(BT)

BIO TECHNOLOGY

INSTRUCTIONS TO CANDIDATES

- Candidates should write their Hall Ticket Number only in the space provided at the top left hand corner of this page, on the leaflet attached to this booklet and also in the space provided on the OMR Response Sheet. BESIDES WRITING, THE CANDIDATE SHOULD ENSURE THAT THE APPROPRIATE CIRCLES PROVIDED FOR THE HALL TICKET NUMBERS ARE SHADED USING H.B. PENCIL ONLY ON THE OMR RESPONSE SHEET. DO NOT WRITE HALL TICKET NUMBER ANY WHERE ELSE.
- 2. Immediately on opening this Question Paper Booklet, check:
 - (a) Whether 200 multiple choice questions are printed (50 questions in Mathematics, 25 questions in Physics, 25 questions in Chemistry and 100 questions in Engineering)
 - (b) In case of any discrepancy immediately exchange the Question paper Booklet of same code by bringing the error to the notice of invigilator.
- 3. Use of Calculators, Mathematical Tables and Log books is not permitted.
- 4. Candidate must ensure that he/she has received the Correct Question Booklet, corresponding to his/her branch of Engineering.
- 5. Candidate should ensure that the booklet Code and the Booklet Serial Number, as it appears on this page is entered at the appropriate place on the OMR Response Sheet by shading the appropriate circles provided therein using H.B. pencil only. Candidate should note that if they fail to enter the Booklet Serial Number and the Booklet Code on the OMR Response Sheet, their Answer Sheet will not be valued.
- 6. Candidate shall shade one of the circles 1, 2, 3 or 4 corresponding question on the OMR Response Sheet using H.B. Pencil only. Candidate should note that their OMR Response Sheet will be invalidated if the circles against the question are shaded using Black / Blue ink pen / Ball pen / any other pencil other than H.B. Pencil or if more than one circle is shaded against any question.
- 7. One mark will be awarded for every correct answer. There are no negative marks.
- 8. The OMR Response Sheet will not be valued if the candidate:
 - (a) Writes the Hall Ticket Number in any part of the OMR Response Sheet except in the space provided for the purpose.
 - (b) Writes any irrelevant matter including religious symbols, words, prayers or any communication whatsoever in any part of the OMR Response Sheet.
 - (c) Adopts any other malpractice.
- 9. Rough work should be done only in the space provided in the Question Paper Booklet.
- 10. No loose sheets or papers will be allowed in the examination hall.
- 11. Timings of Test: 10.00 A.M. to 1.00 P.M.
- 12. Candidate should ensure that he / she enters his / her name and appends signature on the Question paper booklet, leaflet attached to this question paper booklet and also on the OMR Response Sheet in the space provided. Candidate should ensure that the invigilator puts his signature on this question paper booklet, leaflet attached to the question paper booklet and also on the OMR Response Sheet.
- 13. Before leaving the examination hall candidate should return both the OMR Response Sheet and the leaflet attached to this question paper booklet to the invigilator. Failure to return any of the above shall be construed as malpractice in the examination. Question paper booklet may be retained by the candidate.
- 14. This booklet contains a total of 32 pages including Cover page and the pages for Rough Work.

(BT)

Set Code : T2

Booklet Code : A

Note: (1) Answer all questions.

- (2) Each question carries 1 mark. There are no negative marks.
- (3) Answer to the questions must be entered only on OMR Response Sheet provided separately by completely shading with H.B. Pencil, only one of the circles 1, 2, 3 or 4 provided against each question, and which is most appropriate to the question.

MATHEMATICS

1. If
$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
, then $A^4 =$

- (1) 3I
- (2) 9I
- (3) 271
- (4) 811

TIM

2. If $A = \begin{bmatrix} 0 & 2 & 1 \\ -2 & 0 & -2 \\ -1 & x & 0 \end{bmatrix}$ is a skew symmetric matrix, then the value of x is

- (1) 1
- (2) 2
- (3) 3
- (4) 4

3. What is the number of all possible matrices with each entry as 0 or 1 if the order of matrices is 3×3

- (1) 64
- (2) 268
- (3) 512
- (4) 256

4. If $A = \begin{bmatrix} 1 & i & -i \\ i & -i & 1 \\ -i & 1 & i \end{bmatrix}$, then |A| =

- (1) 1
- (2) 2
- (3) 3
- (4) 4

Set Code: T Booklet Code:

5. The solution of a system of linear equations $2x - y + 3z = 9, x + y + z$	=6, x-y+z=2 is
--	----------------

- (1) x = -1, y = -2, z = -3
- (2) x = 3, v = 2, z = 1

(3) x = 2, y = 1, z = 3

(4) x = 1, y = 2, z = 3

6. If
$$\frac{1}{x^2 + a^2} = \frac{A}{x + ai} + \frac{B}{x - ai}$$
 then A = _____, B = _____.

- (1) $\frac{1}{2ai}$, $-\frac{1}{2ai}$ (2) $-\frac{1}{2ai}$, $\frac{1}{2ai}$ (3) $\frac{1}{ai}$, $-\frac{1}{ai}$ (4) $-\frac{1}{ai}$, $\frac{1}{ai}$

7. If
$$\frac{2x+4}{(x-1)^3} = \frac{A_1}{(x-1)} + \frac{A_2}{(x-1)^2} + \frac{A_3}{(x-1)^3}$$
 then $\sum_{i=1}^3 A_i$ is equal to

- (1) A_{n}

8. The period of the function
$$f(x) = |\sin x|$$
 is

- (1) π
- $(2) 2\pi$
- $(3) 3\pi$
- $(4) 4\pi$

9. If
$$A+B=45^{\circ}$$
, then $(1-\cot A) \cdot (1-\cot B)$ is

- (1) 1
- (2) 0
- (3) 2

10. The value of
$$\sin 78^{\circ} + \cos 132^{\circ}$$
 is

- (1) $\frac{\sqrt{5}+1}{4}$ (2) $\frac{\sqrt{5}+1}{2}$ (3) $\frac{\sqrt{5}-1}{2}$ (4) $\frac{\sqrt{5}-1}{4}$

11. If
$$A+B+C = \pi$$
, then $\sin 2A + \sin 2B + \sin 2C =$

(1) 4 cosA sinB cosC

(2) 4 sinA cosB sinC

(3) 4 cosA cosB cosC

(4) 4 sinA sinB sinC

12. The principal solution of
$$Tanx = 0$$
 is

(1) $x = n\pi, n \in \mathbb{Z}$

(2) x=0

(3) $x=(2n+1) \pi/2, n \in \mathbb{Z}$

(4) $x = n\pi + \alpha, n \in \mathbb{Z}$

Set Code :	
Booklet Code:	A

13	The value of Tan-1	$(2) + Tan^{-1}$	(3) is
10.	THE Value of Tail	(2) ran	(2)10

- (1) $\frac{\pi}{4}$
- (2) $\frac{\pi}{2}$
- $(3) \quad \frac{\pi}{3}$

- (1) 1:2:3
- (2) 2:3:4
- (3) 3:4:5
- (4) 4:5:6

15. The value of
$$r.r_1.r_2.r_3$$
 is

- (1) Δ^2
- (2) Δ^{-2}
- (3) Δ^{-3}
- (4) Δ^4

16.
$$\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} =$$

- (1) $\frac{1}{r}$

17. If
$$a=6$$
, $b=5$, $c=9$, then the value of angle A is

- (1) $\cos^{-1}(2/9)$
- $(2) \cos^{-1}(2/5)$
- $(3) \cos^{-1}(7/9)$
- (4) $\cos^{-1}(1/3)$

18. The polar form of complex number
$$1-i$$
 is

- (1) $\sqrt{2}e^{-i\pi/4}$
- $(2) \quad \sqrt{2} \, e^{i\pi/4}$
- (3) $\sqrt{2} e^{i\pi/2}$ (4) $\sqrt{2} e^{-i\pi/2}$

19. If
$$1, \omega, \omega^2$$
 be the cube roots of unity, then the value of $2^{\omega^3}.2^{\omega^5}.2^{\omega}$ is

- (1) ω
- (2) ω^2
- (3) 1
- (4) 0

20. The intercept made on X-axis by the circle
$$x^2+y^2+2gx+2fy+c=0$$
 is

- (1) $\sqrt{g^2-c}$ (2) $\sqrt{f^2-c}$ (3) $2.\sqrt{g^2-c}$ (4) $2.\sqrt{f^2-c}$

21. If one end of the diameter of the circle
$$x^2+y^2-5x-8y+13=0$$
 is (2, 7), then the other end of the diameter is

- (1) (3, 1)
- (2) (1,3)
- $(3) \quad (-3, -1) \qquad \qquad (4) \quad (-1, -3)$

Set Code: T2 **Booklet Code:**

- 22. The radius of the circle $\sqrt{1+m^2}(x^2+y^2)-2cx-2mcy=0$ is
 - (1) 2c
- (2) 4c
- (3) c/2
- (4) c
- 23. The parametric equations of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{h^2} = 1$ are
 - (1) $x = a \sec \theta, y = b \tan \theta$

(2) $x = b \sin\theta, y = a \cos\theta$

(3) $x = a \cos\theta, y = b \sin\theta$

- (4) $x = a \csc\theta, y = b \cot\theta$
- The equation of the directrix of the parabola $2x^2 = -7y$ is
 - (1) 8v+7=0
- (2) 8y-7=0
- (3) 7y+8=0
- (4) 8x-7=0
- 25. The condition for a straight line y = mx + c to be a tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is
 - (1) c = a/m
- (2) $c^2 = a^2 m^2 b^2$ (3) $c^2 = a^2 m^2 + b^2$ (4) $c^2 = a/m$

- 26. $Lt_{x\to 1} \frac{\sqrt{5x-4}-\sqrt{x}}{x-1}$ is
 - (1) 3
- (2) 2
- (3) 4
- (4) 1

- 27. $\log i =$
 - (1) $\pi/2$
- (2) $\pi/4$
- (3) $i\pi/2$
- (4) $i\pi/4$

- 28. $\frac{d}{dx}[\log_7 X] =$

- (1) $\frac{1}{r}$ (2) $X \log_7^e$ (3) $\frac{1}{r} \log_e^7$ (4) $\frac{1}{x} \log_7^e$
- 29. $\frac{d}{dx}[2\cosh x] =$
 - (1) $\frac{e^x + e^{-x}}{2}$ (2) $\frac{e^x e^{-x}}{2}$

- (3) $e^x + e^{-x}$ (4) $e^x e^{-x}$

Set Code:

Booklet Code:

 $30. \quad \frac{d}{dx} \left[\cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right) \right] =$

- (1) $\frac{1}{1+x^2}$ (2) $\frac{-1}{1+x^2}$
- (3) $\frac{2}{1+r^2}$
- (4) $\frac{-2}{1+x^2}$

31. If $x = at^2$, y = 2at, then $\frac{dy}{dx} =$

- $(1) \quad \sqrt{\frac{y}{x}} \qquad \qquad (2) \quad \sqrt{\frac{x}{a}}$
 - (3) $\sqrt{\frac{a}{r}}$ (4) $\sqrt{\frac{x}{v}}$

The derivative of e^x with respect to \sqrt{x} is

- $(1) \quad \frac{2\sqrt{x}}{x^x}$
- $(2) \quad 2\sqrt{x}e^x \qquad (3) \quad \frac{e^x}{2\sqrt{x}}$

The equation of the normal to the curve $y = 5x^4$ at the point (1, 5) is

- (1) x + 20y = 99 (2) x + 20y = 101 (3) x 20y = 99 (4) x 20y = 101

The angle between the curves $y^2 = 4x$ and $x^2 + y^2 = 5$ is

- (1) $\frac{\pi}{4}$
- (2) $tan^{-1}(2)$
- (3) $tan^{-1}(3)$ (4) $tan^{-1}(4)$

35. If $u = x^3y^3$ then $\frac{\partial^3 u}{\partial x^3} + \frac{\partial^3 u}{\partial y^3} =$

- (1) $6(x^3+y^3)$ (2) $6x^3y^3$
- $(3) 6x^3$

36. $\int \csc x \, dx =$

- (1) $\log(\csc x + \cot x) + C$
- (2) $\log(\cot x/2) + C$

(3) $\log (\tan x/2) + C$

(4) $-\csc x \cdot \cot x + C$

Booklet Code :

				CHE	MIST	RY		
76.	The	valency electron	ic con	figuration of Pl	hospho	rous atom (At.N	o. 15)	is
	(1)	$3s^2 3p^3$	(2)	3s ¹ 3p ³ 3d ¹	(3)	$3s^2 3p^2 3d^1$	(4)	$3s^1 3p^2 3d^2$
77.	Ane	element 'A' of At.	No.12	combines with	an eler	ment 'B' of At.No	ь.17. Т	The compound formed is
	(1)	covalent AB	(2)	ionic AB ₂	(3)	covalent AB ₂	(4)	ionic AB
78.	The	number of neutro	ons pr	esent in the ator	m of ₅₆ l	Ba ¹³⁷ is		4
	(1)	56	(2)	137	(3)	193	(4)	81
79.	Hyd	rogen bonding in						
	(1)		reezii	ng point		increase in its o		
	(3)	increase in its b	oiling	point	(4)	decrease in its 1	boilin	g point
80.	In th	e HCl molecule,	the bo	onding between	hydro	gen and chlorine	is	
	(1)	purely covalent	(2)	purely ionic	(3).	polar covalent	(4)	complex coordinate
81.	Pota	ssium metal and	potas	sium ions				
	(1)	both react with	water			have the same r		
ž.	(3)	both react with	chlori	ne gas	(4)	have the same of	electro	onic configuration
82.	stan	gms of sodium dard flask. 10 ml o er into 100 ml of s	ofthis	solution were pi	petted	out into another f	lask ar	made upto 100 ml in a nd made up with distilled solution now is
	(1)	-0.1 M	(2)	1.0 M	(3)	0.5 M	(4)	0.25 M
83.	Con	centration of a 1.	.0 M s	solution of phos			•	
	(1)	0.33 N	(2)	1.0 N	(3)	2.0 N	(4)	3.0 N
84.	Whi	ch of the followi	ng is a	Lewis acid?	/-··	n 11 11	• •	
	(1)	Ammonia			(2)	Berylium chlor		
	(3)	Boron trifluorio	de		(4) 14-A	Magnesium ox	ide	

					Booklet Code : A
85.	Which of the following constitutes the constitutes the constitutes the constitutes the constitutes and potassium in the constitution of the following constitutes the constitution of the following consti	ydroxide acid		olution	?
86.	Which of the following is an electrolyte? (1) Acetic acid (2) Glucose		Urea	(4)	Pyridine
87.	Calculate the Standard emf of the cell, $C_0 = C_0 + C_0 = $		Cu ⁺² /Cu giver (–) 0.78 V		
88.	A solution of nickel chloride was electron (1) nickel will be deposited on the anode (3) H ₂ gas will be liberated at the anode	de_(2)_	Cl, gas will be	e libera	ted at the cathode
89.	Which of the following metals will under (1) Cu (2) Li		tion fastest? Zinc	(4)	Iron
90.	Which of the following cannot be used for (1) Ozone (3) Potassium Chloride	(2) (4)	rilization of dr Calcium Oxy Chlorine wate	chlorid	water? e
91.	A water sample showed it to contain 1.20 terms of calcium carbonate equivalent is (1) 1.0 ppm (2) 1.20 ppm		of magnesiun		nte. Then, its hardness in 2.40 ppm
92.	Soda used in the L-S process for softening (1) sodium bicarbonate (3) sodium carbonate	ng of wat (2) (4)	er is, Chemica sodium carbo sodium hydro	nate de	
93.	The process of cementation with zinc po (1) sherardizing (2) zincing	wder is k	nown as metal claddin	g (4)	electroplating

Set Code: **Booklet Code:**

PHYSICS

51.	Two quantities A and B are related by the relation $A/B = m$ where m is linear mass density and A is
	force. The dimensions of B will be

- (1) same as that of latent heat
- (2) same as that of pressure

same as that of work

same as that of momentum (4)

The dimensional formula of capacitance in terms of M, L, T and I is

- (1) $[ML^2T^2I^2]$
- (2) $[ML^{-2}T^4I^2]$
- (3) $[M^{-1}L^{3}T^{3}I]$
- (4) $[M^{-1}L^{-2}T^4I^2]$

If l, m and n are the direction cosines of a vector, then 53.

(1)
$$l + m + n = 1$$

(1)
$$l+m+n=1$$
 (2) $l^2+m^2+n^2=1$ (3) $\frac{1}{l}+\frac{1}{m}+\frac{1}{n}=1$ (4) $lmn=1$

$$\frac{1}{l} + \frac{1}{m} + \frac{1}{n} = 1$$

$$(4) \quad lmn = 1$$

The angle between i+j and j+k is

- $(2) 90^{\circ}$
- = (3) 45° $= (4)^{\top} 60^{\circ}$.

A particle is moving eastwards with a velocity of 5 ms⁻¹. In 10 seconds the velocity changes to 5 ms⁻¹ northwards. The average acceleration in this time is

- (1) $\frac{1}{\sqrt{2}}$ ms⁻² towards north-west (2) zero

- (3) $\frac{1}{2}$ ms⁻² towards north (4) $\frac{1}{\sqrt{2}}$ ms⁻² towards north-east

56. The linear momentum of a particle varies with time t as $p = a+bt+ct^2$ which of the following is correct?

- (1) Force varies with time in a quadratic manner.
- (2) Force is time-dependent.
- (3) The velocity of the particle is proportional to time.
- (4) The displacement of the particle is proportional to t.

57. A shell of mass m moving with a velocity v suddenly explodes into two pieces. One part of mass m/4 remains stationary. The velocity of the other part is

- (1) v
- (2) 2v
- (3) 3v/4
- (4) 4v/3

Set Code :	T2
Booklet Code :	A

- 0	rmt 1 *4	_ C _	function	falling	body	ofter	20	i
58.	The velocity	or a	reely	taning	bouy	anter	43	13

- (1) 9.8 ms⁻¹

- (2) 10.2 ms^{-1} (3) 18.6 ms^{-1} (4) 19.6 ms^{-1}

- (2) $\frac{\pi u^4}{g^2}$ (3) $\frac{\pi u^2}{g^4}$ (4) $\frac{\pi u}{g^4}$

60. The minimum stopping distance for a car of mass
$$m$$
, moving with a speed v along a level road, if the coefficient of friction between the tyres and the road is μ , will be

- (1) $\frac{v^2}{2\mu g}$ (2) $\frac{v^2}{\mu g}$ (3) $\frac{v^2}{4\mu g}$ (4) $\frac{v}{2\mu g}$

- (1) In the backward direction on the front wheel and in the forward direction on the rear wheel
- (2) In the forward direction on the front wheel and in the backward direction on the rear wheel
- In the backward direction on both the front and the rear wheels
- In the forward direction on both the front and the rear wheels

(1) strike and explode

explode without striking (2)

(3) implode and explode

(4) combine and move together

(1) zero

(2) positive

(3) negative

(4) increasing uniformly with time

Set Code :	T2
Booklet Code :	A

- 64. Consider the following two statements:
 - Linear momentum of a system of particles is zero.
 - Kinetic energy of a system of particles is zero.

Then

- (1) A implies B & B implies A
- (2) A does not imply B & B does not imply A
- (3) A implies B but B does not imply A
- (4) A does not imply B but B implies A
- 65. An engine develops 10 kW of power. How much time will it take to lift a mass of 200 kg to a height of 40 m? (Given $g = 10 \text{ ms}^{-2}$)
 - (1) 4s
- (2) 5s
- 8s
- (4) 10s
- 66. If a spring has time period T, and is cut into n equal parts, then the time period will be
- When temperature increases, the frequency of a tuning fork
 - (1)increases
 - (2) decreases
 - (3) remains same
 - (4) increases or decreases depending on the materials
- If a simple harmonic motion is represented by $\frac{d^2x}{dy^2} + \alpha x = 0$, its time period is
 - (1) $2\pi\sqrt{\alpha}$
- $(3) \quad \frac{2\pi}{\sqrt{\alpha}} \qquad (4) \quad \frac{2\pi}{\alpha}$
- 69. A cinema hall has volume of 7500 m³. It is required to have reverberation time of 1.5 seconds. The total absorption in the hall should be
 - (1) 850 w-m²
- (2) 82.50 w-m^2
- (3) 8.250 w-m²
- (4) 0.825 w-m²

										Set Code: T2
								¥		Booklet Code : A
70.	(1)	osorb the soun Glasses, store Polished surf	es	ll which (of the fo	(2) (4)	ng are use Carpets, Platform	curtain	S	
71.	If N (1)		gadro's (2)		hen the	numb		ecules i	n 6 gr (4)	n of hydrogen at NTP is N/6
72.	The	mean translati	onal kin	etic energ	gyofaı	perfec	t gas mole	ecule at	the te	emperature T K is
LF.	(1)	$\frac{1}{2}kT$	(2)	kT		(3)	$\frac{3}{2}kT$		(4)	2kT
73. 74.	(1) (3) Dur	specific heat	lent ic proces	ss, the pro	essure o	(2) (4) of a ga	thermal l	heat ca ture gra	pacity idient	
	(1)		(2)			(3)	2		(4)	$\frac{5}{3}$
75.		to protect the to protect the to protect the to protect the to protect the	e fiber fi e fiber f e fiber fr	rom mech rom corre rom mech	hanical osion nanical	stress streng	th		÷	

Booklet Code : A

37.
$$\int_0^{\pi} \cos^{11} x \, dx =$$

- $(1) \quad \frac{256}{693} \qquad \qquad (2) \quad \frac{256\pi}{693}$
- $(3) \quad \frac{\pi}{4}$

38.
$$\int f^{1}(x) [f(x)]^{n} dx =$$

(1)
$$\frac{[f(x)]^{n-1}}{n-1} + C$$
 (2)
$$\frac{[f(x)]^{n+1}}{n+1} + C$$
 (3)
$$n[f(x)]^{n-1} + C$$
 (4)
$$(n+1)[f(x)]^{n+1} + C$$

(2)
$$\frac{[f(x)]^{n+1}}{n+1} + C$$

$$(3) \quad n[f(x)]^{n-1} + C$$

$$C(4) (n+1)[f(x)]^{n+1} + C$$

$$39. \quad \int \frac{dx}{(x+7)\sqrt{x+6}} =$$

(1)
$$Tan^{-1}(\sqrt{x+6})+C$$

(3)
$$Tan^{-1}(x+7)+C$$

(2)
$$2Tan^{-1}(\sqrt{x+6}) + CTM$$

$$+C$$
 (4) $2Tan^{-1}(x+7)+C$

40.
$$\int \tan^{-1} x \, dx =$$

(1)
$$x.Tan^{-1}x + \frac{1}{2}\log(1+x^2) + C$$

(2)
$$\frac{1}{1+x^2} + C$$

(3)
$$x^2.Tan^{-1}x + C$$

(4)
$$x.Tan^{-1}x - \log \sqrt{1+x^2} + C$$

$$41. \quad \int \frac{dx}{1+e^{-x}} =$$

(1)
$$\log (1+e^{-x}) + C$$

(3) $e^{-x} + C$

(2)
$$\log (1+e^x) + C$$

(3)
$$e^{-x} + C$$

(4)
$$e^x + C$$

$$42. \quad \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin|x| \, dx =$$

- (1) 0
- (2) 1
- (3) 2

8-A

(4) -1

Set Code: **Booklet Code:**

- 43. Area under the curve $f(x) = \sin x$ in $[0, \pi]$ is
 - (1) 4 sq. units
- (2) 2 sq. units
- (3) 6 sq. units
- (4) 8 sq. units

- The order of $x^3 \frac{d^3 y}{dx^3} + 2x^2 \frac{d^2 y}{dx^2} 3y = x$ is
 - (1) 1
- (2) 4
- (3) 3
- (4) 2

- 45. The degree of $\left[\frac{d^2 y}{dx^2} + \left(\frac{dy}{dx} \right)^2 \right]^2 = a \frac{d^2 y}{dx^2}$ is
 - (1) 4
- (2) 2
- (3) 1
- (4) 3
- The family of straight lines passing through the origin is represented by the differential equation
 - (1) ydx + xdy = 0 (2) xdy ydx = 0 (3) xdx + ydy = 0 (4) xdx ydy = 0

- The differential equitation $\frac{dy}{dx} + \frac{ax + hy + g}{hx + hy + f} = 0$ is called
 - (1) Homogeneous (2) Exact
- (3) Linear
- (4) Legender
- 48. The solution of differential equation $\frac{dy}{dx} = e^{-x^2} 2xy$ is
 - (1) $v e^{-x^2} = x + c$ (2) $v e^x = x + c$ (3) $v e^{x^2} = x + c$ (4) v = x + c

- The complementary function of $(D^3+D^2+D+1) y = 10$ is 49.
 - (1) $C_1 \cos x + C_2 \sin x + C_3 e^{-x}$
- (2) $C_1 \cos x + C_2 \sin x + C_3 e^x$

(3) $C_1 + C_2 \cos x + C_3 \sin x$

- (4) $(C_1 + C_2 x + C_3 x^2) e^x$
- 50. Particular Integral of $(D-1)^4y = e^x$ is

 - (1) $x^4 e^x$ (2) $\frac{x^4}{2a} e^{-x}$
- (3) $\frac{x^4}{12}e^x$ (4) $\frac{x^4}{24}e^x$

Download from www.<mark>JbigDeaL.com Powered By © JbigDeaL</mark>

Set Code : T2

Booklet Code : A

94.		osion of a metal is fastest in rain-water (2) acidulated water	·(3)	distilled water (4) de-ionised water
95.	Whi	ch of the following is a thermoset polyi	ner?	
	(1)	Polystyrene	(2)	PVC
	(3)	Polythene	(4)	Urea-formaldehyde resin
96.	Che	mically, neoprene is		a a
	(1)	polyvinyl benzene	(2)	polyacetylene
	(3)	polychloroprene	(4)	poly-1,3-butadiene
97.	Vulc	anization involves heating of raw rubber	r with	
	(1)	selenium element	(2)	elemental sulphur TM
	(3)	a mixture of Se and elemental sulphur	(4)	a mixture of selenium and sulphur dioxide
98.	Petro	ol largely contains		
	(1)	a mixture of unsaturated hydrocarbons	s C ₅ - 0	\mathbb{D}_8
	(2)	a mixture of benzene, toluene and xyle	ene	
	(3)	a mixture of saturated hydrocarbons C	1 ₁₂ - C	
	(4)	a mixture of saturated hydrocarbons C	C ₆ - C ₈	
99.	Whi	ch of the following gases is largely resp	onsil	ole for acid-rain?
		SO, & NO,		CO ₂ & water vapour
	(3)	CO ₂ & N ₂	(4)	N ₂ &CO ₂
100.	BOI	O stands for		
•	(1)	Biogenetic Oxygen Demand	(2)	Biometric Oxygen Demand
	(3)	Biological Oxygen Demand	(4)	Biospecific Oxygen Demand
				**

Set Code	:[T2
klet Code		A

BIO TECHNOLOGY

101.	Aga	r-agar was used for the first time for cu	lturin	g microbes in 1882 by
	(1)	Louis Pasteur	(2)	Robert Koch
	(3)	Beijernick	(4)	Joseph Lister
102.	Wha	at are pesticides used to kill weeds calle	d?	
	(1)	Biopesticides	(2)	Antimicrobials
	(3)	Fungicides	(4)	Herbicides
103.	Whi	ch on of the following is not a nitrogen-	fixin	g organism?
	(1)	Anabaena	(2)	Nostoc
	(3)	Azotobacter	(4)	Pseudomonas
	60			
104.		ition of blood to a <mark>culture</mark> medi <mark>um</mark> only e picked out. This is an example of a	allow	rs t <mark>he he</mark> molytic ba <mark>cte</mark> ria that grow on the plate
	(1)	Differential media	(2)	Liquid media
	(3)	Chemically defined media	(4)	Selective media
105.	For	what purpose are semisolid media used	?	
	(1)	Isolation of discrete colonies		
	(2)	Subculturing microorganisms	1/2	
	(3)	Obtaining growth throughout the tube		u u
	(4)	Determination of motility of a culture	;	
106.	The	endotoxins released from Bacillus thur	ingier	nsis are known as
	(1)	Cry proteins	(2)	Toxin proteins
	(3)	Bacilli proteins	(4)	Sat proteins

Download from www.<mark>JbigDeaL.com Powered By © JbigDeaL</mark>

Set Code : T2

(BT)

Booklet Code : A

107.	Phos	sphate solubilizing bacteria converts		
	(1)	Soluble to insoluble form of phosphor		
	(2)	Insoluble to soluble form of phosphor		
	(3)	Soluble to inactive insoluble form of p		
	(4)	Insoluble to inactive soulble form of p	ohosp!	horous
108.	Azol	lla sps are used as biofertilizers to conti	rol mo	osquito larvae in
	(1)	Rice fields (2) Wheat fields	(3)	
109.	Wils	on & Blair's medium is used for isolat	ion of	•
	(1)	Pseudomona sps	(2)	Enterobacter sps
	(3)	Lactobacillus sps	(4)	Salmonella sps
				734
110.	Phot	oautotroph <mark>s acquire ene</mark> rgy f <mark>ro</mark> m	-	TM
	(1)	Sunlight and methane	(2)	Sunlight and carbondioxide
	(3)	Sunlight and benezene	(4)	Sunlight and ammonia
50				
111.	Livi	ng, unstained cells and organisms can b	e obse	erved best using
Ti Ti	(1)	Flourescent microscopy	(2)	TEM
	(3)	Phase contrast microscopy	(4)	SEM
110	O 11	al and the		
112.		theory was proposed by	(2)	Watson and Crick
	(1)	Schieiden and Schwann	(4)	Gregor and Mendel
	(3)	Messelon and Stahl	(+)	Gregor and Prender
113.	Peri	pheral membrane proteins		
	(1)	are generally noncovalently bound to	memb	orane lipids
	(2)	are usually denatured when released fa	rom n	nembranes
	(3)	can be released from membranes only		
	(4)	may have functional units on both side		
		-	ē	

18-A

Booklet Code :

(1) (3) A sar Rela	Vacuole, cell mentifirst light microsc Louis Pasteur Kary Mullis Imple of cells is positive to the cell, the isotonic	ope v laced ne so	was discovered	by (2) (4) on. Th	Antonie Fo	nk and the		distorted.
The (1) (3)	first light microsc Louis Pasteur Kary Mullis mple of cells is p	ope v	was discovered	by (2) (4) on. Th	Antonie Fo	ster		distorted.
The (1)	first light microsc Louis Pasteur		ii ii	by (2)	Antonie Fo		hock	G.
			ii ii		dria			
(4)	Vacuale cell me	mbra	ne nucleus mi	tochon	dria			
(3)	Nucleus, cen me	mora	iic, iiitochonai	iu, cy ti	Spidom			
	52.00			_	nlasm			
					Opiasiii			
							TM	
(4)	Creating transger	nic ar	nimals and plant	:S				
(3)							•	
(2)	-							
(1)	Protein-metal int	teract	tion					
Folio	wing are the appl	icatio	ons of biophysi	cs exce	pt one			
(4)	The number of no	eutro	ns in the atom				¥.	
(3)	——————————————————————————————————————							
(2)	The number of pr	roton	s plus the numb	er of n	eutrons	Ti .		
					rons			
(((((((((((((((((((((1) (2) (3) (4) Follo (1) (2) (3) (4) Whice (1) (2)	(1) Number of proto (2) The number of proto (3) The number of proto (4) The number of not (4) The number of not (5) Protein-metal int (6) Development of (7) Drug discovery at (8) Creating transger (9) Which of the followint (1) Mitochondria, ce (2) Chloroplasts, cyt	(1) Number of protons pl (2) The number of proton (3) The number of proton (4) The number of neutro (4) The number of neutro (5) Following are the application (1) Protein-metal interact (2) Development of vacc (3) Drug discovery and dec (4) Creating transgenic ar (4) Creating transgenic ar (5) Mitochondria, cell metal (6) Chloroplasts, cytoplast	(1) Number of protons plus the number of (2) The number of protons plus the number of (3) The number of protons in the atom (4) The number of neutrons in the atom (4) The number of neutrons in the atom (5) Protein-metal interaction (6) Development of vaccines (7) Development of vaccines (8) Drug discovery and development (9) Creating transgenic animals and plant (1) Mitochondria, cell membrane, cell we (2) Chloroplasts, cytoplasm, vacuole, number of protons plus the number of protons in the atom (1) Mitochondria, cell membrane, cell we (2) Chloroplasts, cytoplasm, vacuole, number of protons plus the number of protons plus the number of protons plus the number of protons in the atom (4) Protein-metal interaction (5) Protein-metal interaction (6) Protein-metal interaction (7) P	(2) The number of protons plus the number of n (3) The number of protons in the atom (4) The number of neutrons in the atom Following are the applications of biophysics exce (1) Protein-metal interaction (2) Development of vaccines (3) Drug discovery and development (4) Creating transgenic animals and plants Which of the following are all present in animal of (1) Mitochondria, cell membrane, cell wall, cyt (2) Chloroplasts, cytoplasm, vacuole, nucleus	(1) Number of protons plus the number of electrons (2) The number of protons plus the number of neutrons (3) The number of protons in the atom (4) The number of neutrons in the atom Following are the applications of biophysics except one (1) Protein-metal interaction (2) Development of vaccines (3) Drug discovery and development (4) Creating transgenic animals and plants Which of the following are all present in animal cells? (1) Mitochondria, cell membrane, cell wall, cytoplasm (2) Chloroplasts, cytoplasm, vacuole, nucleus	(1) Number of protons plus the number of electrons (2) The number of protons plus the number of neutrons (3) The number of protons in the atom (4) The number of neutrons in the atom Following are the applications of biophysics except one (1) Protein-metal interaction (2) Development of vaccines (3) Drug discovery and development (4) Creating transgenic animals and plants Which of the following are all present in animal cells? (1) Mitochondria, cell membrane, cell wall, cytoplasm (2) Chloroplasts, cytoplasm, vacuole, nucleus	(1) Number of protons plus the number of electrons (2) The number of protons plus the number of neutrons (3) The number of protons in the atom (4) The number of neutrons in the atom (5) Following are the applications of biophysics except one (6) Protein-metal interaction (7) Development of vaccines (8) Drug discovery and development (9) Drug discovery and development (10) Creating transgenic animals and plants (11) Mitochondria, cell membrane, cell wall, cytoplasm (12) Chloroplasts, cytoplasm, vacuole, nucleus

								Set Code : T2
		*			115			Booklet Code : A
120	. Wh	ich of the follow	ing a	re not true abou	t cell th	eory?		
	(1)	All living thing	gs are	made of cells				
	(2)	All cells come	from	pre-exisiting b	oiotic co	mponent		
	(3)	All cells come	from	a pre-existing	abiotic (component		
	(4)	Cells performs	all fi	inctions of the	life			
121	. Mei	ndel's idea that pa	airs o	f characters sep	oarate di	uring gamete for	rmatio	on is called the law of
	(1) Particulate inheritance			(2)	Dominance			
	(3)	Segregation	76		(4)	Independent as	ssortm	ent
122.		at is the most correct rf plant?	mmor	outcome in th	e F2 ge	eneration of a cr	oss be	etween a tall plant and a
	(1)	1 tall: 1 dwarf			(2)	3 tall: 1dwarf	_ T	'M
	(3)	1 tall : 2 <mark>mediu</mark>	m:1	dwarf	(4)	All tall	L	•
123.	A hı	ıman female has		pairs of	autoson	nes and sex chro	omoso	me complement of
	(1)	23, XX	(2)	23, X	(3)		(4)	-
124.	A re	- "	some	consists of two	very lo	ng strands of id	entica	l chromosomal material
	(1)	Telomeres	(2)	Chromatids	(3)	Centromers	(4)	Genes
125.	DNA	A synthesis occur	s dur	ing the	phase o	of the cell cycle.	n s	
		Gap 1 (G1)		54			(4)	Mitosis
	` '	•		1 ()			()	
126.	X-in	activation can be	used	to identify indi-	viduals	who are		
		homozygous un		· ·		heterozygous		
	(3)	homozygous aff			10000	missing X-link	ed gen	ies
	• /	, , ,			` , ,			*

20-A

(BT)

			76				Booklet Code:	A	
	emophilia in huma tween a normal (no					nat will	be the results of	mating	
(1) half of daughte	rs are	normal and ha	lf of son	s are haemophi	lic			
(2) all sons are nor	mal ar	nd all daughter	s are car	riers				
(3)) half of sons are	norm	al and half are	hemoph	ilic; all daught	ers are	carriers	88	
(4) all daughters ar	re nori	nal and all son	is are cai	riers		٠		
128. W	hich of the followi	ing ge	netic conditior	ns is not	sex-linked?				
(1)	N 10 2	(2)	Colorblindne			emia	(4) Haemop	hilia	
129. Ca	nn a male be a carri	er for	a sex-linked d	isease?		v			
(1				81					
	(2) yes, if the male's father and mother were carriers								
12 15	(3) no, males have only a single copy of sex-linked genes								
(4)							٠.		
130. Hi	stones are found in	1				at .			
(1)) Nucleoi	(2)	Cytoplasm	. (3)	Cisternae	(4)	Mitochondria		
	hat is the process thogens?	of he	eating liquids	or food	at high tempe	erature	s to destroy foo	dborne	
(1)) high pressure p	rocess	sing	(2)	Pasteurization	l		•	
(3)) boiling			(4)	irradiation			2	
132. W	hich of the followi	ng is a	n micronutrien	t?					
) Carbon	25	Manganese	(3)	Potassium	(4)	Magnesium		
133. Ma	arine microbes are	typic	ally						
) acidophiles		halophiles	(3)	alkaliphiles	(4)	thermophiles		
3.74	•	west \$8	=	21-A				(BT)	

(BT)

								Booklet Code : A
134.	Tov	vhich kingdom do	the c	yanobacteria bel	ong?			
	(1)	Fungi	(2)		(3)	Protista	(4)	Plantae
135.	Whi	ch of the following	ıg wa	s the first widely	used	antiseptic and dis	sinfec	etant?
	(1)	Chlorine	(2)	Phenol	(3)	Iodine	(4)	Alcohol
136.	Cryo	opreservation is a	meth	od used for prese	ervinį	g samples by		¥
	(1)	freezing at 0°C			(2)	freezing at -50°	$^{\circ}$ C	
	(3)	freezing in liqui	d nitr	rogen at -196°C	(4)	freezing in liqui	id nitr	rogen at -50°C
137.	One	of method is an i	ndire	ct measurement	of mi	croorganisms		· .
		pour plate metho		*	(2)	Turbidity metho	d	•
	(3)	Streat plate meth			(4)	Microscopic me		M
	` '							
138.	Whi	ch of the followin	ng obt	ain energy from	the o	x <mark>idati</mark> on of inorga	anic o	r organic chemicals?
	(1)			Lithotroph	(3)		(4)	Phototroph
139.	The	average time requ	iired	for a freshly divi	ded c	ell to divide into t	wo da	aughter cells is called
	(1)	exponential flow	rate		(2)	generation time		
	(3)	division time			(4)	growth rate		
140.	An o	rganism is compl	etelv	dependant on atr	nospl	neric O., for grow	th. Th	is organism is a(n)
	(1)	Osmotolerant	•	1	(2)	Facultative anae		
	(3)	aerotolerant anac	erobe		(4)	Obligate aerobe		
						×		
141.	In the	e Air lift bioreacto	or mi	xing is accomplis	shed l	ру		
	(1)	Agitator			(2)	Air from sparger	r	
	(3)	Baffle			(4)	Draught tube		

22-A

Booklet Code : A

142.	Mair	n functions of battles in a dioreactor is			
	(1)	To prevent a vortex			
	(2)	To increase aeration			
	(3)	To reduce interfacial area of oxygen tran	sfe		
	(4)	To reduce aeration rate			
143.		optimize the bioreactor system, which on erobic fermentation?	e of	f the following system is least importan	t for
	(1)	Culture agitation to maintain oxygen sup	ply		
	(2)	Restriction of entry of contaminating or	gan	isms	
	(3)	Control of parameters like pH and temper	erat	ure	
	(4)	Maintenance of constant culture volume	:		
144	In la	arge scale fermentation the preferred meth	nod	of sterilization is	
177.	(1)		2)	Radiation	
	(3)	HAMAGO TOTAL CALL		Heat U G L	
	(3)	Tituation (
145.	Fort	turbine aeration agitaion unit the power co	onsu	mption	
	(1)	Is same for gassed and ungassed systems	S		
	(2)	Increase with decreasing turbine diameter	er		
	(3)	Decreasing with decreasing turbine dian	nete	r	
	(4)	Is smaller for gassed system than for un	gass	sed systems	
146.	Incr	reasing the stirrer speed improves the valu	e of	•	
	(1)	50-40 SM2 SM3	2)	Power number	
	(3)	-	4)	K_LA	
147	A ha	atch reactor is characterized by			
1 7 / .	(1)	Constant Residence Time		v v	
	(2)	Variation in extent of reaction and prope	ertie	s of the reaction mixture with time	
	(3)	Variation in reactor volume	3.		
	(4)	Very low conversion			
	(')	23-	4		(BT)

		1		Set Code: T2	
			Ti.	Booklet Code : A	
148.			tion c	annot be obtained from a computer controlle	d
	5 3	actor?	(2)	Substrate concentration	
	\ /	Dissolved oxygen	(4)	Rate of Biosynthesis of the end metabolite	1
	(3)	Molecular mass of end product	(+)	Rate of Biosynthesis ex	
140	Cher	nostat can be operated at dilution rate		than the specific growth rate when the	е
147.		recycle is used.			
	(1)	Higher	(2)	Lower	
	(3)	Uncertain	(4)	Equal to specific growth rate	
	(2)				
150.	Plug	-flow reactor is characterized by			ı
	(1)	High capacity	(2)	Presence of axial mixing	
	(3)	Presence of lateral mixing	(4)	Constant composition and temperature	
٠				TM	1
151.	DNA	A double h <mark>elix is identified by</mark>	61		
	(1)	Mendal	(2)	Jacob and Monod	. 1
	(3)	John C.Kendrew	(4)	Watson and Crick	3
152	. A nu	icleoside molecule consists of		•	
	(1)	Chemical base + sugar & phosphate n		ile	
	(2)	Chemical base & phosphate molecule			
	(3)	Chemical base + sugar molecule		e e	
	(4)	sugar & phosphate molecule			
				** **	
153	. Oka	zaki fragments consists of	(2)	RNA & DNA (4) t-RNA	
	(1)	DNA (2) RNA	(3)	KNA&DNA (4) TAUL	
	(SEP_(SECOND 4.	de la	danin	e metabolism is due to	
154	. Phe	nylketonuria an inborn error of phenyla	uaiiii	O Michael Commission of the Co	
	(1)	Excess of Phenylalanine hydroxylase			
	(2)	Excess of Phenylalanine transferase	ing be	drovulase	
	(3)	Lack or reduced levels of Phenylalan	me ny	/utoxytase	
	(4)	Excess of Phenylalanine			DΤ\
		5	24-A	. (BT)

Download from www.<mark>JbigDeaL.com Powered By © JbigDeaL</mark>

Set Code: T2

(BT)

				Booklet Code : A
155.	Phen	ylketonuria disease is inherited as an		A to consider in out
	(1)	Autosomal recessive	(2)	Autosomal dominant
	(3)	Co-dominance	(4)	Dominant
156.	Muta	ations effect is called silent m	utatio	ens.
	(1)	with drastic (2) with partial	(3)	with multi (4) without apparent
157.	The	synthesis of the single strand of messen	ger R	NA on the DNA is known as
	(1)	replication	(2)	
	(3)	mutation	(4)	transcription
158.		eak attractive force acting over only very les is	/ short	distances, resulting from attraction of induced
	(1)		(2)	hydrogen bonds
	` '	electrostatic force	(4)	hydrophobic and hydrophilic forces
159.	A m	utation occurring in any cell that is not	destir	ned to become a germ cell is called as
		Germ line mutation	(2)	silent mutation
	(3)	spontaneous mutation	(4)	somatic mutation
160.		chromosome state in which each type has represented twice is	of chi	romosome except for the sex chromosomes is
	(1)	Diploid state	(2)	haploid state
	(3)	multiploid state	(4)	uniploidy state
161.	Toti	potency refers to		
	(1)	Ability of single cell to undergo Apor	otosis	
	(2)	Ability of single cells to divide & diff		iate
	(3)	Ability of single cell to stay undivided		
	(4)	Ability of single cell to mutate		
	` /	**************************************		

25-A

							Set Code :	T2
							Booklet Code :	A
162	. Call	tus is	2					
	(1)	A Differentiated ma	ss of cells	(2)	An Undifferer	ntiated	mass of cells	
	(3)	A dead mass of cells	5	(4)	An organ of a	olant		
163	. BAI	P is a	œ.	16	-			
	(1)	Auxin (2)	Cytokinin	(3)	Gibberellin	(4)	Ethylene	
164.	. In ir	n vitro culture, Exces	s of Cytokinin s	upply	results in			
	(1)	Shoot formation		(2)	Embryo forma	tion		
	(3)	Root formation		(4)	Flower inducti	on		
165.	Mac	erozyme is						
	(1)	An enzyme mix used	for cutting DNA			_ T	'IVI	
21	(2)	An enzyme mix used	<mark>l to</mark> fuse <mark>plas</mark> mid	s in pla	an <mark>ts </mark>		•	
	(3)	An enzyme mix used	<mark>l to</mark> isol <mark>ate prot</mark> oj	plast				
	(4)	An enzyme mix usec	to join DNA				10	5
166.	Viru	s free plants can be ob	tained from		3			
	(1)	Callus culture		(2)	Meristem cultu	ıre	,	
	(3)	Root culture		(4)	Anther culture			
167.	Viab	vility of protoplasts car	n be assessed by					
	(1)	FDA		(2)	Safranine			
	(3)	Acetocaramine		(4)	Eosin			
168.	Cybr	rids are				G.		
	(1)	Cytoplasmic bridges	e e	(2)	Cytoplasmic hy	brids		
	(3)	Protoplasmic bridges	S	(4)	Protoplasmic c	onnec	tions	
	97	,	¥	26-A				(BT)

							5	Set Code : T2
							Book	let Code : A
169.	Plan	nt Transformation re	efers	s to				
	(1)	Transfer of plant i	fron	i <i>n vitro</i> to	green hou	se		
	(2)	Transfer of plant f	ron	green hous	e to field			
20	(3)	Transfer of foreign	n ge	ne into plan	t			
	(4)	Transfer of foreign	n pr	otein in plan	nt		10	
170.	Ti pl	lasmid contains	0					ж
	(1)	RDNA (2	2)	TDNA	(3)	RRNA	(4)	TRNA
171.	Agre	obacterium rhizoge.	nes	mediated tra	ansformat	ion leads to form	nation of	
	(1)	crown gall tumor	C)		(2)	haploids		
	(3)	new flowers			(4)	hairy roots		u .
172.	Ace	tosyringone is		9	nia	Dea	TM	
	(1)	A secretory hormo	one	,	(2)	A secretory Enz	yme	
	(3)	A secretory sugar			(4)	A phenolic exud	ate	
173.	Subo	culturing of freshly	isol	ated cells in	cultures	is called as		4
	(1)	primary culture		12	(2)	passages	.E.	
	(3)	tertiary culture			(4)	cell cultures		
174.	A ce	ll which has length	moi	e than twice	its width	could be termed	as	
	(1)	Epithelial			(2)	3T3 cells		
	(3)	Mesenchymal cell	S		(4)	fibroblastic		
175.	Seru	m protect trypsinis	ed c	ells from pr	oteolysis	by		B
	(1)	proteast inhibitors		•	(2)	lipases		9
©.	(3)	lyases			(4)	Hydrolysis		
					27-A		E S	(BT)

Set Code : T2

								Booklet Code : A
176.	RPN	/II 1640 stands fo	or					
	(1)	Roswell park m		ial Institute				
	(2)	Rockwell Park						
	(3)	Rapid Prototypi	ing an	d Mammal Insti	tute			
	(4)	Rosewood prot	_			nstitute		
177.	The	cells that require	attacl	hment for growt	h is kn	own as		
	(1)	Dependent cell	s		(2)	Anchorage De	pende	nt cells
	(3)	Independent cel	lls		(4)	Anchorage Ind	epend	ent cells
178.	The	first attempt of o	rgan c	culture was done	using		9 31	· .
	(1)-	Raft method	(2)	Grid method	(3)	Agar gel	(4)	Plasma clot
179.	Whi	ch of the following	ng is r	ot the advantage	es of o	rgan culture?		ΓM
	(1)	The developme	nt of	foetal o <mark>rg</mark> ans in	vitro i	s <mark>comp</mark> arable to	th <mark>a</mark> t in	vivo .
	(2)	Provide informa	ation o	on patt <mark>ern</mark> s of gi	rowth,	differentiation a	and de	velopment
	(3)	Organ cultures	may r	eplace whole an	imals i	n experimentati	on	**
	(4)	Organ cultures	can be	maintained onl	y for f	ew months		
180.		process of using lope is known as		micropipette (().5 to :	5 micrometer) to	o inser	t DNA into the nuclear
	(1)	Shot gun			(2)	Microinjection	1	
	(3)	Electroporation	Ľ		(4)	Gene gun		
181.	Тура	n blue will be						
	(1)	Uptake by living	g cells	.	(2)	uptake by death	n cells	
	(3)	Partial uptake b	y livir	ng cells	(4)	exclude by dea	th cell	s
182.	N	can be use	d to in	ncrease the visc	osity c	of the medium.		•
3.	(1)	β-mercapto etha	anol		(2)	carboxyl methy	yl celli	ulose
58	(3)	glutathione			(4)	lamanin	8	
	18	,—,,,		3	28-A			(BT)

						,		Set Code : 🗍		
				•				Booklet Code	$: \mathbf{A}$	
183.	The (1)	first bioinformat Richard Durbin			ated by (3)	Michael j.Duni	n (4)	D.Pearson		
184.	4. The translated genes of genomes that encode proteins are referred to as									
	(1)	Introns			(2)	Codons			vi	
	(3)	The open reading	ig trar	ne	(4)	Pseudogenes			200	
185. The identification of drugs through genomic study										
	(1)	Genomics		(2)	Cheminformatics					
	(3)	Pharmacogenoi	nics		(4)	Pharmacogene	tics	e.	*	
106	And	example of Homo	ology.	and cimilarity	tool					
100.	(1)	BLAST	(2)	EMBOSS_		RASMOL	(4)	TEMBL		
187		of the following		0 1	nin	I Rea				
107.		PDB		Gen Bank		Swiss Prot	(4)	Gen Scan		
								~~		
188.	Whi	ch of the followi	ng lev	els of protein	structure (2)			S-S bonds?		
	(1)	Tertiary structure				Primary structure				
	(3)	Secondary struc	cture		(4)	Super seconda	ry stru	cture	9	
189.	. The level of polypeptide folding in which the primary sequence coils around itself, stabilized be regularly spaced hydrogen bonds is called								ilized by	
	(1)	Beta sheet	(2)	Motif	(3)	Alpha helix	(4)	Beta turn		
190.	The	following databa	ises ar	e based on pro	tein seco					
	(1) Blocks and motif				(2)	SCOP and CATH				
	(3)	3) PDB and NCBI				DDBJ and SWISSPROT				
191	DN4	A complement of	GATO	CCATis		ÿ.				
••		TACCTAG	(2)	¥1	(3)	ATGGATC	(4)	CTAGGTA		
	` /		ζ-)	AN AND REPORT OF THE PROPERTY	29-A		100 E		(BT)	

Download from www.JbigDeaL.com Powered By © JbigDeaL

Set Code: T2

									Book	det Code :	A
192.	How many Open Reading frames do you expect from a DNA SEQUENCE?										
	(1)	B	_					(4)		,	
193.	Glutamate synthetase that catalyses the formation of gluramine from glutamate and ammon belongs to the class of									nonia	
	(1)	ligases	(2)	tran	sferases	(3)	oxidoreductas	es	(4)	isomerases	3
194.	The covalent backbone of a peptide involves the carbon of each amino acid followed by a peptide bond.										lowed
	(1)	Aromatic	(2)	α- c	arbon	(3)	β- carbon	(4)	aliph	atic	
195.	Non-covalent bonds can be broken by										
		Extreme pH and			25	formic acid		-			
	(3)	hydrazine	· buit				Sanger's reage	nt			
	(3)	nydruzine				(1)	Sunger s reage		TIVI	200	
196	The type of secondary structure abundant in globular proteins is										
170.	•	antiparallel β -sl					parallel β- she	ets	,	•	
	25 255	α - helics	neets			(4)	turns				
	(3)	a - nenes				(+)	turns				
197.	The	The enzyme used for the lysis of bacterial cell wall is									
		pectinase						(4)	penio	cillinase	
24	(~)	Pottings	(-)			()	<i>y y</i>	` '	•	30	
198.	Clarification of fruit juices is done using										
		glucose isomera						(4)	amyl	ase	
							-				
199	Which among the following is NOT a covalent modification for enzyme entrapment?										
	(1)	Diazotization		_		(2)	transesterificat				6
	(3)	alkylation				(4)	peptide bond for	ormati	on		
	(0)			511						2=	
200.	Replacement of inactivated or unwanted enzyme by reversible immobilization is possible in										
	(1)	Entrapment				(2)	diazotization				
	(3)	ionic binding				(4)	microencapsula	ation			
					3ા	0-A	20				(BT)
		1.5				·					, ,