time
29.A. Multicavity Klystron is not a good low level amplifier because of noise.
30. Transponder comprises of
A. Transmitter
B. Receiver
C. Antenna
D. a, b, c combined
30.D. Transponder comprises of transmitter, receiver and antenna.
31. Consider the following statements regarding the circuit shown in the given figure
31. Consider the following statements regarding the circuit shown in the given figure

1. If the switch K is closed at a proper instant there will be no transient 2. The instant at which K is closed such that the transient is zero depends on the frequency of the supply
2. The instant at which K is closed such that the transient is zero depends on the circuit
elements
There will always be a non-zero transient after the switch K is colosed.

Of these statements :
1 alone is correct.
2. 1 and 2 are correct.

1 and 3 are correct
4 alone is correct.
A circular ring carrying a uniformly distributed charge Q and a point charges $-Q$ on the a
of the ring are shown in the fig. The magnitude of the dipole moment of the charge system is

1. ad
2. QR2/d

$$
\text { 3. } Q \sqrt{R^{2}+d^{2}}
$$

1. If the switch K is closed at a proper instant there will be no transient
2. The instant at which K is closed such that the transient is zero depends on the frequency of the supply
3. The instant at which K is closed such that the transient is zero depends on the circuit elements
4. There will always be a non-zero transient after the switch K is closed.

Of these statements :
1 alone is correct.
1 and 2 are correct.
1 and 3 are correct
4 alone is correct.
31.C. If the switch is closed at instant $t=t o$, the complete expression for current will be
31.C. If the switch is closed at instant $t=$ to, the complete expression for current will be

$$
\begin{aligned}
& \begin{array}{l}
i(t)=\frac{V}{Z} \sin (w t+\theta-\phi) \\
\quad-\sin \left(w t_{0}+\theta-\phi\right) e^{-R(t-t 0) / L} \\
Z=\sqrt{R^{2}+L^{2} w^{2}} \\
\phi=\tan ^{-1} L w / R
\end{array}
\end{aligned}
$$

The transient component is
$i_{t}(t)=-\frac{V}{Z} \sin \left(w t_{0}+\theta-\phi\right) e^{-R(t-t 0) / L}$
The transient is zero if $w t 0+q-f=0$
or $t 0=(f-q) / w$
Thus it is possible to find to such that there is no transient. Further to depends upon the circuit
parameters and the frequency.
So, the statements 1 and 3 are true.
32.A. For points far away, the charge on the ring may be considered to be located be at the
centre of the ring. Hence, the dipole moment becomes Qd .
33.C. a puck-boost regulator provides on output voltage which may be less than or greater than
the input voltage. The output voltage polarity is opposite to that of the input voltage. It has high
efficiency.
34.A. The deflection of hot wire instrument depends on RMS value of alternating current.
35.A. Considering that there are poles of $\mathrm{H}(\mathrm{s})$, then

$$
\begin{aligned}
& \frac{K}{s}, \quad H_{2}(s)=\frac{K}{(s+\alpha)^{2}} \\
& H 1(\mathrm{~s})=\frac{K}{\left(s^{2}+w^{2}\right)}, \quad H_{4}(s)=\frac{K}{s-\alpha} \\
& \mathrm{H}^{2}(\mathrm{~s})
\end{aligned}
$$

The impulse responses $[\mathrm{a}-1 \mathrm{H}(\mathrm{s})]$ can be found and the step response are integrations of
32. A circular ring carrying a uniformly distributed charge Q and a point charges $-Q$ on the axis of the ring are shown in the fig. The magnitude of the dipole moment of the charge system is

Qd

QR2 / d
Q
QR.
32.A. For points far away, the charge on the ring may be considered to be located be at the centre of the ring. Hence, the dipole moment becomes Qd.
33. Which of the following regulator provides output voltage polarity reversal without a transformer
A. Buck regulator
B. Boost regulator
C. Buck-boost regulator
D. Cuk regulator
33.C. a puck-boost regulator provides on output voltage which may be less than or greater than the input voltage. The output voltage polarity is opposite to that of the input voltage. It has high efficiency.
34. The deflection of hot wire instrument depends on
A. RMS value of alternating current
B. voltage
C. average value of a.c. current
D. instantaneous value of a.c. current.
34.A. The deflection of hot wire instrument depends on RMS value of alternating current.
35. Match List-I with List-II and select the correct answer using the codes given below the Lists :
35. Match List-I with List-II and select the correct answer using the codes given below the

Lists :
List-1
(Response to a unit step input) List-ll
(Location of poles in the s-plane)

1.One at the origin

B.

2.Two identical roots on the negative res
axis.
3.Two on the imaginary axis
4.One on the position real axis.

List-I List-II
(Response to a unit step input) (Location of poles in the s-plane)
1.One at the origin
B. 2.Two identical roots on the negative real axis.
C. 3. Two on the imaginary axis
D. 4.One on the position real axis.

Codes:
ABCD
A. 4321
B. 3412
C. 3421
D. 4321
35. Match List-I with List-II and select the correct answer using the codes given below the

Lists

$$
\begin{aligned}
& \text { List-I } \\
& \text { (Response to a unit step input) }
\end{aligned}
$$

List-II
(Location of poles in the s-plane)

1.One at the origin
1.

2.Two identical roots on the negative res

B

c.
 D.

3.Two on the imaginary axis
4.One on the position real axis.

36. Dual slope integration type Analog-to-Digital converters provide
36. L. $\stackrel{\text { Dual slope integration type Analog-to-Digital converters provide }}{\stackrel{\text { I }}{ }}$
A. higher speeds compared to all other types of A/D converters
B. very good accuracy without putting extreme requirements on component sta
C. poor rejection of power supply hums
C. poor rejection of power supply hums
D. better resolution compared to all other types of A/D converters for the same numbe
D. better
of bits.
37.
In the figure given below, the collector current is

- 2 mA
- 200 mA
- Almost zero
- 0.02 mA
A. higher speeds compared to all other types of A / D converters
B. very good accuracy without putting extreme requirements on component stability
C. poor rejection of power supply hums
D. better resolution compared to all other types of A / D converters for the same number of bits.
36.B. Dual slope integration type A to D converters are of slow speed and require more number of bits, than successive approximation ADC

37. In the figure given below, the collector current is
38. In the figure given below, the collector current is

- 2 mA
- 200 mA
- Almost zero
- 0.02 mA

2 mA
200 mA
Almost zero
0.02 mA
37.C. Since emitter and base have same polarity and same potential, EBJ is not biased property. Hence, IB is zero and so is IC
38. The frequency modulated (FM) radio frequency range is nearly
A. $250-300 \mathrm{MHz}$
B. $150-200 \mathrm{MHz}$
C. $90-105 \mathrm{MHz}$
D. $30-70 \mathrm{MHz}$
38.C. The frequency modulated (FM) radio frequency range is nearly $90-105 \mathrm{MHz}$.
39. A 32 bit microprocessor has the word length equal to
A. 2 bytes
B. 1 byte
C. 4 bytes
D. 8 bytes
39.C. 4 bytes.
40. In electronic microcircuits, a resistor may be fabricated from constant-thickness layer of semiconductor material with conductor connections at the edges as shown below. If the resistor shown has resistance R, then a similar resistor 0.2 millimeter has a resistance of
40. In electronic microcircuits, a resistor may be fabricated from constant-thickness layer of
semiconductor material with conductor connections at the edges as shown below. If the resisto
shown has resistance R, then a similar resistor 0.2 millimeter has a resistance of

- $4 R$
- $2 R$
- R
- R/2

4 R
2 R
R
R/2
40.C. Resistance will be directly proportional to length and inversely proportional to the crosssectional area. Let t mm be the thickness of semi-conductor material so that the cross-sectional area for R ohm resistor is $0.1 \times t \mathrm{sq} . \mathrm{mm}$ and length of semi-conductor material 0.1 mm .
For a $0.2 \mathrm{~mm} \times 0.2 \mathrm{~mm}$ section, cross $\boldsymbol{-}$ sectional area $=0.2 \times \mathrm{t}$ sq. mm . Length $=0.2 \mathrm{~mm}$
Hence, resistance,
41. Line imperfection in a crystal is called
A. Schottky defect
B. Frenkel defect
C. edge dislocation
D. Miller defect.
41.C. Line imperfection in a crystal is called edge dislocation.
42. The function of diplexer bridge in a TV transmitter is
A. to prevent the loading of several transmitters by video transmitter
B. to increase the bandwidth
C. to increase the power output
D. to increase the efficiency of transmission.
42.A. The function of diplexer bridge in a TV transmitter is to prevent the loading of several transmitters by video transmitter.
43. Sometimes microwave signals follow the earth's curvature. This due to
A. Ionospheric reflection
B. Faraday rotation
C. Ducting
D. lonospheric scatter.
43.C. Sometimes microwave signals follow the earth's curvature. This is due to ducting.
44. The modes in a reflex Klystron
A. give the same frequency but different transit time
B. result from excessive transit time across the resonator gap
C. are caused by spurious frequency modulation
D. are just for theoretical considerations.
44.A. The modes in a reflex Klystron give the same frequency but different transit time.
45. The capacity of a channel is
A. number of digits used in coding
B. volume of information it can take
C. maximum rate of information transmission
D. bandwidth required for information
45.C. The capacity of a channel is maximum rate of information transmission

Fill in the Blanks with appropriate Words

1. 'Please' and 'Thank you' are the little courtesies by which we keep the........ of life oiled and running smoothly.
(a) river
(b) garden
(c) path
(d) machine-Answer
2. The bright colour of this shirt has \qquad
(a) gone
(b) disappeared
(c) faded-Answer
(d) paled

One majorbetween the Election Commission and the Union Government is related to the powers of the former in respect of the deployment of central police forces at places where an election isheld.
(a) conflict-Answer
(b) pain
(c) irritant
(d) culprit
4.Even a glance will reveal the mystery
(a)crude
(b)cursory-Answer
(c) critical
(d) curious
5. His standard of living has \qquad since his son joined service
(a) lifted
(b) increased
(c) risen-Answer
(d) heightened
6. The passengers were afraid but the captainthem that there was no danger.
(a) instructed
(b) advised
(c) promised
(d) assured-Answer
7. His first failure did not...... him from making another attempt.
(a) interfere
(b) forbid
(c) frighten
(d) deter-Answer
8. No one will \qquad you for having been rude to your teacher.
(a) exclaim
(b) admire-Answer
(c) advise
(d) recommend
9.The doctor the patient from taking certain medicines.
(a) banned
(b) prohibited-Answer
(c) prescribed
(d) proscribed
10.1a car to be absolutely necessary these days
(a) think
(b)regard
(c) consider-Answer
(d) agree
11. He didn't have the. \qquad dea of villager's problems.
(a) smallest
(b)finest
(c) faintest-Answer
(d) feeblest
12. This is a............ translation of the speech.
(a) verbatim
(b) verbal
(c) literal-Answer
(d) literary
13. The news of the secret deal soon despite official silence.
(a) discovered
(b) disclosed
(c)leaked out-Answer
(d) divulged
14. No man had a morelove for literature, or a higher respect for it, than

Samuel Johnson.
(a) arduous
(b) ardent-Answer
(c) animated
(d) adroit
15.I have oftenwhy he went to live abroad.
(a) puzzled
(b) wondered-Answer
(c) thought
(d) surprised
16. He lives near \qquad a lonely of countryside.
(a) piece
(b) length
(c) stretch-Answer
(d) section
17. To nobody else did the story seem \qquad
(a) contingent
(b) credible-Answer
(c) credulous
(d) creditable
18. The transfer of territories could not take place because one state \qquad the findings
of the Commission.
(a) objected
(b) questioned
(c)rejected
(d) disputed-Answer
19.Anticipating renewed rioting, the authorities erectedto block off the
streets.
(a) dykes
(b) barrages
(c) barricades-Answer
(d) barracks
20.When their examinations were over, the children gleefully....... the books they
had been reading.
(a) despised
(b) neglected-Answer
(c) shelve
(d)overthrow

Found the similar paper in recruitment?: Yes | No

You might also be interested in :SAIL Placement Papers, Question-Paper, Placement Papers By Company

Previous Papers	Next Papers
SAIL/Placement-Paper-Candidate-Experienc...	SAIL Recruitment-Notification-Syllabus-M...

Join the Conversation

Your name: * Anonymous
Email : $\quad \square$
Comment: * \quad Switch to plain text editor

8) Y Voumb

PEPSI IPL ON YOUTUBE
Type "YouTube" in the box below Type Here:

Save

Bodyartforms Body Jewelry

www.bodyartforms.com

Huge Selection, Great Prices Free Shipping Over \$25

Jobs		Placement Preparation
JOBS BY CATEGORY	JOBS BY COURSES	Career \& Courses
IT / Software Jobs	BE / B.Tech Jobs	SAMPLE PLACEMENT PAPERS

Candidate Services
Premium Membership
JobMentor
3) Power Resume 3 3 biler nition

17 Google play

Freshersworld.com : The No. 1 Jobsite for Freshers in India
Freshersworld.com is the No. 1 Jobsite for freshers in India with more than $3500+$ top companies hiring through Freshersworld.com. Freshersworld is a one-stop shop for all your career needs, right from your campus interview preparation till the final selection in your dream company.

[^0]: 1. zero
 $\frac{1}{\sqrt{2}} V$
 . 1 V
 2. $\sqrt{2} V$
