(CVL)

CIVIL ENGINEERING

INSTRUCTIONS TO CANDIDATES

Candidates should write their Hall Ticket Number only in the space provided at the top left hand corner of this page, on the leaflet attached to this booklet and also in the space provided on the OMR Response Sheet. BESIDES WRITING, THE CANDIDATE SHOULD ENSURE THAT THE APPROPRIATE CIRCLES PROVIDED FOR THE HALL TICKET NUMBERS ARE SHADED USING H.B. PENCIL ONLY ON THE OMR RESPONSE SHEET. DO NOT WRITE HALL TICKET NUMBER ANY WHERE ELSE.

Immediately on opening this Question Paper Booklet, check:

- Whether 200 multiple choice questions are printed (50 questions in Mathematics, 25 questions in Physics. 25 questions in Chemistry and 100 questions in Engineering)
- In case of any discrepancy immediately exchange the Question paper Booklet of same code by bringing the error to the notice of invigilator.

Use of Calculators, Mathematical Tables and Log books is not permitted.

Candidate must ensure that he/she has received the Correct Question Booklet, corresponding to his/her branch of Engineering.

Candidate should ensure that the booklet Code and the Booklet Serial Number, as it appears on this page 5... is entered at the appropriate place on the OMR Response Sheet by shading the appropriate circles provided therein using H.B. pencil only. Candidate should note that if they fail to enter the Booklet Serial Number and the Booklet Code on the OMR Response Sheet, their Answer Sheet will not be valued.

- Candidate shall shade one of the circles 1, 2, 3 or 4 corresponding question on the OMR Response 6. Sheet using H.B. Pencil only. Candidate should note that their OMR Response Sheet will be invalidated if the circles against the question are shaded using Black / Blue ink pen / Ball pen / any other pencil other than H.B. Pencil or if more than one circle is shaded against any question.
- One mark will be awarded for every correct answer. There are no negative marks.

The OMR Response Sheet will not be valued if the candidate:

- Writes the Hall Ticket Number in any part of the OMR Response Sheet except in the space provided for the purpose.
- Writes any irrelevant matter including religious symbols, words, prayers or any communication whatsoever in any part of the OMR Response Sheet.

Adopts any other malpractice.

- Rough work should be done only in the space provided in the Question Paper Booklet. 9.
- No loose sheets or papers will be allowed in the examination hall, 10.

Timings of Test: 10.00 A.M. to 1.00 P.M.

Candidate should ensure that he / she enters his / her name and appends signature on the Question paper booklet. 12. leaflet attached to this question paper booklet and also on the OMR Response Sheet in the space provided. Candidate should ensure that the invigilator puts his signature on this question paper booklet, leaflet attached to the question paper booklet and also on the OMR Response Sheet.

Before leaving the examination hall candidate should return both the OMR Response Sheet and the leaflet attached to this question paper booklet to the invigilator. Failure to return any of the above shall be construed as malpractice in the examination. Question paper booklet may be retained by the candidate.

This booklet contains a total of 32 pages including Cover page and the pages for Rough Work.

(CVL)

MATHEMATICS

1. If
$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
, then $A^4 =$

- (1) 31 (2) 91
- (3) 271
- (4) 811

2. If
$$A = \begin{bmatrix} 0 & 2 & 1 \\ -2 & 0 & -2 \\ -1 & x & 0 \end{bmatrix}$$
 is a skew symmetric matrix, then the value of x is

- (1) 1
- (2) 2
- (3) 3
- (4) 4

What is the number of all possible matrices with each entry as 0 or Lift the order of matrices is 3×3

- (1) 64

4. If
$$A = \begin{bmatrix} 1 & i & -i \\ i & -i & 1 \\ -i & 1 & i \end{bmatrix}$$
, then $|A| =$

- (1) 1 . (2) 2
- (3) 3

Set Code :	
Booklet Code :	A

5.	The solution of a s	ystem of linear equations 2x	-v + 3z = 9.x +	v + z = 6.x -	v + z = 2 is
----	---------------------	------------------------------	-----------------	---------------	--------------

- (1) x = -1, y = -2, z = -3
- (2) x = 3, y = 2, z = 1

(3) x = 2, y = 1, z = 3

(4) x = 1, y = 2, z = 3

6. If
$$\frac{1}{x^2 + a^2} = \frac{A}{x + ai} + \frac{B}{x - ai}$$
 then A = _____, B = ____.

- (1) $\frac{1}{2ai}$, $-\frac{1}{2ai}$ (2) $-\frac{1}{2ai}$, $\frac{1}{2ai}$ (3) $\frac{1}{ai}$, $-\frac{1}{ai}$ (4) $-\frac{1}{ai}$, $\frac{1}{ai}$

7. If
$$\frac{2x+4}{(x-1)^3} = \frac{A_1}{(x-1)} + \frac{A_2}{(x-1)^2} + \frac{A_3}{(x-1)^3}$$
 then $\sum_{i=1}^3 A_i$ is equal to

- (1) A₂ (2) 2A₂
- (3) 4A,

8. The period of the function
$$f(x) = |\sin x|$$
 is

- (1) π
- (2) 2π

- (1) 1
- (2) 0
- (3) 2
- (4) -1

- (1) $\frac{\sqrt{5}+1}{4}$ (2) $\frac{\sqrt{5}+1}{2}$ (3) $\frac{\sqrt{5}-1}{2}$ (4) $\frac{\sqrt{5}-1}{4}$

11. If
$$A+B+C = \pi$$
, then $\sin 2A + \sin 2B + \sin 2C =$

(1) 4 cosA sinB cosC

(2) 4 sinA cosB sinC

(3) 4 cosA cosB cosC

(4) 4 sinA sinB sinC

12. The principal solution of
$$Tanx = 0$$
 is

(1) $x = n\pi, n \in \mathbb{Z}$

(2) x=0

(3) $x=(2n+1) \pi/2, n \in \mathbb{Z}$

(4) $x = n\pi + \alpha, n \in \mathbb{Z}$

Set Code :	T2
Booklet Code :	

12	The value of Tan-1	(2)	+ Tan-1	(3) is
1.7.	THE VALUE OF LAIR	141		12/10

- (1) $\frac{\pi}{4}$
- (2) $\frac{\pi}{2}$
- (3) $\frac{\pi}{3}$

14. If the sides of a right angle triangle are in A.P., then the ratio of its sides is

- (1) 1:2:3
- (2) 2:3:4
- (3) 3:4:5
- (4) 4:5:6

15. The value of
$$r.r_1.r_2.r_3$$
 is

- ∆²
- (2) Δ⁻²
- (3) Δ⁻³
- (4) \(\Delta^4 \)

16.
$$\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} =$$

- (1) $\frac{1}{r}$ (2) $\frac{1}{2r}$
- (3) $\frac{1}{R}$

17. If
$$a=6$$
, $b=5$, $c=9$, then the value of angle A is

- (1) cos-1 (2/9)
- (2) cos⁻¹ (2/5)
- cos-1 (7/9) (3)
- (4) cos-1 (1/3)

TIVI

- (1) $\sqrt{2}e^{-i\pi/4}$

- (2) $\sqrt{2}e^{i\pi/4}$ (3) $\sqrt{2}e^{i\pi/2}$ (4) $\sqrt{2}e^{-i\pi/2}$

19. If 1,
$$\omega$$
, ω^2 be the cube roots of unity, then the value of $2^{\omega^3}.2^{\omega^5}.2^{\omega}$ is

- (1) w
- (2) ω^2
- (3) 1
- (4) 0

20. The intercept made on X-axis by the circle
$$x^2+y^2+2gx+2fy+c=0$$
 is

- (1) $\sqrt{g^2-c}$
- (2) $\sqrt{f^2-c}$ (3) $2.\sqrt{g^2-c}$ (4) $2.\sqrt{f^2-c}$

21. If one end of the diameter of the circle
$$x^2+y^2-5x-8y+13=0$$
 is (2, 7), then the other end of the diameter is

- (1) (3, 1)
- (2) (1,3)
- (3) (-3, -1) (4) (-1, -3)

Set Code : Booklet Code :

- 22. The radius of the circle $\sqrt{1+m^2}(x^2+y^2)-2cx-2mcy=0$ is
 - (1) 2c
- (2) 4c
- (4) c
- 23. The parametric equations of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are
 - (1) $x = a \sec \theta, y = b \tan \theta$
- (2) $x = b \sin\theta$, $y = a \cos\theta$
- (3) $x = a \cos\theta$, $y = b \sin\theta$
- (4) $x = a \csc\theta, y = b \cot\theta$
- 24. The equation of the directrix of the parabola $2x^2 = -7y$ is
 - (1) 8y+7=0
- (2) 8y-7=0
- (3) 7y+8=0
- (4) 8x-7=0
- 25. The condition for a straight line y = mx + c to be a tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is
 - (1) c = a/m
- (2) $c^2 = a^2m^2 b^2$ (3) $c^2 = a^2m^2 + b^2$ (4) $c^2 = a^2m^2 + b^2$

- - (1) 3
- (2) 2
- (3) 4
- (4) 1

- 27. $\log i =$
 - (1) $\pi/2$ (2) $\pi/4$
- (3) $i\pi/2$
- (4) $i\pi/4$

- 28. $\frac{d}{dx}[\log_7 X] =$
- (1) $\frac{1}{x}$ (2) $X \log_7^e$ (3) $\frac{1}{x} \log_e^7$ (4) $\frac{1}{x} \log_7^e$

- 29. $\frac{d}{dx}[2\cosh x] =$

 - (1) $\frac{e^x + e^{-x}}{2}$ (2) $\frac{e^x e^{-x}}{2}$ (3) $e^x + e^{-x}$ (4) $e^x e^{-x}$

30.
$$\frac{d}{dx} \left[\cos^{-1} \left(\frac{1-x^2}{1+x^2} \right) \right] =$$

- (1) $\frac{1}{1+x^2}$ (2) $\frac{-1}{1+x^2}$ (3) $\frac{2}{1+x^2}$ (4) $\frac{-2}{1+x^2}$

31. If
$$x = at^2$$
, $y = 2at$, then $\frac{dy}{dx} =$

- (1) $\sqrt{\frac{y}{x}}$ (2) $\sqrt{\frac{x}{a}}$
- (3) $\sqrt{\frac{a}{x}}$

32. The derivative of
$$e^x$$
 with respect to \sqrt{x} is

$$(1) \quad \frac{2\sqrt{x}}{e^x}$$

33. The equation of the normal to the curve
$$y = 5x^4$$
 at the point (1, 5) is

(1)
$$x + 20y = 99$$

(1)
$$x + 20y = 99$$
 (2) $x + 20y = 101$ (3) $x - 20y = 99$ (4) $x - 20y = 101$

(3)
$$x - 20y = 99$$

(4)
$$x - 20y = 101$$

34. The angle between the curves
$$y^2 = 4x$$
 and $x^2 + y^2 = 5$ is

- (1) $\frac{\pi}{4}$
 - (2) tan-1(2)
- (3) tan-1(3)
- (4) tan-1(4)

35. If
$$u = x^3y^3$$
 then $\frac{\partial^3 u}{\partial x^3} + \frac{\partial^3 u}{\partial y^3} =$

- (1) $6(x^3+y^3)$ (2) $6x^3y^3$
- (3) $6x^3$

36.
$$\int \csc x \, dx =$$

- (1) $\log(\csc x + \cot x) + C$
- (2) $\log(\cot x/2) + C$

(3) $\log (\tan x/2) + C$

(4) $-\csc x.\cot x + C$

Booklet Code :

37.
$$\int_0^{\frac{\pi}{2}} \cos^{11} x \, dx =$$

- (1) $\frac{256}{693}$ (2) $\frac{256\pi}{693}$ (3) $\frac{\pi}{4}$

38.
$$\int f^{1}(x) \cdot [f(x)]^{n} dx =$$

(1)
$$\frac{[f(x)]^{n-1}}{n-1} + C$$

(2)
$$\frac{[f(x)]^{n+1}}{n+1} + C$$

(1)
$$\frac{[f(x)]^{n-1}}{n-1} + C$$
 (2)
$$\frac{[f(x)]^{n+1}}{n+1} + C$$
 (3)
$$n[f(x)]^{n-1} + C$$
 (4)
$$(n+1)[f(x)]^{n+1} + C$$

$$(n+1)[f(x)]^{n+1}+C$$

$$39. \quad \int \frac{dx}{(x+7)\sqrt{x+6}} =$$

(1)
$$Tan^{-1}(\sqrt{x+6})+C$$

(2)
$$2Tan^{-1}(\sqrt{x+6})+C$$

(3)
$$Tan^{-1}(x+7)+C$$

40.
$$\int \tan^{-1} x \, dx =$$

(1)
$$x.Tan^{-1}x + \frac{1}{2}\log(1+x^2) + C$$

(2)
$$\frac{1}{1+x^2} + C$$

(3)
$$x^2.Tan^{-1}x + C$$

(4)
$$x.Tan^{-1}x - \log \sqrt{1 + x^2} + C$$

$$41. \quad \int \frac{dx}{1+e^{-x}} =$$

(1)
$$\log (1+e^{-x}) + C$$

(2)
$$\log (1+e^x) + C$$

(4) $e^x + C$

(3)
$$e^{-x} + C$$

$$42. \quad \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin|x| \, dx =$$

- (1) 0 (2) 1
- (3) 2 (4) -1

Set Code :	T2
Booklet Code :	A

- 43. Area under the curve $f(x) = \sin x$ in $[0, \pi]$ is
 - (1) 4 sq. units
- (2) 2 sq. units
- (3) 6 sq. units
- (4) 8 sq. units

- The order of $x^3 \frac{d^3 y}{dx^3} + 2x^2 \frac{d^2 y}{dx^2} 3y = x$ is
 - (1) 1
- (2) 4
- (3) 3
- (4) 2

- 45. The degree of $\left[\frac{d^2 y}{dx^2} + \left(\frac{dy}{dx} \right)^2 \right]^{\frac{3}{2}} = a \frac{d^2 y}{dx^2}$ is
 - (1) 4
- (2) 2
- (3) 1
- (4) 3
- 46. The family of straight lines passing through the origin is represented by the differential equation

- (1) ydx + xdy = 0 (2) xdy ydx = 0 (3) xdx + ydy = 0 (4) xdx ydy = 0
- 47. The differential equitation $\frac{dy}{dx} + \frac{ax + hy + g}{hx + bv + f}$
 - (1) Homogeneous (2) Exact
- (3) Linear
- (4) Legender
- The solution of differential equation $\frac{dy}{dx} = e^{-x^2} 2xy$ is
 - (1) $y.e^{-x^2} = x + c$ (2) $ye^x = x + c$
- (3) $ye^{x^2} = x + c$ (4) y = x + c
- 49. The complementary function of $(D^3+D^2+D+1)y = 10$ is
 - (1) $C_1 \cos x + C_2 \sin x + C_3 e^{-x}$
- (2) $C_1 \cos x + C_2 \sin x + C_3 e^x$ (4) $(C_1 + C_2 x + C_3 x^2) e^x$
- $(3) \quad C_1 + C_2 \cos x + C_3 \sin x$
- 50. Particular Integral of $(D-1)^4 y = e^x$ is
- (2) $\frac{x^4}{24}e^{-x}$ (3) $\frac{x^4}{12}e^x$ (4) $\frac{x^4}{24}e^x$

Set Code :	
Booklet Code :	A

				PH	YSIC	CS		
51.	Two quantities A and B are related by the relation $A/B = m$ where m is linear mass density and force. The dimensions of B will be							
	(1)	same as that of	latent	heat	(2)	same as that o	f press	ure
	(3)	same as that of	work		(4)		, -	
52.	The dimensional formula of capacitance in			of capacitance in	terms	of M, L, T and	Lis	
	(1)	[ML ² T ² J ²]	(2)	$[ML^{-2}\Gamma^4I^2]$	(3)	$\left[M^{-1}L^{3}T^{3}I\right]$	(4)	$[\mathbf{M}^{-1}\mathbf{L}^{-2}\mathbf{T}^{4}\mathbf{I}^{2}]$
53.	If <i>l</i> ,	m and n are the o	lirecti	on cosines of a ve	ector,	then		
	(1)	l+m+n=1	(2)	$l^2+m^2+n^2=1$	(3)	$\frac{1}{l} + \frac{1}{m} + \frac{1}{n} = 1$	(4)	lmn = 1
54.	The	angle between i+	j and					
	(1)	0°	(2)	90°	(3)	45°	(4)	60°
55.	5 ms	northwards. T	he ave	ards with a veloc rage acceleration	ity of	5 ms-1. In 10 se		the velocity changes to
	(1)	$\frac{1}{\sqrt{2}}$ ms ⁻² toward	ls nort	h-west	(2)	zero		
	(3)	$\frac{1}{2}$ ms ⁻² towards	north		(4)	$\frac{1}{\sqrt{2}}$ ms ⁻² towar	ds nor	th-east
56.	The l		nofa	particle varies wi	th tin	ne t as p = a + bt	+ct2 wh	hich of the following is

- - (1) Force varies with time in a quadratic manner.
 - (2) Force is time-dependent.
 - (3) The velocity of the particle is proportional to time.
 - (4) The displacement of the particle is proportional to t.
- 57. A shell of mass m moving with a velocity v suddenly explodes into two pieces. One part of mass m/4 remains stationary. The velocity of the other part is
 - (1) v
- (2) 2v
- (3) 3v/4
- (4) 4v/3

Booklet Code : A

58.	The	velocity of a fre	ely fal	ling body af					
	(1)	9.8 ms ⁻¹	(2)	10.2 ms ⁻¹	(3)	18.6 ms ⁻¹	(4)	19.6 ms ⁻¹	
59.		rge number of bo ground on which				s with the same	speed u	. The maximum area or	
	(1)	$\frac{\pi u^2}{g^2}$	(2)	$\frac{\pi u^4}{g^2}$	(3)	$\frac{\pi u^2}{g^4}$	(4)	$\frac{\pi u}{g^4}$	
60.	The the c	minimum stopp coefficient of fr	ing dis	tance for a coetween the	ar of mass tyres and	m, moving with the road is μ, ν	th a spee vill be	ed v along a level road, it	
	(1)	$\frac{v^2}{2\mu g}$	(2)	$\frac{v^2}{\mu g}$	(3)	$\frac{v^2}{4\mu g}$	(4)	$\frac{\nu}{2\mu g}$	
61.		that it acts						nd on the two wheels is	
	(1)							ection on the rear whee	
	(2)	In the forward	directi	on on the fro	ont wheel a	ınd in the back	ward dir	ection on the rear whee	
	(3)	In the backwar	d dire	ction on both	the front	and the rear w	heels		
	(4)	In the forward	direct	ion on both t	the front ar	nd the rear who	eels	9	
62.	In a	perfectly inelas	tic col	lision, the tw	vo bodies	100			
	(1)	strike and expl	ode		(2)	explode with	out strik	ring	
	(3)	implode and ex	kplode		(4)	combine and	move to	gether	
63.	Under the action of a constant force, a particle is experiencing a constant acceleration, then the power is								
	•	zero			(2)	positive			
	(3)	negative			(4)	increasing ur	niformly	with time	
					11-A				

Set Code :	T2
Booklet Code :	A

64	Consider	the to	llowing	truca	etatem.	ante:
04.	Consider	me ro	nowing	LWO	Statem	onno.

A: Linear momentum of a system of particles is zero.

B: Kinetic energy of a system of particles is zero.

Then

1	1) A	impl	lies	R	& I	3 ir	lan	ies /
٦		, ,,	4411177	1103	\mathbf{D}	X	э и	upı	1007

(2) A does not imply B & B does not imply A

(4) A does not imply B but B implies A

 An engine develops 10 kW of power. How much time will it take to lift a mass of 200 kg to a height of 40 m? (Given g = 10 ms⁻²)

66. If a spring has time period T, and is cut into n equal parts, then the time period will be

(1)
$$T\sqrt{n}$$

(2)
$$\frac{T}{\sqrt{n}}$$

TIVI

67. When temperature increases, the frequency of a tuning fork

- (1) increases
- (2) decreases
- (3) remains same
- (4) increases or decreases depending on the materials

68. If a simple harmonic motion is represented by $\frac{d^2x}{dy^2} + \alpha x = 0$, its time period is

(3)
$$\frac{2\pi}{\sqrt{\alpha}}$$

$$(4) \quad \frac{2\pi}{\alpha}$$

A cinema hall has volume of 7500 m³. It is required to have reverberation time of 1.5 seconds.
 The total absorption in the hall should be

- (1) 850 w-m²
- (2) 82.50 w-m²
- (3) 8.250 w-m²
- (4) 0.825 w-m²

								Set Cod	e: T2
								Booklet Cod	e : A
70.	Toa	absorb the so	ound in a h	all which	of the follow	ng are used	i.		
	(1)	Glasses, s	tores		(2)	Carpets, c	urtains		
	(3)	Polished s	urfaces		(4)	Platforms			
71.	IfN	represents a	vagadro's	number, t	then the numb	er of molec	ules in 6 gr	m of hydrogen	at NTP is
		2N		3N	(3)			N/6	
72.	The	mean transl	ational kir	etic energ	gy of a perfec	t gas molec	ule at the to	emperature T	K is
	(1)	$\frac{1}{2}kT$	(2)	kT	(3)	$\frac{3}{2}kT$	(4)	2kT	
73.	The	amount of h	eat given t	o a body	which raises i	ts temperati	ure by 1°C		
	(1)					thermal he	•		
	(3)	specific he			(4)	temperatur			
74.	Duri	ing an adiab	atic proces	ss, the pre	ssure of a gas	s is found to	be propor	tional/to the co	ube of its
	(1)	100		1//	(3)	2	(4)	5 3	
75.	Clad	lding in the	optical fibe	r is main	ly used to				
	(1)	to protect t	he fiber fr	om mech	anical stresse	s			
	(2)	to protect t	he fiber fr	om corro	sion				
	(3)	to protect t	he fiber fr	om mecha	anical strengt	h			
	(4)	to protect t	he fiber fr	om electro	omagnetic gu	idance			

Booklet Code : A

			СН	EMIS	TRY		
The	valency electro	onic co	nfiguration of	Phosph	orous atom (At.)	No. 15	5) is
							3s1 3p2 3d2
An	element 'A' of A	t.No.1	2 combines wit	h an ele	ment 'B' of At.N	lo.17.	The compound formed
							ionic AB
The	number of neu	trons p	resent in the ate	om of ,	Ba ¹³⁷ is		
(1)	56	(2)	137	(3)	193	(4)	81
Нус	lrogen bonding	in wate	er molecule is r	espons	ible for		
(1)	decrease in its	freezi	ng point	(2)	increase in its	degre	e of ionization
(3)	increase in its	boilin	g point	(4)	decrease in its	boilir	ng point
In th	ne HCl molecule	e, the b	onding between	n hydro	gen and chloring	is _	TM
							complex coordinate
Pota	ssium metal an	d potas	sium ions				
(1)				(2)	have the same	numb	er of protons
(3)	both react with	chlor	ine gas				
stand	dard flask. 10 ml er into 100 ml of	of this solution	solution were pon. The concent	ipetted ration o	out into another f of the sodium chi	lask a loride	nd made up with distilled
Con	centration of a	.0 M s	olution of phos	nhoric	acid in water is		
(1)	0.33 N	(2)	1.0 N			(4)	3.0 N
Whi	ch of the follow	ing is a	Lewis acid?				
				(2)	Berylium chlor	ide	
(3)	Boron trifluori	ide		(4)	Magnesium oxi		
1-1	- or or william			(-)			
	(1) An (1) The (1) (1) (3) In th (1) Pota (1) (3) 5.85 stand wate (1) Cond (1) Whid (1)	An element 'A' of A (1) covalent AB The number of neur (1) 56 Hydrogen bonding (1) decrease in its (3) increase in its (3) increase in its In the HCI molecule (1) purely covaler Potassium metal and (1) both react with (3) both react with 5.85 gms of sodium standard flask. 10 ml water into 100 ml of (1) 0.1 M Concentration of a 10 (1) 0.33 N Which of the follow (1) Ammonia	An element 'A' of At.No.1 (1) covalent AB (2) The number of neutrons p (1) 56 (2) Hydrogen bonding in wate (1) decrease in its freezi (3) increase in its boiling In the HCI molecule, the b (1) purely covalent (2) Potassium metal and potas (1) both react with water (3) both react with water (3) both react with chlor 5.85 gms of sodium chloristandard flask. 10 ml of this water into 100 ml of solution (1) 0.1 M (2) Concentration of a 1.0 M s (1) 0.33 N (2) Which of the following is a (1) Ammonia	The valency electronic configuration of (1) 3s² 3p³ (2) 3s¹ 3p³ 3d¹ An element 'A' of At.No.12 combines wit (1) covalent AB (2) ionic AB₂ The number of neutrons present in the ato (1) 56 (2) 137 Hydrogen bonding in water molecule is re (1) decrease in its freezing point (3) increase in its boiling point In the HCl molecule, the bonding between (1) purely covalent (2) purely ionic Potassium metal and potassium ions (1) both react with water (3) both react with chlorine gas 5.85 gms of sodium chloride were dissolution were powater into 100 ml of this solution. The concent (1) 0.1 M (2) 1.0 M Concentration of a 1.0 M solution of phose (1) 0.33 N (2) 1.0 N Which of the following is a Lewis acid? (1) Ammonia	The valency electronic configuration of Phosph (1) 3s² 3p³ (2) 3s¹ 3p³ 3d¹ (3) An element 'A' of At.No.12 combines with an ele (1) covalent AB (2) ionic AB₂ (3) The number of neutrons present in the atom of set (1) 56 (2) 137 (3) Hydrogen bonding in water molecule is responsi (1) decrease in its freezing point (2) (3) increase in its boiling point (4) In the HCl molecule, the bonding between hydro (1) purely covalent (2) purely ionic (3) Potassium metal and potassium ions (1) both react with water (2) (3) both react with chlorine gas (4) 5.85 gms of sodium chloride were dissolved in standard flask. 10 ml of this solution were pipetted water into 100 ml of solution. The concentration of (1) 0.1 M (2) 1.0 M (3) Concentration of a 1.0 M solution of phosphoric (1) 0.33 N (2) 1.0 N (3) Which of the following is a Lewis acid? (1) Ammonia (2)	An element 'A' of At.No.12 combines with an element 'B' of At.No. (1) covalent AB (2) ionic AB ₂ (3) covalent AB ₂ The number of neutrons present in the atom of _{so} Ba ¹³⁷ is (1) 56 (2) 137 (3) 193 Hydrogen bonding in water molecule is responsible for (1) decrease in its freezing point (2) increase in its (3) increase in its boiling point (4) decrease in its (3) increase in its boiling point (4) decrease in its In the HCI molecule, the bonding between hydrogen and chloring (1) purely covalent (2) purely ionic (3) polar covalent Potassium metal and potassium ions (1) both react with water (2) have the same (3) both react with chlorine gas (4) have the same 5.85 gms of sodium chloride were dissolved in water and the so standard flask. 10 ml of this solution were pipetted out into another f water into 100 ml of solution. The concentration of the sodium chl (1) 0.1 M (2) 1.0 M (3) 0.5 M Concentration of a 1.0 M solution of phosphoric acid in water is (1) 0.33 N (2) 1.0 N (3) 2.0 N Which of the following is a Lewis acid? (1) Ammonia (2) Berylium chloride.	The valency electronic configuration of Phosphorous atom (At.No. 15 (1) 3s² 3p³ (2) 3s¹ 3p³ 3d¹ (3) 3s² 3p² 3d¹ (4) An element 'A' of At.No.12 combines with an element 'B' of At.No.17. (1) covalent AB (2) ionic AB₂ (3) covalent AB₂ (4) The number of neutrons present in the atom of 50 Ba¹³² is (1) 56 (2) 137 (3) 193 (4) Hydrogen bonding in water molecule is responsible for (1) decrease in its freezing point (2) increase in its degre (3) increase in its boiling point (4) decrease in its boiling In the HCl molecule, the bonding between hydrogen and chlorine is (1) purely covalent (2) purely ionic (3) polar covalent (4) Potassium metal and potassium ions (1) both react with water (2) have the same numb (3) both react with chlorine gas (4) have the same electrons standard flask. 10 ml of this solution were pipetted out into another flask at water into 100 ml of solution. The concentration of the sodium chloride (1) 0.1 M (2) 1.0 M (3) 0.5 M (4) Concentration of a 1.0 M solution of phosphoric acid in water is (1) 0.33 N (2) 1.0 N (3) 2.0 N (4) Which of the following is a Lewis acid? (1) Ammonia (2) Berylium chloride

					Set Code : T2 Booklet Code : A
85.	Which of the following constitutes the com (1) Potassium chloride and potassium hyd (2) Sodium acetate and acetic acid (3) Magnesium sulphate and sulphuric acid (4) Calcium chloride and calcium acetate	droxid id		olution	?
86.	Which of the following is an electrolyte? (1) · Acetic acid (2) Glucose	(3)	Urea	(4)	Pyridine
87.	Calculate the Standard emf of the cell, Cd E^0 Cu/Cu ⁺² = (-) 0.34 V.				
	(1) (-) 1.0 V (2) 1.0 V	(3)	(-) 0.78 V	(4)	0.78 V
88.	A solution of nickel chloride was electroly (1) nickel will be deposited on the anode (3) H ₂ gas will be liberated at the anode	(2)	Cl2 gas will be	libera	ted at the cathode
89.	Which of the following metals will undergo	(3)	ation fastest? Zinc	(4)	Iron
90.	Which of the following cannot be used for (1) Ozone (3) Potassium Chloride	(2) (4)	Calcium Oxycl	hloride	
91.	terms of calcium carbonate equivalent is				
	(1) 1.0 ppm (2) 1.20 ppm	(3)	0.60 ppm	(4)	2.40 ppm
92.	Soda used in the L-S process for softening (1) sodium bicarbonate (3) sodium carbonate	(2)	sodium carbon sodium hydrox	ate de	
93.	The process of cementation with zinc power (1) sherardizing (2) zincing	(3)	known as metal cladding	(4)	electroplating

						Set Code :	T2
						Booklet Code:	A
94.	Car	rrosion of a met	al is fastest in				
	(1)	rain-water	(2) acidu	lated water (3)	distilled water	(4) de-ionised water	r
95.	Wh	ich of the follow	ving is a them	noset polymer?			
	(1)	Polystyrene	10 g 1 1 1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(2)	PVC		
	(3)	Polythene		(4)	Urea-formaldel	nyde resin	
96.	Che	emically, neopre	ne is				
	(1)			(2)	polyacetylene		
	(3)	polychloropre		(4)	poly-1,3-butadio	ene	
97.	Vul	canization invol-	ves heating of	raw rubber with			
	(1)			(2)	elemental sulphi	or	
	(3)				•	enium and sulphur diox	ide
98.	Petr	ol largely conta	ins		_	TM.	
	(1)			rocarbons C,-			
	(2)					II.	
	(3)	a mixture of sa		THE RESERVE THE PERSON NAMED IN			
	(4)			carbons C ₆ - C ₈			
99.	Whi	ch of the follow	ing gases is la	rgely responsit	ole for acid-rain?		
	(1)	SO, & NO,			CO, & water vap	our	
	(3)		50		N ₂ & CO ₂		
100.	BOL) stands for				4	
	(1)	Biogenetic Oxy	gen Demand	(2)	Biometric Oxyge	en Demand	
	(3)	Biological Oxy		(4)	Biospecific Oxyg		

Set Code :	T2
Booklet Code :	A

CIVIL ENGINEERING

		CIVILE	NGINE	ZERING
101.	Stre	ss strain curve is always a straight lin	e for	
	(1)	Elastic materials	(2)	materials obeying Hook's law
	(3)	Elasto-plastic materials	(4)	plastic materials
102.	The	maximum value of Poisson's for an	elastic m	naterial is
	(1)	0.25	(2)	0.5
	(3)	0.75	(4)	1.0
103.		stress at which extension of a materia and is called Elastic point Breaking point	(2) (4)	Plastic point Yielding point
104.	For	ductile materials, the most appropria	te failur	re theory is
	(1)	maximum shear stress theory		
	(2)	maximum principal stress theory		
	(3)	maximum principal strain theory		
	(4)	shear strain energy theory		
105.	The	materials which have the same elasti	c prope	rties is in all directions are
	(1)	Brittle material	(2)	Homogeneous material
	(3)	Isotropic material	(4)	Hard material
106.	weig	elastic bar of length 'I', cross section ght W is having vertically, it is subject agation of the bar is given by	nal area	A, Young's modulus of elasticity E and self and applied axially at the bottom end. The total
	(1)	WI/AE + PI/AE	. (2)	WI/2AE + PI/AE
	(3)	WI/2AE + PI/2AE	(4)	WI/AE+PL/2AE
			17-A	(CVL)

								Booklet Co	le: A
107.	The	bending mome	nt diag	ram is a cubic p	arabola	for a cantile	ever		
	(1)		_	ar load varying				num at fixed	end
	(2)			ed to a momen					
	(3)			ly distributed l					
	(4)			rated load at th		nd			
108.	For	a simply suppor	rted bea	am with central	load, th	e Bending N	Moment w	ill be	
	(1)	Least at the co	entre	0.	(2)	least at the	supports		
	(3)	maximum at t	he supp	oorts	(4)	maximum	at the cent	re	
109.	The	B.M on a section	on is ma	aximum when s	shearing	force			
	(1)	is maximum	(2)	is minimum	(3)	is equal	(4)	changes sign	n
								TIM	
110.	The	deflection due	to coup	le Mat the fre	e end of	a cantilever	of length	Lis	
	(1)	ML/EI	(2)	2ML/EI	(3)	ML ² /2EI	(4)	M ² L/2EI	
111.	The	shear force on	a simpl	y supported be	am is pi	oportional t	0		
	(1)	displacement	of the r	neutral axis	(2)	sum of the	forces		2
	(3)	algebraic sum	of tran	sverse forces	(4)	algebraic s	um of axia	al forces	
112.	The alwa	shape of the be	nding n	noment diagrar	n over t	he length of	a beam, ha	wing no exter	nal load is
	(1)	parabolic	(2)	cubical	(3)	linear	(4)	circular	
113.	The	ratio of maxim	um to a	verage shear s	tress in	a solid circu	lar section	ı is	
	(1)	1.0	(2)	1.33	(3)	1.5	(4)	1.7	
114.	The	Poison's ratio	for cork	cis					
	(1)	zero	(2)	0.1	(3)	0.2	(4)	0.3	
			10 10		18-A				(CVL)

								Set Code :	T2
								Booklet Code :	A
115.	The	sum of the mor	nent of	inertias abou	ut any two	orthogonal ax	es is		
	(1)	always consta	nt		(2)	always zero			
	(3)	always one			(4)	always linear			
116.		in energy in tor					onsideri	ng 'q' as shear stre	ss, E
			(2)	-		q/4G	(4)	q/4E	
117.	The	maximum shea	r stress	in a thin tub	e is				
	(1)	equal to avera	ge shea	r stress	(2)	twice the ave	rage she	ear stress	
	(3)	half the avera	ge shea	rstress	(4)	one third of a	verage	shear stress	
118.	Mad	aulay's method	is used	for calculat	ion of whi	ch quantity			
	(1)	bending mom	ent		(2)	shear force			
	(3)	slope and defi	ection		(4)	stresses	8.	TM	
119.	Alo	ng the neutral a	xis of si	mply suppor	nted beam	INe	2		
	(1)	fibers do not				fibers underg	o minin	num strain	
	(3)	fibers undergo	maxin	num strain	(4)	fibers underg	o minir	num stress	
120.	The	area under stre	ss strair	curve repre	esents				
	(1)	work done	(2)	ductility	(3)	strain energy	(4)	residual stress	
121.	The	maximum defl	ection o	f a cantileve	r beam du	e to pure bendi	ng mon	nent (M) at its free e	nd is
	(1)			MI ² /4EI		MI ² /6EI	(4)	MI ² /2EI	
	,	1.77.70.01	(-)						
122.	The	shape of kern a	rea of a	rectangular	section is				
	(1)	rectangle	(2)	square	(3)	rhombus	(4)	parallelogram	
123.	Pola	r modulus of a	section	is a measur	e of streng	gth of section i	n		
	(1)		(2)		(3)	torsion	(4)	axial compression	1
					19-A				(CVL)

								t Code : T2
							Bookle	Code : A
124. TI	rick cylin	ders are analys	ed on the	basis of				
(1) maxir	num shear stre	ss theory	(2)	Lame	's theory		
(3) Poisso	on's theory		(4)	Ranki	ne's theory		
125. W	hen one c	end of a fixed b	eam defle	cts by 'δ' the	n the be	ending momen	t at defle	cted end is
(1	$\frac{2EI\delta}{L^2}$	(2)	$\frac{3EI\delta}{L}$	(3)	$\frac{3EI\delta}{L^2}$	(4)	$\frac{6EI\delta}{L^2}$	
126. Th	e flexura	l rigidity of a h	inged end	is				
	infinit				two	(4)	one	
127. Bu	ckling lo	ad can be great	er than cru	shing load i	f			
(1)	colum	n is a short col	umn	(2)	colum	n has both end	s fixed	
(3)	colum	n is a long one		(4)	colum	n both ends hir	nged	
128. Fo	r a colum	n of length 'L'	having one	end fixed a	nd other	end free, the	quivalen	t length is
(1)	2L	(2)	Ł	(3)	L/2	(4)	$L/\sqrt{2}$	
		crippling load hinged, is	of a colu	mn having b	oth the	ends fixed and	the colur	nn whose both
(1)	1.0	(2)	2.0	(3)	3.0	(4)	4.0	
	maximu vity 's' is	m height of a m	asonry dar	n of a triangu	ılar secti	ion whose base	width is	b' and specific
(1)	$b\sqrt{s}$	(2)	b.s	(3)	$\sqrt{b}.\sqrt{s}$	(4)	$s\sqrt{b}$	
131. The	failure w	vedge develops	when a re	taining wall				
(1)	moves	away from the	backfill	_				
(2)	moves	towards backfi	11			5.04.01		
(3)	sink do	wnwards						
(4)	stresses	s equally by ve	rtical and	horizontal fo	orces			
				20-A				(CVL)

					-			Set Code :	T2
								Booklet Code :	A
132.	The	lateral earth pr	essure o	n a retaining w	vall				
	(1)			e soil retained					
	(2)			pth of the soil					
	(3)			uare of the de		e soil			
	(4)			ternal friction					
			C aan	mata ia a mana	ura of				
133.		lulus of rapture				direct tensile s	trenot	h	
	(1)	flexural tensi			(2)	both flexural &			
	(3)	compressive	strength		(4)	both Hexurai c	x tensi	ic su engui	
134.	The	fineness modu	lus of fi	ne aggregate i	s in the r	ange of			
		2.0 to 3.5		3.5 to 5.0		5.0 to 7.0	(4)	7.0 to 10.0	
105	г		aaaarat	a aggregate el	ould be	in		6	
133.		making a good		e, aggregate si	(2)	surface dry co	ndition	TM	
	(1)	saturated con			(4)	semi saturated	-		
	(3)	bone dry con	dition			Sellii Saturateo	1		
136.	For	reinforced cen	nent con	crete the slum	p should	i be			
		0 to 5 cm				7.5 to 10 cm	(4)	5 to 12.5 cm	
	` '	10							
137.	The	ratio of tensile	e to com	pressive stren	gth of c	oncrete is			
		0.025		0.04	(3)		(4)	0.4	
				C	aninal n	siv concrete be	cause		
138.						nix concrete bed cement conter		ter is more	
	(1)	strength of fe			(2)				
	(3)	it is easy to p	repare 1	ormer at site	(4)	strength of lat	ier is ie	:35	
139.	Whi	ich of the follo	wing do	es not cause u	nsoundn	ess in cement			
	(1)	free lime		9	(2)	magnesia			
	(3)	calcium sulp	hate		(4)	silica			
					21-A				(CVL)

								Booklet C	ode : A
140.	The	partial safety	factor fo	r steel as p	er IS 456-2	000 is taken as			
	(1)	1.15	(2)	1.25	(3)	1.50	(4)	1.75	
141.	. In v	vorking stress	design, tl	he factor o	f safety is a	pplied on			
	(1)	ultimate stre	ess		(2)	yield stress			
	(3)	stress at elas	stic limit		(4)	breaking stress			
142.	In a	RCC column	if ties are	not provi	ded, the col	umn is likely to			
	(1)	fail by buckl	ing		(2)	fail by crushing	3		
	(3)	behave like a	beam		(4)	fail by torsion			14
143.	Tod	lesign a colum	ın, one sh	ould norm	ally start by	assuming the ar	ea of	steel as	
	(1)	1%	(2)	0.15%	(3)	0.5%	(4)	0.75%	
144.	Whi	ich of the follo	owing is g	generally n	ot designed	for shear	2		
	(1)	a slab			(2)	a cantilever bea	m		
	(3)	a footing			(4)	a beam			
145.	The	maximum she	ar stress	in a beam	of rectangul	ar section is give	en by	11	
	(1)	1.25 times th			(2)	1.5 times the av		:	
	(3)	1.75 times th	e averag	e	(4)	2.0 times the av	erage		
146.	The	radius of a bar	bend to	form a hoo	k, should n	ot be less than			
		twice the dia				thrice the diam	eter		
		four times th		er	2700	five times the d		er	- 13
4					7,774,79				
147.	Incre	ease in finenes	s moduli	is of aggre	gate indicat	es			
	(1)	fine grading			(2)	coarser grading			
	(3)	gap grading			(4)	mixed grading			
					22-A				(CVL)

Set Code : T2

							I	Booklet Co	de : A
148	In sla	ab, the minimum	reinfo	orcement provid	ded is (for Fe 250 Gr	ade)		
140.		0.10% of its gre			(2)		gross sec	tional area	
	(3)	0.15% of its gre			(4)	0.18% of its	gross sec	tional area	
	(5)	0.1274 02 110 0							
149.	The	diameter of long	itudin	al bars of a colu	mn sho	ould never be	less than		
		6 mm	(2)	The Control of the Co	(3)		(4)	12 mm	
				12				0.0	
150.	A co	olumn is regarde	d as lo	ong column if t	he ratio	of its effecti	ve length	and latera	dimension
	exce	eeds	10.0	7 10	(2)	20	(4)	25	
	(1)	10	(2)	12	(3)	20	(4)	23	
				p.o.o.:	lad ta m	noiet			
151		shear reinforcen	nent ii	1 RCC is provid		horizontal si	hear		
	(1)	vertical shear	6.	-	(2)	diagonal ten		TIM	
	(3)	diagonal comp	ressio		(4)	ulagonal ter.	SIGN		19
	-	maximum ratio	-6	to doub of a c	lah c im	nle supported	and span	ning in two	direction, is
152				30	(3)	35	(4)	40	
	(1)	25	(2)	30	(3)	55			
153	16-	oncrete grade is	M-20	then what would	d be the	e modular rati	o		
155				9.08		12	(4)	13.33	
	(1)	7.08	(2)	7.00	(-)				
154	For	stairs spanning l	orizo	ntally the minin	num wa	ist provided i	s		
154	(1)			6 cm	(3)	10 cm	(4)	12 cm	
	(1)	4 cm	(-)						
155	. If T	and R are tread	and ri	se respectively	of a sta	ir, then			
	(1)	2R + T = 60	(2)	R + 2T = 60	(3)	2R + T = 3	0 (4)	R + 2T =	30
	(-)	5.00							
156	6. Inv	ar tape is made o	of an a	lloy of	_ and	steel.			
		Copper			(3)	Nickel	(4)	Bronze	
	1-7		- 500		23-A				(CVL)

Download from www.<mark>JbigDeaL.com Powered By © JbigDeaL</mark>

								Set Code Booklet Code	
157.	Wal	king over the area	and c	bserving its ma	in featu	res and bounda	ries, is k	nown as	survey.
		Topographical						Reconnaissan	
158.		sum of the exter e number of its		gles of a closed	l traver	se is equal to _		_ Right angles,	where n
	(1)	(2n - 4)	(2)	(2n + 4)	(3)	(4n - 2)	(4)	(4n + 2)	
159.		e whole circle be				its bearing in q 180°W		tal system is 180°E	
160.		ne which passes the cross hair, is o	-		entre of	the objective a	nd also	through the inte	rsection
	(1)	Line of collima	ntion		(2)	Axis of teleso	ope	TIM	
	(3)	Horizontal axis		0 1	(4)	Trunion axis	a	L.	
161.		L. of a B.M. is 20 on, is	00.00	m, back sight is	1.5251	n and foresight	is 3.28	5 m, R.L. of the	forward
		198.460m	(2)	201.760m	(3)	198.240m	(4)	201.525m	
162.	In tr	apezoidal formu	la of a	areas, the line jo	oining t	he ends of the	ordinate	es is assumed_	
		semi circular				parabolic		circular	
163.	1 / 0	ere is equal to							
	(1)	43560 sq.ft	(2)	34560 sq.ft	(3)	54360 sq.ft	(4)	64350 sq.ft	
164.	Ifa	tacheometer is fi	tted w	ith anallatic ler	ns				
	(1)	Additive consta	ant is	100, multiplyin	g const	ant is 0			
	(2)	Additive consta	ant is	0, multiplying o	onstant	is 100			
	(3)	Both additive c							
	(4)	Both additive c	onsta	nt and multiplyi	ng cons	stant are 50			
				• •	24-A				(CVL)

Download from www.<mark>JbigDeaL.com Powered By © JbigDeaL</mark>

								Set Code : T2
								Booklet Code : A
165.	One	S.I. unit of vis	scosity is	s equal to				
	(1)	10 poises	(2)	981 poises	(3)	9.81 Ns/m ²	(4)	10 kg.sec/m ²
166.	8 m	of oil (sp.Gr. =	0.8) he	ad is equal to the	he follo	wing water hea	ıd	
	(1)	10 m	(2)	8 m	(3)	6.4 m	(4)	1 m
167.				of altitude h has s centre of pres		ide in the free s	surface	of a liquid. Its vertex is
	(1)	0.8 h	(2)	0.75 h	(3)	0.5 h	(4)	h/3
168.	The	equation of co	ntinuity					
	(1)	is valid for in	compre	ssible fluids				
	(2)	expresses the	relation	between mas	s and ar	ea of cross-sec	tion	TM .
	(3) relates the density variations along a stream line							
	(4)	relates the m	ass rate	of flow along a	stream	tube		
169.	Flov	v of a fluid fro	m low p	ressure to high	pressu	re is		
	(1)	possible in up	oward fl	ow through a u	niform	vertical line		
	(2) possible in flow through a converging pipe with horizontal axis							
	(3) possible in flow through a diverging pipe with a horizontal axis							
	(4)	impossible if	the pas	sage has a cons	stant cro	oss-section		
170.	Diff	erential manor	meters a	re used for mea	asuring			
	(1)	velocity of fl	uid at a	point				
	(2)	pressure of f						
	(3)	discharge of						
	(4)			e between two	points			
	. /							

			Set Code : T2
			Booklet Code : A
171. The	pressure at vena-contracta of an extern	al mou	athpiece is
(1)	always less than saturation vapor pres	sure o	fliquid
(2)	inversely proportional to square of co	oeffici	ent of contraction
(3)	always greater than atmospheric press	sure	
(4)	a function of the head over the mouth	piece	
172. AV	notch is considered to be a better note	h beca	use
(1)	its C _d is practically uniform over a wi	ide ran	ge of heads
(2)	it produces negligible contraction of		
(3)	It keeps the head within a reasonable	limit e	ven for large discharges
(4)	Its C _d is smaller		
	-		
		uremei	nt of head over a rectangulan notch. If the head
is 0.	3m the percent error in discharge is	ĪM	
(1)	0.5 (2) 0.6	(3)	1.0 (4) 1.5
174. The	Hagen-Poiseuille equation gives		
(1)	head loss in laminar flow		
(2)	boundary shear stress in laminar flow	,	
(3)	shear stress distribution in any pipe f	low	
(4)	velocity distribution in any pipe flow		
175. The	loss of head due to friction in turbulen	t flow	through a circular pipe
(1)	varies as cube of average velocity	(2)	varies inversely as square of average velocity
(3)	varies as square of average velocity	(4)	is directly proportional to average velocity
176. Lan	ninar flow through a pipe, the velocity of	listribu	ntion curve is
(1)	logarithmic		parabolic
(3)	elliptical	(4)	hyperbolic
. ,	Jacobson Statement	26-A	(CVL)

Set Code : T2

Booklet Code : A

177. For the most economical trapezoidal section of an open channel

- (1) depth of flow = twice base width
- (2) depth of flow = hydraulic radius
- (3) sloping side = half the top width
- (4) sloping side = base width

178. Froude's number is defined as the ratio of

- (1) Inertia force to viscous force
- (2) Inertia force to elastic force
- (3) Inertia force to pressure force
- (4) Inertia force to gravity force

179. The critical velocity for a flow of q m3 width of a wide rectangular channel is given by

(1)
$$\left(\frac{q^2}{g}\right)^{\frac{1}{3}}$$

(2)
$$(q^2g)^{\frac{1}{3}}$$

180. The function of scroll case of a reaction turbine is to

- (1) Guide the water to the runner at appropriate angle
- (2) Guide the water smoothly to the tailrace
- (3) Distribute the water evenly around the wheel
- (4) Reduce the eddy and shock losses

181. The runner blades of a Kaplan turbine are

- (1) More curved than propeller blades
- (2) More curved than pelton blades
- (3) More curved than Francis blades
- (4) Less curved than Francis blades

182. When the speed of a centrifugal pump is constant

- (1) Shaft power decreases with increase of Q
- (2) H_m decreases with increase of Q
- (3) Q increases with increase of H_m
- (4) Q is independent of H_m

(CVL)

								Set Code	e : T2
								Booklet Code	2 : A
183.	The	optical square i	s based	on the princip	le of op	tical			
	(1)	reflection			(2)	refraction			
	(3)	double reflect	ion		(4)	double refrac	tion		
184.	A re	servoir provide	d at the	intake head w	orks fro	m which water	enters	the penstocks i	s
	(1)	power canal	(2)	tail rack	(3)	fore bay	(4)	trash rack	
185.	Con	sumptive use is	:						
	(1)	water used up	in plan	t metabolism					
	(2)	sum of evapo-	transpi	ration and amo	unt use	d up in plant me	etabolis	sm	
	(3)	sum of evapo-	transpi	ration and infil	tration	losses			
	(4)	combined use	of surf	ace and ground	water	resources			
186.	The	head under whi	ch a cer	ntrifugal pump	works i	s called		TM ·	
	(1)	piezometrie he	ad		(2)	pressure head			
	(3)	suction head			(4)	manometric h	cad		
187	The	volume of water	er that	can be extract	ed by fo	orce of gravity	from a	unit volume o	of aquifer
		erial is known as			,				50
	(1)	specific capac	ity	14	(2)	specific yield	d		
	(3)	specific retent	ion		(4)	specific stora	ge		
188.	One	cumec day is ed	qual to						
	(1)	8.64 hectare n	netres		(2)	86.4 hectare	metres		
	(3)	864 hectare m	etres		(4)	0.864 hectare	metre	S _	
189.	Lace	ey considered cl	nannel	section					
		Rectangular		Trapezoidal	(3)	Semi elliptica	al (4)	Elliptical	
					28-A				(CVL)

				Set Code : T2
				Booklet Code : A
190.	Land	d is said to be water logged when		
.,	(1)		(2)	Permanent wilting point is reached
	(3)	Salinity of soil increases	(4)	Capillary fringe reaches root zone of plants
191.	Hyd	raulic jump occurs when the flow chan	iges fro	om
	(1)	super critical to sub critical	(2)	sub critical to super critical
	(3)	critical to turbulent	(4)	laminar to turbulent
192.	Stre	ams that contribute to the ground water	r are c	alled
	(1)	Effluent streams	(2)	Ground water stream
	(3)	Influent streams	(4)	Perennial stream
193.	Rati	ional method correlates		TM
	(1)	Run off coefficient with intensity of		
	(2)	Run off co efficient with drainage ar		
	(3)	Drainage area with intensity of rainfa	all	J = 0 G
	(4)	Intensity of rainfall with run off		
194	. The	example of multiple Arch type Buttre	ss dam	in India is
	(1)	Mir-Alam dam	(2)	Khadakwasla Dam
	(3)	Idikki dam	(4)	Koyna dam
195	. Sur	charge storage of reservoir is the volu		
	(1)			
	(2)			
	(3)			
	(4)	Normal pool level and revert bed lev	/el	

29-A

(CVL)

Booklet Code: A 196. Seepage endangers the stability of an earth dam built on pervious foundation because of piping which depends on (1) height of dam (2) quantity of seepage flow (3) value of exit gradient (4) total reservoir storage capacity 197. Inverted filter for providing foundation drainage has (1) multi layers of soil particles of same permeability (2) multi layers in which permeability increases from top to bottom (3) multi layers in which permeability increases from bottom to top (4) only one layer of soil 198. Gravity dams transfer load to foundation by (1) Arch action (2) Cantilever action (3) Both arch and cantilever action (4) Cohesion 199. A chute spill way is generally provided with (1) A weir (2) A barrage (3) Concrete gravity dam (4) An earth dam 200. The function of surge tank is to (1) avoid flow in reverse direction (2) smoothen the flow (3) act as a reservoir for emergency condition						Set Co	de: T2
which depends on (1) height of dam (2) quantity of seepage flow (3) value of exit gradient (4) total reservoir storage capacity 197. Inverted filter for providing foundation drainage has (1) multi layers of soil particles of same permeability (2) multi layers in which permeability increases from top to bottom (3) multi layers in which permeability increases from bottom to top (4) only one layer of soil 198. Gravity dams transfer load to foundation by (1) Arch action (2) Cantilever action (3) Both arch and cantilever action (4) Cohesion 199. A chute spill way is generally provided with (1) A weir (2) A barrage (3) Concrete gravity dam (4) An earth dam 200. The function of surge tank is to (1) avoid flow in reverse direction (2) smoothen the flow						Booklet Co	ode : A
(3) value of exit gradient (4) total reservoir storage capacity 197. Inverted filter for providing foundation drainage has (1) multi layers of soil particles of same permeability (2) multi layers in which permeability increases from top to bottom (3) multi layers in which permeability increases from bottom to top (4) only one layer of soil 198. Gravity dams transfer load to foundation by (1) Arch action (2) Cantilever action (3) Both arch and cantilever action (4) Cohesion 199. A chute spill way is generally provided with (1) A weir (2) A barrage (3) Concrete gravity dam (4) An earth dam 200. The function of surge tank is to (1) avoid flow in reverse direction (2) smoothen the flow	196.			h dam b	uilt on pervious foun	dation becaus	e of piping
197. Inverted filter for providing foundation drainage has (1) multi layers of soil particles of same permeability (2) multi layers in which permeability increases from top to bottom (3) multi layers in which permeability increases from bottom to top (4) only one layer of soil 198. Gravity dams transfer load to foundation by (1) Arch action (2) Cantilever action (3) Both arch and cantilever action (4) Cohesion 199. A chute spill way is generally provided with (1) A weir (2) A barrage (3) Concrete gravity dam (4) An earth dam 200. The function of surge tank is to (1) avoid flow in reverse direction (2) smoothen the flow		(1)	height of dam	(2)	quantity of seepage	flow	
(1) multi layers of soil particles of same permeability (2) multi layers in which permeability increases from top to bottom (3) multi layers in which permeability increases from bottom to top (4) only one layer of soil 198. Gravity dams transfer load to foundation by (1) Arch action (2) Cantilever action (3) Both arch and cantilever action (4) Cohesion 199. A chute spill way is generally provided with (1) A weir (2) A barrage (3) Concrete gravity dam (4) An earth dam 200. The function of surge tank is to (1) avoid flow in reverse direction (2) smoothen the flow		(3)	value of exit gradient	(4)	total reservoir stora	ige capacity	
(2) multi layers in which permeability increases from top to bottom (3) multi layers in which permeability increases from bottom to top (4) only one layer of soil 198. Gravity dams transfer load to foundation by (1) Arch action (2) Cantilever action (3) Both arch and cantilever action (4) Cohesion 199. A chute spill way is generally provided with (1) A weir (2) A barrage (3) Concrete gravity dam (4) An earth dam 200. The function of surge tank is to (1) avoid flow in reverse direction (2) smoothen the flow	197.	Inve	erted filter for providing foundation dr	rainage l	nas		
(3) multi layers in which permeability increases from bottom to top (4) only one layer of soil 198. Gravity dams transfer load to foundation by (1) Arch action (2) Cantilever action (3) Both arch and cantilever action (4) Cohesion 199. A chute spill way is generally provided with (1) A weir (2) A barrage (3) Concrete gravity dam (4) An earth dam 200. The function of surge tank is to (1) avoid flow in reverse direction (2) smoothen the flow		(1)	multi layers of soil particles of sam	e perme	ability		
(4) only one layer of soil 198. Gravity dams transfer load to foundation by (1) Arch action (2) Cantilever action (3) Both arch and cantilever action (4) Cohesion 199. A chute spill way is generally provided with (1) A weir (2) A barrage (3) Concrete gravity dam (4) An earth dam 200. The function of surge tank is to (1) avoid flow in reverse direction (2) smoothen the flow		(2)	multi layers in which permeability	increase	s from top to bottom	ı	
198. Gravity dams transfer load to foundation by (1) Arch action (2) Cantilever action (3) Both arch and cantilever action (4) Cohesion 199. A chute spill way is generally provided with (1) A weir (2) A barrage (3) Concrete gravity dam (4) An earth dam 200. The function of surge tank is to (1) avoid flow in reverse direction (2) smoothen the flow		(3)	multi layers in which permeability i	increase	s from bottom to top		
(1) Arch action (2) Cantilever action (3) Both arch and cantilever action (4) Cohesion (9) A chute spill way is generally provided with (1) A weir (2) A barrage (3) Concrete gravity dam (4) An earth dam (5) The function of surge tank is to (6) avoid flow in reverse direction (7) smoothen the flow		(4)	only one layer of soil			\$10 \$10	
(3) Both arch and cantilever action (4) Cohesion 199. A chute spill way is generally provided with (1) A weir (2) A barrage (3) Concrete gravity dam (4) An earth dam 200. The function of surge tank is to (1) avoid flow in reverse direction (2) smoothen the flow	198.	Gra	vity dams transfer load to foundation	by			
(3) Both arch and cantilever action (4) Cohesion 199. A chute spill way is generally provided with (1) A weir (2) A barrage (3) Concrete gravity dam (4) An earth dam 200. The function of surge tank is to (1) avoid flow in reverse direction (2) smoothen the flow		(1)	Arch action	(2)	Cantilever action	TNA	
(1) A weir (2) A barrage (3) Concrete gravity dam (4) An earth dam 200. The function of surge tank is to (1) avoid flow in reverse direction (2) smoothen the flow		(3)	Both arch and cantilever action	(4)	Cohesion	L	
(3) Concrete gravity dam (4) An earth dam 200. The function of surge tank is to (1) avoid flow in reverse direction (2) smoothen the flow	199.	A ch	nute spill way is generally provided wi	ith			
200. The function of surge tank is to (1) avoid flow in reverse direction (2) smoothen the flow		(1)	A weir	(2)	A barrage		
(1) avoid flow in reverse direction (2) smoothen the flow	-	(3)	Concrete gravity dam	(4)	An earth dam	185	
(2) smoothen the flow	200.	The	function of surge tank is to				
		(1)	avoid flow in reverse direction				
(3) act as a reservoir for emergency condition		(2)	smoothen the flow				
(3) not as a reservoir for emergency comments.		(3)	act as a reservoir for emergency con	ndition			
(4) relieve the pipe line of excessive pressure transients		(4)	relieve the pipe line of excessive pr	essure t	ransients		
30-A (CVL				30-A			(CVL)