Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

USN		10PHY12
	First	Second Semester B.E. Degree Examination, June/July 2013
		Engineering Physics
Time:	3 hrs.	Max. Marks:
Note: 1	Aneu	er any FIVE full questions, choosing at least two from each part.
2.	Answ	er all objective type questions only on OMR sheet page 5 of the answer booklet. er to objective type questions on sheets other than OMR will not be valued.
14.	Physic	val Constants: Planck's constant, $h = 6.63 \times 10^{-34}$ Js, Electron charge, $e = 1.6 \times 10^{-10}$
		Electron mass, $m = 9.11 \times 10^{-31} kg$, Velocity of light, $C = 3 \times 10^8 ms$
		PART - A
1 a.	Cho	ose the correct answers for the following: (04 Ma
	i)	If red and blue stars emits radiations of continuous wavelengths, then according
		Wien's displacement law.
		A) Blue star is hotter than red star B) Red star is hotter than blue star C) Ports for a second star and star
	ii)	C) Both stars are at same temperature D) Difficult to conclude. The expression for de-Broglie wavelength for an electron under an accelera
	11)	potential V is
		12.26 12.26 12.26 12.26
		A) $\frac{12.26}{\sqrt{V}}$ m B) $\frac{12.26}{\sqrt{V}}$ A° C) $\frac{12.26}{\sqrt{V}}$ nm D) $\frac{12.26}{\sqrt{V}}$ µm
	iii)	A particle moves with velocity 3×10^6 ms ⁻¹ . The wavelength associated with 1 nm. Then group velocity of the particle is,
		A) 3×10^8 mS ⁻¹ B) 3×10^{16} mS ⁻¹ C) 3×10^6 mS ⁻¹ D) 1.5×10^6 mS According to the Compton effect, the wavelength of X-rays scattered at an analysis
	iv)	According to the Compton effect, the wavelength of X-rays scattered at an agreater than zero,
		A) Decreases B) Doesn't change C) Increases D) None of the
b.		ve an expression for group velocity on the basis of superposition of waves. Also ob
		elation between group velocity and phase velocity (08 Ma
c.		v that Planck's law reduces to Wien's law and Rayleigh-Jeans law under cer
d.		itions. (05 Ma
u.	Care	ulate the de-Broglie wavelength associated with an electron of energy 1.5 eV. (03 Ma
2 a.	Cho	ose the correct answers for the following: (04 Ma
	i)	The energy of the lowest state in one dimensional potential box of length a = 1 unit
		A) $\frac{h^2}{8m}$ B) zero C) $\frac{h^2}{4ma^2}$ D) $\frac{h^2}{2ma^2}$
	ii)	For a particle which is not bound to any system and is free, the energy eigen value
		A) zero B) finite but not quantized
		C) infinity D) finite but quantized
	iii)	If the uncertainty in the position of a particle is equal to its de-Broglie wavelength uncertainty in its momentum will be,
		A) $\Delta P \ge \frac{h}{4\pi}$ B) $\Delta P \ge \frac{h}{2\pi}$ C) $\Delta P \ge \frac{P}{4\pi}$ D) $\Delta P \ge \frac{h}{P}$
	iv)	For an electron to be present inside the nucleus of an atom the uncertainty in position of the electron must be,
		A) more than or equal to the radius of the nucleus
		B) more than or equal to the diameter of the nucleus.
		C) more than the diameter of the nucleus
		D) less than or equal to the diameter of the nucleus.
		1 014

2	b. с.	norn	nalized wave functi	ion for a particle in o		the expression for the rial well of infinite height. (08 Marks) cance. (04 Marks)
9/	d.	A s	pectral line of way		width of 10 ⁻⁴ Å . Ev	aluate the minimum time (04 Marks)
3	a.		ose the correct ansv			(04 Marks)
			A) $J = \sigma E$	B) $J = \frac{\sigma}{r}$	C) $J = \sigma E^2$	D) $J = \frac{E}{a}$
		ii) iii)	C) Flow of electron D) Reciprocal of	on is, conductivity ons drift velocity per ons per unit cross sect	unit electric field. ional area.	
			Α) λαΤ	B) $\lambda \alpha \sqrt{T}$	C) $\lambda \alpha \frac{1}{\pi}$	D) $\lambda \alpha \frac{1}{\sqrt{T}}$
		iv)		electron theory, the f	ree electrons are treate B) Liquid molect D) None of thes	ed as, cules
	b.		ne Fermi energy ar energy.	nd Fermi factor. Discu	uss the variation of fer	mifactor with temperature (08 Marks)
	c.			time? Using free election terms of mean colli		l, obtain an expression for (06 Marks)
	d.	State	e and explain Matth	niessen's rule.		(02 Marks)
4	a.	Cho i)	A) Independent of C) Decreases with	f temperature n temperature	B) Increases wi D) None of the	
		(ji)		on among the following P B) $P = \varepsilon_0(\varepsilon_r - 1)$		D) $D = \varepsilon_0(\varepsilon_r - 1)E$
	C	iii)			ie-Wiess law is given	$D) D = \varepsilon_0(\varepsilon_r - 1) E$
	3	,	A) $\in_{r} = \frac{C}{T}$	B) $\in_r = \frac{T - \theta}{C}$	C) $\epsilon_{\tau} = \frac{C}{(T - \theta)}$	as, $D) \in_{\tau} = \frac{C}{(T+\theta)}$
		iv)	In the inverse piez A) Ultrasonic wa C) Microwaves a	ves are produced	B) Electromagn D) None of thes	etic waves are produced
	b.		t is internal field?		n for internal field in	case of one dimensional (08 Marks)
	c.	Desc	cribe magnetic hyste	eresis in Ferromagnet	ic material.	(05 Marks)
	d.	Expl	ain any three applic	cations of piezoelectri	ic material.	(03 Marks)
				2	of4	

PART - B

Choose the correct answers for the following:

(04 Marks)

- The pumping action in diode laser is by,
 - A) Optical pumping B) Electrical discharge C) Reverse bias D) Forward bias
- The expression for energy density in terms of Einstein's coefficients,

B)
$$U_{y} = \frac{A}{B} \left[\frac{1}{1 - e^{hy} KT} \right]$$

C)
$$U_{\gamma} = \frac{A}{B} \left[\frac{1}{h\gamma_{KT}} \right]$$

D)
$$U_{\gamma} = \frac{A}{B} \left[e^{h\gamma} KT - 1 \right]$$

- iii) In order to see the image of an object recorded by holography.
 - A) It is enough if we just have the hologram.
 - B) We need the hologram and the reference beam.
 - C) We need the hologram, the reference beam and the object beam.
 - D) We need the hologram, the reference beam and the object beam as well as
- iv) In a laser system when the energy difference between two energy levels is 2×10⁻¹⁹ J, the average power output of laser beam is found to be 4 mw. Then number of Photons emitted per second is,
 - A) 2×10¹⁶
- B) 2×10-16
- C) 0.5×1016
- Describe the construction of He-Ne laser and explain its working with the help of energy level diagram and mention few applications.
- Explain the terms spontaneous emission and stimulated emission.

(04 Marks)

Explain laser welding and cutting process with diagrams.

(04 Marks)

Choose the correct answers for the following:

(04 Marks)

- Superconductors are
 - A) Ferromagnetic B) Paramagnetic C) Antiferromagnetic D) Diamagnetic
- All high temperature superconductors are different types of oxides of, D) Tin
 - A) Mercury B) Lead C) Copper
 - The quantum of magnetic flux is given by,

- Numerical aperture of an optical fiber depends on,
 - A) Acceptance angle B) Diameter of the fiber C) Critical angle D) None of these
- b. Discuss point to point optical fiber communication system and mention its advantages over the conventional communication systems. (06 Marks)
- c. Define superconductivity and explain Type I and Type II superconductors.
- d. The angle of acceptance of an optical fiber is 30° when kept in air. Find the angle of acceptance when it is in a medium of refractive index 1.33. (04 Marks)

4 of 4

USN

10MAT11

First/Second Semester B.E. Degree Examination, June/July 2013 Engineering Mathematics - I

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing at least two from each part. 2. Answer all objective type questions only on OMR sheet page 5 of the answer booklet.

3. Answer to objective type questions on sheets other than OMR will not be valued.

Choose your answers for the following:

If $y = 3^{5x}$ then y_n is

A) $(3 \log 5)^n e^{5x}$ B) $(5 \log 3)^n e^{5x}$ C) $(5 \log 3)^{-n} e^{5x}$ D) $(5 \log 3)^n e^{5x}$

If $y = \cos^2 x$ then y_n is

A) $2^{n+1}\cos(n\pi/2 + 2x)$

B) $2^{n-1}\cos(n\pi/2+2x)$ C) $2^{n-1}\cos(n\pi/2-2x)$ D) $2^{n+1}\cos(n\pi/2-2x)$

The Lagrange's mean value theorem for the function $f(x) = e^x$ in the interval [0, 1] is

A) C = 0.5413

B) C = 2.3

C) 0.3

D) None of these

Expansion of $log(1 + e^x)$ in powers of x is ____

A) $\log 2 - x/2 + x^2/8 + x^4/192 + \cdots$

50, will be treated as malpractice g blank pages.

42+8			B) $\log 2 + x/2 + x^2/8 - x^4/192 + \cdots$ C) $\log 2 + x/2 + x^2/8 + x^4/192 + \cdots$ D) $\log 2 - \frac{x}{2} - \frac{x^2}{8}$	$-\frac{x^4}{192} +$
68,4		b.	If $y^{\frac{1}{m}} + y^{-\frac{1}{m}} = 2x$ prove that $(x^2 - 1)y_{n+2} + (2n+1)xy_{n+1} + (n^2 - m^2)y_n = 0$.	(06 Marks)
ten		c.	Verify the Rolle's theorem for the functions: $f(x) = e^x (\sin x - \cos x)$ in $(\pi/4.5\pi/4)$.	(06 Marks)
writ		d.	By using Maclaarin's theorem expand log sec x up to the term containing x ⁶ .	(04 Marks)
ons	2	a.	Choose your answers for the following:	(04 Marks)
or equations written eg,			i) The indeterminate form of $\lim_{x\to 0} \frac{a^x - b^x}{x}$ is A) $\log(\frac{b}{a})$ B) $\log(\frac{a}{b})$ C) 1 D) -1	
			ii) The angle between the radius vector and the tangent for the curves $r = a(1 - \cos \theta)$ is	
and			A) $\theta/2$ B) $-\theta/2$ C) $\pi/2 + \theta$ D) $\pi/2 - \theta$	θ/2.
ator			iii) The polar form of a curve is A) $r = f(\theta)$ B) $\theta = f(y)$ C) $r = f(x)$ D) None of	of these
alu.			iv) The rate at which the curve is bending called A) Radius of curvature; B)Curvature; C) Circle of curvature;	D) Evaluate.
revealing of identification, appeal to evaluator and		b.	Evaluate $\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{1/x^2}$.	(06 Marks)
bbe		c.	Find the angles of intersection of the following pairs of curves, $r = a\theta/(1+\theta)$; $r = a/(1+\theta^2)$.	(06 Marks)
n, a		d.	Find the radius of curvature at $(3a/2, 3a/2)$ on $x^3 + y^3 = 3axy$.	(04 Marks)
atio	3	a.	Choose your answers for the following:	(04 Marks)
iific			i) If $u = x^2 + y^2$ then $(\partial^2 u)/(\partial x \partial y)$ is equal to A) 2 B) 0 C) 2x D) 2y	
dent			ii) If $z = f(x, y)$ where $x = u - v$ and $y = uv$ then $(u + v)(\partial z / \partial x)$ is	
ofi			A) $u(\partial z/\partial u) - v(\partial z/\partial v)$ B) $u(\partial z/\partial u) + v(\partial z/\partial v)$ C) $\partial z/\partial u + \partial z/\partial v$ D) $\partial z/\partial u$	$1 - \partial z / \partial v$
ing			iii) If $x = r \cos \theta$, $y = r \sin \theta$ then $\left[\frac{\partial (r, \theta)}{\partial (x, y)} \right]$ is A) r B) $1/r$ C) 1 D) -1	
reveal			iv) In errors and approximations $\partial x / x$. $\partial y / y$, $\partial f / f$ are called A) relative error B) percentage error C) error in x, y and f D) none of	these
Any		b.	If $x^x y^y z^z = c$, show that $\frac{\partial^2 z}{\partial x \partial y} = -[x \log ex]^{-1}$, when $x = y = z$.	(06 Marks)
2. A		c.	Obtain the Jacobian of $\partial(x, y, z)/\partial(r, \theta, \phi)$ for change of coordinate from three dimensional Cartesian	coordinates to
		d.	spherical polar coordinates. In estimating the cost of a pile of bricks measured as 2m×15m×1.2m, the tape is stretched +1% beyond the st If the count is 450 bricks to 1 cu.cm and bricks cost of 530 per 1000, find the approximate error in the cost.	
,	2/4	3		(04 Marks)
C.C	2.	a.	Choose your answers for the following: i) If $\vec{R} = xi + yj + zk$ then div \vec{R} A) 0 B) 3 C) -3 D) 2	(04 Marks)
11.			THE PROPERTY OF THE PROPERTY O	is bus
				15 h.
			iii) If $\overline{F} = (x+y+1)i+j-(x+y)k$ then $F. \operatorname{curl} F$ is A) 0 B) $x+y$ C) $x+y+z$ I	D) x-y
			iv) The scale factors for cylindrical coordinate system (ρ, ϕ, z) are given by A) $(\rho, 1, 1)$ B) $(1, \rho, 1)$ C) $(1, 1, \rho)$ D) none of	C though
		h	A) $(\rho, 1, 1)$ B) $(1, \rho, 1)$ C) $(1, 1, \rho)$ D) none of Prove that $\text{curl} \overline{A} = \text{g rad}(\text{div} \overline{A}) - \nabla^2 A$.	(06 Marks)
		b.	_	00/9
		c.	Find the constants a, b, c such that the vector $F = (x + y + az)i + (bx + 2y - z)j + (x + cy + 2z)k$ is in	(06 Marks)
		d.	Derive an expression for $\nabla \cdot \overline{A}$ in orthogonal curvilinear coordinates. Deduce $\nabla \cdot \overline{A}$ is rectangular	
			1 of 2	(04 Marks)
			PART – B	10MAT11
	5	a.	Choose your answers for the following:	(04 Marks)

The value of $\int_{e^{-\alpha x}dx}^{\infty}$ is i) **B**) -1/eC) 1/a D) $-1/\alpha$ The value of the integral $\int_{\sin^7 x dx}^{x/2} \sin^7 x dx$ is A) 35/16 B) 16/35 C) -16/35D) 18/35 ii) iii) The volume generated by revolving the cardioid $r = a(1 + \cos \theta)$ about the initial line is C) $(2\pi a^2)/9$ D) None

A) $a^2/12$; B) $\pi/12$; C) $\pi a^2/12$; D) None $\int_{0}^{\pi/2} \frac{\log(1+y\sin^2x)}{\sin^2x} dx$ (06 Ma) B) $(3\pi a^3)/8$ The area of the loop of the curve $r = a \sin 3\theta$ is

By applying differential under the integral sign evaluate (06 Marks)

44	e.	Evaluate of $\int \sin^n x dx$ where n is any integer.	(06 Marks)
	d.	Find the length of the arch of the cycloid $x = a (\theta - \sin \theta)$; $y = a (1 - \cos \theta)$; $0 < \theta \le 2\pi$.	(04 Marks)
	a.	Choose your answers for the following:	(04 Marks)
'	a.	i) The general solution of the differential equation $(dy/dx) = (y/x) + \tan(y/x)$ is	(04 14111183)
		A) $\sin(y/x) = c$ B) $\sin(y/x) = cx$ C) $\cos(y/x) = cx$ D) $\cos(y/x)$ ii) An integrating factor for $ydx - xdy = 0$ is A) x/y B) y/x C) $1/(x^2y^2)$ D) $1/(x^2+y^2)$ iii) The differential equation satisfying the relation $x = A \cos(mt - \alpha)$ is	
		A) $(dx/dt) = 1 - x^2$ B) $(d^2x/dt^2) = -\alpha^2x$ C) $(d^2x/dt^2) = -m^2x$ D) $(dx/dt) = -m^2x$ iv) The orthogonal trajectories of the system given by $r = a\theta$ is	-m ² x
		A) $r^2 = ke^{\theta}$ B) $r = ke^{\theta}$ C) $r^2 = e^{-\theta^2} = k$ D) $r^2 = k e^{-\theta}$	2
	b.	Solve $(x\cos(y/x) + y\sin(y/x))y - (y\sin(y/x) - x\cos(y/x))x(dy/dx) = 0$.	(06 Marks)
	c.	Solve $(1+y^2)+(x-e^{\tan^{-1}y})dy/dx=0$.	(06 Marks)
	d.	Prove that the system of parabola $y^2 = 4a(x + a)$ is self orthogonal.	(04 Marks)
7	a.	Choose your answers for the following:	(04 Marks)
		i) Find the rank of $\begin{bmatrix} 3 & -1 & 2 \\ -6 & 2 & 4 \\ -3 & 1 & 2 \end{bmatrix}$: A) 3 B) 2 C) 4 D) 1	
		ii) The exact solution of the system of equation $10x + y + z = 12$, $x + 10y + z = 12$, $x + y + 10$ inspection is equal to A) $(-1, 1, 1)$; B) $(1, 1, 1)$; C) $(-1, -1, -1)$; D) No iii) If the given system of linear equations in 'n' variables is consistent then the number of independent – solution is given by A) n; B) $n - 1$; C) $n - 1$; D) $n - 1$; iv) The trivial solution for the given system of equations $n - 1$; C) $n - 1$; D) $n - 1$; D	one of linearly $6z = 0$ is
	b.	Using elementary transformation reduce each of following matrices to the normal form, 1 -1 2 5 3 1 1 8 2 -2 3 7	(06 Marks)
	c.		(06 Marks)
	d.	Apply Gauss-Jordan method to solve the system of equations, $2x + 5y + 7z = 52$, $2x + x + y + z = 9$	y - z = 0, (04 Marks)
3	a.	Choose your answers for the following:	(04 Marks)
	0	i) A square matrix A is called orthogonal if, A) $A = A^2$ B) $A = A^{-1}$ C) $AA^{-1} = I$	D) None
1)	ii) The eigen values of the matrix, $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ are A) 2, 3, 8 B) 2, 3, 9 C) 2, 2, 8 D) 1	None
		iii) The eigen vector X of the matrix A corresponding to eigen value λ and satisfy the equation, A) $AX = \lambda X$ B) $\lambda(A - X) = 0$ C) $XA - A\lambda = 0$ D) $ A - \lambda I X$	=0
		iv) Two square matrices A and B are similar if, A) $A = B$; B) $B = P^{-1}AP$; C) $A' = B'$; D) A	
	b.	Show that the transformation, $y_1 = 2x_1 - 2x_2 - x_3$, $y_2 = -4x_1 + 5x_2 + 3x_3$, $y_3 = x_1 - x_2 - x_3$ is, refer to the transformation of the tran	
		find the inverse transformations.	(06 Marks)
	c.	Diagonalize the matrix, $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$.	(06 Marks)
	d.	Reduce the quadratic form, $x_1^2 + 2x_2^2 - 7x_3^2 - 4x_1x_2 + 8x_2x_3$ into sum of squares.	(04 Marks)

Elements of Civil Engineering and Engineering Mechanics

First/Second Semester B.E. Degree Examination, June/July 2013 Max. Marks:100 Time: 3 hrs. Note: 1. Answer any FIVE full questions, choosing at least two from each part. 2. Answer all objective type questions only on OMR sheet page 5 of the answer booklet. 3. Answer to objective type questions on sheets other than OMR will not be valued. 4. Assume missing data suitably. PART - A Choose the correct answers for the following: (04 Marks) Geotechnical engineering involves the study of, B) Soil D) All of these A) Water C) Air By-pass road is constructed, ii) A) Inside the city B) Over the main road C) Around the city D) None of these The part of civil engineering which deals with waste water and solid waste is called, A) Water supply engineering B) Geotechnical engineering C) Sanitary engineering D) Structural engineering A bascule bridge is a, B) Arch bridge C) Suspension bridge D) Movable bridge A) Floating bridge b. Write a note on role of civil engineer in infrastructural development. (10 Marks) Name the different types of roads as per Nagpur plan. (06 Marks) Choose the correct answers for the following: (04 Marks) Moment of a force can be defined as the product of force and distance from i) the line of action of force to the moment center. A) Least B) Maximum C) Any D) None of these Effect of force on a body depends on, A) Direction B) Magnitude C) Position D) All of these The forces which meet at one point have their line of action in different plane are called, A) Coplanar concurrent forces B) Non coplanar concurrent forces C) Non coplanar non concurrent forces D) None of these iv) Couple means two forces acting parallel, A) Equal in magnitude and in the same direction. B) Not equal in magnitude but in the same direction. C) Equal in magnitude but opposite in direction. D) None of these

Define force and state its characteristics. (06 Marks)

Determine the magnitude and direction of the resultant for the system of forces shown in Fig. Q2 (c). Use classical method. (10 Marks)

20KH 120 KM Fig. Q2 (c) 1 of 4

s on the remaining blank pages, written eg, 42+8 = 50, will be diagonal cross lines on the and /or equations revealing of identification, appeal to evaluator Important Note: 1. On completing your answers, compulsorily draw
2. Any revealing of identification, appeal to evaluate

treated as malpractice

a.	Choose the co	rrect answer	s for the following	g :		10	(04 Marks)
	i) The tech	mology of fir	nding the resultant	tofasy	stem of forces is	called,	
	A) Resu	ltant	B) Resolution	(C) Composition	D) None	e of these
			ng but a resultant,				
			de and in the same				
			de but opposite in				
			mitude but in the s				
	D) Not o	equal in mag	nitude and opposit	te in di	rection.	man and a	11/1
			Q (P > Q) act on	the sar	ne straight line b	out in opposi	te direction
2	their res		D) D/O	,	7) O B	D) P = 0	0
1	A) P+		B) P/Q		C) Q – P	-,-	4
-			nt force system if B) Vertical		then the resultar) Moment		e of these
b.	A) Horiz		theorem of the m			D) None	(06 Marks)
c.			us 100mm and w			naular boy a	
·.			eactions at the poi			nguiai oox a	(10 Marks)
	rig. Q3 (c). C.	dictiate the i	eactions at the poi	15/04	inacis.		(10 Marks)
		7/	5lot /		1 1/1		
		90	1 3/11	100	12		
		doct!		7	0,		
		4)	1.	1			
		III III III III I	20 1	В			
			00 30	oomm '	1		
			Fig.	Q3 (c)			
			()				
a.			s for the following				(04 Marks)
			about its centroid				
		e the area	B) Three times t				e of these
			semicircle of rad	ius R	about its centro	idal axis pai	allel to its
	diametri		2	0		D. 10 10	
	A) 3R/4		B) 3R/8π		C) 4R/π	D) 4R/3	
			one half of the plan				ilf which is
			of the figure		B) Axis of symme	etry	
		mmetrical a) None of these		
			gle of base width b			DIN	Cal
b.	A) b/3 a		B) b/2 and d/2		C) b/4 and d/4	D) Non	
c.			a triangle by the manner than the triangle by the manner than the triangle by the triangle by the triangle by the manner than the triangle by the triangle by the triangle by the manner triangle by the manne			o maint 0	(06 Marks) (10 Marks)
C.	Locate the cen	troid of the	34	1g. Q4	(c) with respect t	o point o.	(10 Marks)
	01.		31	17	- and the largest day		
65			/	1			
~			1//	//	70 mm		
			X	1	and state hope to		
			6.4	1			
			0 2	la mm	- ×		
			Fig.	. Q4 (c)			
			PART -	<u>- B</u>			
a.			s for the following				(04 Marks)
			lition of equilibri		a coplanar con	current force	system is
			must be zero.				
			ertical forces		B) Moment of f		
	C) Horiz	zontal, vertic	al and moment of		D) None of thes	se	
			2	of 4			

		10CIV13/23
7	a.	Choose the correct answers for the following: (04 Marks) i) Angle of friction is angle between A) the incline and horizontal B) the normal reaction and friction force
		C) the weight of the body and the friction force
		D) Normal reaction and the resultant.
		ii) The force of friction developed at the contact surface is always A) Parallel to the plane and along the direction of the applied force B) Perpendicular to the plane
1	1	Parallel to the plane and opposite to the direction of the motion
-	0	 D) All of these. The maximum inclination of the plane on which the body free from external forces can repose is called
		A) Cone of friction B) Angle of friction C) Angle of repose D) None of these iv) The force of friction depends on A) Area of contact
		B) Roughness of the surface C) Both area of contact and roughness of the surface D) None of these.
	b.	State the laws of static friction. (04 Marks)
	c.	A uniform ladder of length 15m and weight 750N rests against a vertical wall making an angle of 60° with the horizontal. Co-efficient of friction between the wall and the ladder is 0.3 and between the ground and the ladder is 0.25. A man weighing 500N ascends the ladder, How long will he be able to go before the ladder slips? (12 Marks)
		ladder. How long will be to able to go before the ladder ships.
8	a.	Choose the correct answers for the following: (04 Marks) i) The unit of radius of Gyration is
		i) The unit of radius of Gyration is A) mm B) mm ² C) mm ³ D) mm ⁴
		The moment of inertia of an area about an axis which is in a plane perpendicular to the area is called
		A) Radius of Gyration B) Polar moment of inertia
		C) Second moment of area D) None of these The property of inertia of a circle with 'd' as its disperter about its controlled axis
		iii) The moment of inertia of a circle with 'd' as its diameter about its centroidal axis
		A) $\pi D^2/32$ B) $\pi D^2/64$ C) $\pi D^4/32$ D) $\pi D^4/64$
		iv) The moment of inertia of a square of side 'b' about an axis through its centroid is
		(A) b_{12}^4 (B) b_{8}^4 (C) b_{36}^4 (D) b_{12}^3
	b.	State and prove parallel axis theorem. (06 Marks)
	0	Find the moment of inertia of the region shown in Fig. O8 (c) about horizontal axis AB and

A 90 B

400 ALL DIMENSSONS are in MIN

also find the radius of Gyration about the same axis.

Fig. Q8 (c)

4 of 4

(10 Marks)

 $v \ tf \ I \ m \ ensuremath{\mbox{\it tf}}\ . \ o \ o \ 3 \ (\ I \ b. \ d. \ E \ ',. = _. \ ool \ EO \ P = i \ 50i \ Jo, \ 5! \ ;. \ ,. _ \land -odbo \ E = Ei \ o <. \ \land i \ ; \ z \ aq \ tr \ USN \ t0BinllEt4l24 \ First/...$

I 3 a. Choose the correct answers for the following:, Flywheel is used as an energy _ A) Receiver C) Mixer b. Mention th...

Upcoming SlideShare Loading in...5 ×

___ 3 of 17 __

1st semester Physics stream (2013-June) Question Papers

24,556

- ShareLike
- Download

BGSIT Library and Information Center

Follow 0 7 1 1

Published on Aug 22, 2013

Published in: Education, Technology, Business

2 Comments
5 Likes
Statistics
Notes

Full Name
Comment goes here.
12 hours ago <u>Delete Reply Spam Block</u>
Are you sure you want to <u>Yes No</u>
Your message goes here

Ravi Gautam at Student
SRY....EK DM MST H..
1 year ago Reply
Are you sure you want to Yes No
Your message goes here

Ravi Gautam at Student

EK DM BKWAS.....H YE 1 year ago Reply Are you sure you want to Yes No Your message goes here

ptchawan 9 months ago

Prachi Kulkarni at GSK nashik 1 year ago

Ravi Gautam at Student 1 year ago

Hari Reborn 1 year ago

RAHULSIR1 1 year ago

No Downloads Views Total Views 24,556 On Slideshare From Embeds 0 Number of Embeds 0

Actions

Shares

Downloads

121

Comments

2

Likes

5 Embeds 0

No embeds

No notes for slide

Transcript of "1st semester Physics stream (2013-June) Question Papers "

1. 1. USN IOPHYt2t22 Degree Examination, June/July 2013First/Second Semester B.E. 9 I -9 E;) =\(^-: :: \text{ei 9! 'E '== i !a : E =+ = 9 -\(^0\) 6 = E11 o < a z ag E t-', 16 12.26 12.26 B) --: A" fl : l nm Dt : 3 p6 Jv Jv with velocity 3 x 106 ms-r. The wavelength associated with it is B) Doesn't change C) Increases h2 A) 8m B) zero c) h'. 4ma' D) ht. '2ma' iD For a particle which is not bound to any system and is free, the energy eigen value is, A) zero B) finite but not quantized C) infinity D) finite but quantized iii) Ilthe uncertainty in the position of a particle is equal to its de-Broglie wavelength then uncertainty in its momentum will be, A) $^{P} > -]LA - B) ^{P} > -ll - '2n c)$ ir) For an electron to be present inside the nucleus AP>14n of an atom the D)AP>h uncertainty in the position of the electron must be, A) more than or equal to the radius of the nucleus B) more than or equal to the diameter of the nucleus. C) more than the diameter of the nucleus D) less than or equal to the diameter of the nucleus. I old Engineering Physics Time: 3 hrs. Max. Marks:100 Notei l. Answer any Fl VE full questions, choosing at le6t tteo fiom each pafi 2. Answer all objective type questions onllt on OMR sheet page 5 of the answer booklet. 3. Answer to objective tlpe questions on sheets other than OMR will not be valued. 4. Physicat Constants: Planck's constaftt, n= 6.63 x10-34 Js, Electroncharge,e:1.6x10-reC Electron mass, m= 9.llxlO 31 kg, Vetocit! o.f light, C= 3x108rz,s/PART-A I a. Choose the correct answers lbr the following: (04 Marks) i) If red and blue stars emits radiations of continuous wavelengths, then according to Wien's displacement law. A) Blue star is hotter than red star B) Red star is hotter than blue star C) Both stars.are at same temperaJure D) Difficult to conclude. iD The expression for de-Broglie wavelength for an electron under an accelerating potential V is, 12.26 A) -ma/V iii) A particle moves 1 nm. Then group velocity of the particle is, A) 3x108 mS-r B) 3x10'0 mS'r C) 3x106 mS-r D) 1.5x106 mS-r i r) According to the Compton effect, the wavelength of X-rays scattered at an angle greater than zero, A) Decreases D) None of these b. Derive an expression for grgup velocity on the basis of superposition of waves. Also obtain the relation between group velocity and phase velocity. (08 Marks) c. Show that Planck's law reduces to Wien's law and Rayleigh-

- Jeans law under certain conditions. (05 Marks) d. Calculate the de-Broglie wavelength associated with an electron of energy 1 .5 eV. (0J Marks) 2 a. Choose the correct answers for the following: (04 Marks) i) The energy of the lowest state in one dimensional potential box of length a: 1 unit is,
- 2. 2. c. State Heisenberg's uncertainty principle. Write its physical significance. d. A spectral line of wavelength 5461 Ahas a width of 10 {A. Evaluate spent by the electrons in the upper energy state. 3 a. Choose the correct answers for the following: i) In the following the ohm's law is, 10P}IY12/22 b. Using time independent Schrodinger's wave equation, obtain the expression for the normalized wave function for a particle in one dimensional potential well of infinite height. (0E Marks) (0,t Marks) the minimum time (04 Marks) (0,1 Marks) B) J=; iil Mobility of electron is, A) Reciprocal of conductivity B) Average electrons drift velocity per unit electric field. C) Flow ofelectons per unit cross sectional area. D) Reciprocal ofresist ivity iii) The dependence ofmean free path 1. on temperature T is, A) J=oE C) J=oE'? q ,,cr+ D) l.cr B) Increases with temperature D) None offthese D) J= E 6 (06 Marks) (02 Marks) (04 Marks) D) D=eo(e. -1)E D) e, 1 tiv) According to free electron theory, the free electrons are treated as, A) Rigidity fixed lattice points, B) Liquid molecules C) Gas molecule D) None of these b. Define Fermi energy and Fermi factor. Discuss the variation of fermifactor with temperature and energy. (08 Marks) c. What is mean collision time? Using free electron theory in a metal, obtain an expression for A) l.crT B) .oJT electrical conductivity in terms of mean collision time. d. State and explain Matthiessen's rule. a. Choose the correct answers for the following: i) Electronic polarization, A) Independent of temperature C) Decreases with temperature ii) The correct relation among the following 4 equations is, A) E=eo(e.-1)P B) P=eo(e, -1)E C) e, =1-1 iii) For Ferromagnetic substances, the Curie-Wiess law is given as, A).=; B),=T c) e,= (r-0) iv) In the inverse piezoelectric effect, A) Ultrasonic waves are produced B) Electromagnetic waves are produced C) Microwaves are produced D) None of these b. What is internal field? Derive an expression for internal field in case of one dimensional array of a
- 3. 3. PART _ B 5 a. Choose the correct answers for the following: i) The pumping action in diode laser is by, b. c. d. c. d. A) Optical pumping B) Electrical discharge C) Reverse bias D) Forward bias iD The expression for energy density in terms of Einstein's coefficients, A)u=gl 'l' oLrn'*'-'l ""'=+l'=liiD In order to see the image of an object recorded by holography. A) It is enough if we just have the hologram. B) We need the hologram and the reference beam. C) We need the hologram, the reference beam and the object beam as well as the object. iv) In a laser system when the energy difference between two energy levels is 2xl}-te J, the average power output of laser beam is found to be 4 mw. Then number of Photons emitted per second is. A) 2x10r6 B) 2x10r0 () 0.5x10r6 D) 2x10r0 pescribe the construction of He-Ne laser and explain its working with the help of energy level diagram and mention few applications. (08 Marks) Explain the terms spontaneous emission and stimulated emission. (04 Marks) Explain laser welding and cutting process with diagrams. (04 Marks) 10PIIYt2122 (04 Marks) (06 Marks) (06 Marks) D) ri = Al"hvKr -rllBL] 6 a. Choose the correct answers for the following: (04 Marks) i) Superconductors are A) Ferromagnetic B) Paramagnetic C) Antiferromagnetic D) Diamagnetic ii) All high temperature superconductors are different types ofoxides of, A) Mercury B) Lead C) Copper ii, The quantum of magnetic flux is given by, er 29 B)L cr E h2e2 iv) Numerical apertr.re of an optical fiber depends on, the conventional communication systems. Define superconductivity and explain Tlpe I and Type II superconductors. D) Tin D4e A) Acceptance angle B) Diameter of the fiber C) Critical angle D) None of these b. Discuss point to point optical fiber communication system and mention its advantages over: 'The angle of acceptance of an optical fiber is 300 when kept in aiffind the angle of acceptance when it is in a medium of refiactive index 1.33. (04 Marks) j i:;i, 3 ol4
- 4. 4.10PHYt2l22 (04 Marks)7 a. Choose the correct answers for the following: i) A crystal ofhexagonal lattice has unit cell with sides, A) a * b + c, cr = p =90", y =120' C) a*b=c,o=B=y=90' B) a = b = c,a = F =90", y =120" D) a b + c, cr F -90', y -120' ii) In Bragg's spectrometer, for every rotation 0 ofthe turn table, the detector turns by an angle, A D):'2.iii) The interatomic distance between the sodium and chlorine atoms in sodium crystal is, A) 5.68 A B) 2.81 A C) 6.62 A D) s.s1 A iv) The interplanar spacing in a crystal is 1 A and the glancing angle is 350. For the first order Bragg reflection to take place, the wavelength of X-rays is, A) 1.147 A B) 0.573 A c) 1.638 A D) 0.819 A b. What are Miller indices? Explain the procedure to find Miller indices with an example. (05 Marks) c. Obtain the expression for interplanar spacing interms of 'a' for a cubic lattice. (05 Marks) d. Calculate the atomic packing factor for SC, FCC and BCC lattices. (06 Marks) 8 a. Choose the correct answers for the following: (04 Marks) i) An acoustic grating can be made by, A) Drawing lines on a glass plate B) Subjecting an optical grating to pressue waves ofultrasonic liequency C) It is only theoretical concept. D) Setting up a standing waves pattern in a liquid using ultrasonic: ii) The velocity of ultrasonic wave through the liquid increases as, A) Bulk modulus decreases B) Density decreases C) Bulk modulus increases D) Volume increases iii) The minimum size of matter below which the properties becomes size dependent is called, A) Pico size B) Nano size C) Micro size D) Macro size D) t2 iv) The number of carbon atoms present in C6s molecule is, A) 60 B) 32 c) 20 b. Describe with simple illustrations, the two methods of preparation of nano materials. c. (06 Marks) waves in solids. Using this how you (06 Marks) (04 Marks) d. A)e B) 4e c) 2e Describe a method of measuring velocity of ultrasonic can find the rigidity modulus of the solid. Explain quantum structures. 4of4
- 5. 5. USN I TOMATII Time: I hrs A; 2"*r cos(nn/2+2x) ay 2" rcos(nnl2+2x) c) 2n-rcos(nnl2-2x) of 2"*1 cos(nnl2-zx iii) The Lagrange's me.m value theorem for the function f(x) = e'; in the interval [0.1] is A) C = 0.5413 II) c: 2.3 C) 0.3 D) None of these A)log2-x/2+x:/8+ *a llg2+ *iv) Expansion of log(1 + e*) in porvers of x is q E-i ot) na i J irr; 64tE E>og?>. ll<r No z E o 9. tr B)log2+ x/2 + x'?/18 -*a llg2+- C)log2+x/2+x2/8 +*n ll92+-- 6. tr y'; *y ri, = 2x p,ou" that (x2 l)y,,*2 + (2n + l)xy"+r + (n2 -m2)y,, = g. c. Verify the Rolle's theorem for the firnctions: /(x) = e'(sin r cos r) in (7.t4,5rta). d. By using Maclaarin's theorem expand log sec x up to the term containing xo. a. Choos() our anrucrs ti,r rhe lbllor.ing: I he indeterminare form of lim o " is er log(%) r,0 X a; log(%) c) 1 D) 1 Find the angles of intersection of the following pairs of curves. r = a0 (1 + e): r = a/(1+02). Find the radius of curvature at (3al2, 3a/2 on xr + yr = 3axy. Choose your answers for the following:)), ,^2.,, ir Il u - +) rhen la- u) (aay)iicqucl ro) 4 Dllos2 I L-L+--')8t92 ii) I he angle between the radius vector dnd the tangenllbr the curres r = a(1 cos 0) is A) gl2 B) -e/2 Ct rl2+e D rl2-012. iii) The polar torm of a curve is A) r=f(0) B) 0=f(y) C) r=f(x) D) None of these iv) Therateatwhichthecurveishendingcalled_A)Radiusofcur,ature:B)Curvature:C)Circleofcurvalure;D)Evaluate. b. fvaluare r i-f:"'t I. (06 Mark)...ot r,l
- 6. <u>6.</u> iii) The volume generated by revolving the cardioid $r = a(1 + \cos 0)$ about the initial line is A) (3?ra'?) / 8 B) (3?ra') / 8 C) (2ra') / 8 D) None iv) The area of the loop of the curve $r = a \sin 30$ is A) a2 / 12; B) n/12 C) na1/t2; PART B Choose your answers for the following: i) The ralue of '1',-".r, is A) I'e J' -- n12 ii) The ralue of the integral f.i, n/1 is A) J5 I6 J0 IOMATI I (01Mrrks) B) -lle C) lla D) -llc B) 16/3s C)-16/35 D) None (06 Msrks)

- (06 Mark) (0,1Marks) (04 Marks) D) (dx/dt): m']x Dlr':k e o' (06 Mark) (06 Marks) (0,1 M:rrk) (04 Mark) B)2 C)4 D)r c. d. 6a. b. c. d. n/1 b. By applying differential under the integral sign evaluate 'l logt I!-).sln: rro, osm'x A) (dx/dt): I-x2 B) (d']x/dt'?) = o2x c) (d'?x/df): m'x iv) The orthogonal trajectories of the system given by r = a0 is A; $rr = keo\ B$) $r = keo\ C$) $le\ o' = t < Solve\ (x <math>cos(y/x) + ysin(y/x))y - (ysin(y/x) - x <math>cos(y/x))x$ (dy /dx) = 0. sotu. (1 * 1 =)* (* - "*' ") ay a,=0. Prove that lhe system of parabola y - 4a (x + a) is selforthogonal. Choose your answers for the following : ... i) FindLherankof f-"", 'il' A)3 l-, , ,l c. d. a. find the inverse transform at ion s. lg -t zl Diasonalize the m atrix- $^{\wedge}$ | ", I A-l b / -41' l.z -+: l Reduce the quadratic form, xf +2x?2-7x4 - 4x,x, + 8x rx. into sum of squares. 2 oI2 ii) The exact solution of the system of equation IOx+y+z=12,x+ 10y+z=12, x+y+102=12 by inspection is equal to A) CI, 1,1); B)(1, 1, 1); C)(1,-1,-1); D)None iii) If the given system of linear equations in 'n' variables is consistent then the number of lJnearly independent - solution is given by A)n; B)n-l; C)r n; D)n r iv)Thetrivialsolutionforthegivensystemofequations9x-y+42=0,4x-2y+32:0,5x+y-62:0 is A) (r, 2, 0) B) (0, 4, 1) c) (0, 0, 0) D) (r, -s,0). [t I I o'l Using elementary transformation reduce each of following matrices to the normal form. I - t 2 5 . t06 Marks) J I 18 12 z 31 Test for consistency and solve the z=0, x+y+z=g (o,lMark) Choose your answers for the following: (01 Mark) i) A square matrix A iscalled orthogonal if, A) A=A'? B)A=A-r C) AA I=t D)None ii) The eigen values of the matrix. f_u.,t_',1 ur. A) 2. 3. 8 B) 2,3,9 C) 2,2, 8 D) None 1, -, ,1 iii) The eigen vector X of the matrix A corresponding to eigen value L and satisfy the equation A) AX:7,x B)).(A x)=0 C) xA-A^=0 D) la-r.rlx=0 iv) Two square matrices Aand B are similar if, A) A=B; B)B:P-rAP; C)A'=B'; D) Ar=BI Show that the transformation, yr=2x1-2x2-x3, y2 =-4x1+5x2+3x3, Yr-xr-x: -x. is, regular and Evaluate of [in " x rix where n is an5 integer. J Findthe length of the arch of the cycloid x=a(0-sin0); y= a (1-cos0); 0<0 (2r. Choose your answers for the following: i) The general solution of the differential equation (dy / dx) = (y / x) + tanly / x) is A) sin (y/x) = c B) sin (y/x) = c C) cos (y/x) = c C(y/x) = c ii) An integrating factor for ydx xdy = 0 is A) /y B) y/x C) l(x'?f; D) l/(x']+f; iii) The differential equation satisfying the relation x = A cos (mt - c) is (06 Mrrks) (06 Marks) (04 Marks)
- 7. 7. o. a 'a ;, ,= a] I ?,- Aor Jdr O; a'; o< :' a z E q Elements of Givil Engineering and Engineering Mechanics Tirre: 3 hrs. Notei l. Answer any Fl VE full questions, choosing at least th'o from each pdrL Max. Marks:100 2. Answer I objective tlpe questions only on OMR sheet page 5 oflhe answer booklet. 3. Answer to objective Ope queslions on sheets othet than OMR will not be valued. 4. Assu me missing data suitabl.t. USN First/Second Semester B.E. PART-A I a. Choose the correct answers for the following: i) Geotechnical engineering involves the study of, tDcrY13123 Degree Examination, June/July 2013 (04 Marks) D) All of these B) Geotechnical engineering D) Structural engineering D) Movable bridge (10 Marks) (06 Marks) (04 Marks) distance from A) Water B) Soil C) Air ii) By-pass road is constructed, A) Inside the city B) Over the main road C) Around the city D) None of these iiD The part of civil engineering which deals with waste water and solid waste is called, A) Water supply engineering C) Sanitary engineering iv) A bascule bridge is a, A) Floating bridge B) Arch bridge C) Suspension bridge b. Write a note on role of civil engineer in infrastructural development. c. Name the different tlpes of roads as per Nagpur plan. 2 a. Choose the correct answers for the following: i) Moment ofa lbrce can be defined as the product of force and the line olaction offorce to the moment center. A) Least 8.1 Maximum C) Any D) None of these ii) Effect offorce on a body depends on, A) Direction B) Magnitude C) Position D) All of these iii) The forces which meet at one point have their line of action in different plane are called, A) Coplanar concurrent forces B) Non coplanar concurrent forces C) Non coplanar non concurrent forces D) None of these ir) Couple means two forces acting parallel, A) Equal in magnitude and in the same direction. B) Not equal in magnitude but in the same direction. C) Equal in magnitude but opposite in direction. D) None of these b. Define force and state its characteristics. (06 Marks) c. Determine
- 8. 8. t0crYt3t23 3 a. Choose the correct answers for the following: (04 Marks) i) The technology offinding the resultant of a system offorces is called, A) Resultant B) Resolution C) Composition D) None of these iD Equilibriant in nothing but a resultant, A) Equal in magnitude and in the same direction. B) Equal in magnitude but opposite in direction. C) Not equal in magnitude but in the same direction. D) Not equal in magnitude and opposite in direction. iii) If two forces P and Q @ > Q) act on the same straight line but their resultant is A) P+Q B)P/Q C)Q P iv) In coplanar concurrent force system ifIH = 0 then the resultant is A) Horizontal B) Vertical C) Moment D) None of these in opposite direction D)P_Q (06 Marks) box as shown in (10 Marks) b. c. State and prove Varignon's theorem ofthe moments. Two spheres each of radius 100mm and weight 5kN is in a rectangular Fig. Q3 (c). Calculate the reactions at the point ofcontacts. Fig. Q3 (c) 4 a. Choose the corect answers for the following: A) Bottom most axis of the figure C) Unsymmetrical axis A) Horizontal and vertical forces C) Horizontal, vertical and moment of forces 2of4 i) Moment of total area about its centroidal axis is A) Twice the area B) Three times the area C) Zero D) None of these ii) The centroid of a semicircle of radius R about its centroidal axis parallel to its diametric a,xis is A) 3R/4n B) 3R/8n C) 4R/n D) 4R/3n iii) An axis over which one half of the plane figure is just mirror of the other half which is (04 Marks) (06 Marks) (10 Marks) iv) Centroid of a rectangle ofbase width b and depth d is A) b/3 and d/3 B) bl2 and d/2 C) bl4 and dl4 D) None of these. B) Axis of symmetry D) None of Jhese B) Moment of forces D) None of these b. Determine the centroid of a triangle by the method of integration. c. Locate the centroid of the lamina shown in Fig. Q4 (c) with respect to point 0. Fig. Qa (c) PART B 5 a. Choose the correct answers for the following: (04 Marks) i) The necessary condition of equilibrium of a coplanar concurrent force system is
- 9. 9. r. 7a. I a. Choose the correct answers for the following: i) The unit of radius of Gyration-is A) mm B) mm2 C) mm3 Choose the correct answers for the following: i) Angle of friction is angle between A) the incline and horizontal B) the normal reaction and friction force C) the weight of the body and the friction force D) Normal reaction and the resultant. ii) The force of friction developed at the contact surface is always A) Parallel to the plane and along the direction of the applied force B) Perpendicular to the plane C) Parallel to the plane and opposite to the direction of the motion 10clv13/2s (04 Marks) D) All of these. ii| The maximum inclination of the plane on which the body free from external forces can repose is called A) Cone of friction B) Angle of friction C) Angle of repose D) None of these irr) The force of friction depends on A) Arya of contact B) Roughness of the surface C) Both area of contact and roughness of the surface D) None of these. State the laws of static friction.b. c. (04 Marks) A uniform ladder of length 15m and weight 750N rests against a vertical wall making an angle of 60o with the horizontal. Co-efficient of friction between the wall and the ladder is 0.3 and between the ground and the ladder is 0.25. A man weighing 500N ascends the ladder. How long will he be able to go before the ladder slips? (12 Marks) (04 Marks) D) mmn i0 The moment of inertia of an area about an axis which is in a plane perpendicular to the area is called A) Radius of Gyration C) Second moment of area iii) The moment of inertia of a circle with'd' as its diameter about its centroidal axis B) Polar moment of inertia D) None of these b. c. A ItD'/^ ', J z u, "o/* ct "D',/sz, o, "ozo iv) Ths.moment of inertia of the region shown in Fig. also find the radius of Gyration about the same axis. kIL Di nt c t4*'o hE q rc N WITV Fig. Q8 (c) 4of4 (06 Marks) QB (c) about horizontal axis AB and (10 Marks) B
- 10. 10. v tf I m €, o o 3 (I b. d. E ',. =_. ool EO P= i 50i Jo, 5!; .,._ ^-odbo E= Ei o<. ^i; z aq tr USN t0BinllEt4l24 First/Second Semester B.E. Degree Examination, June/Juty 2013 Elements of Mechanical Engineering Time: 3 hrs. Max. Marks: 100 Note: l. Answer any FIW full questions, choosing at least two from each part. 2. Answer all objective type questions only on OMR sheet poge 5 of the onswer booklet 3. Answer to objective 4tpe questions on sheets other than OMR will not be valued. PART _ A I a. Choose the correct answers for the following: i) Lunar is _ form ofenergy A) Stored C) Celestial iD Enthalpy is also called as A) Low C) Medium iu) Feed check valve is a boiler mounting for A) Safety C) Testing 2 a. Choose the correct answers for the following: i) An example for a reaction turbine is A) Laval turbine C) Zoelly turbine ii) The weight to power ratio of a gas turbine is A) High C) Moderate iii) Draft tube is a A) Sufficient heat B) Insufficient heat C) Total heat D) Incomplete heat Steam pressure is in water tube boilers B) Transit ional D)Capital B) High D) Absolute (04 Marks) (06 Marks) (04 Marks) (06 Marks) (07 Marks) (08 Marks) (08 Marks) (09 Marks) (0

- radial flow, axial flow and mixed flow with respect to water turbine. I of4
- 11. 11. 13 a. Choose the correct answers for the following:, Flywheel is used as an energy _A) Receiver C) Mixer b. Mention the uses of any four reliigerants. iD Mechanical effrciency of a four-stroke engine is A) Medium C) Low iif.',, The output shaft in IC engines is A) Camshaft C) Rotary shaft iv) In C.I..engines, charge means A) Air and tuel C) Air and water A) Low C) Moderate B) Reservoir D) Multiplier B) High D) Balanced B) Crankshaft D) Arial shaft B) Only tuel D) Only air b. List any four differences between two-stroke and four-stroke engines. (04 Marks) c. A six cylinder 4-stroke I.C. engine develops 50 kW of indicated power at mep of 700 kPa. The bore and stroke length are.70mm and 100mm respectively. If the engine.speed is 3700 rpm, find the average misfires per unit time. 1 {i6 Marks} B) Effluent D) Refrigerant B) Ten D) Hundred B) Temperature D) Efficiency B) High D) Unity d. Draw a schematic diagram of LC. engirxti;nd name the parts. 4 a. Choose the corect answers for the following: i) Brine is an example for A) Coolant C) Deodouraitt ii) The value of COP is greater than A) Infinity C) Inity iii)... A thermostat in A.C. is used to control '. ..'-.,. A) Pressure .. " C) Volume iv) The viscosity of an ideal refrigerant should be (04 Marks) c. With a neat sketch, explain the working of a vapour absorption refrigerator. (06 Marks) d. List the differences between vapour compression refrigeration and vapour absorption to EIs[Et4l24 (04 Marks) (06 Marks) (04 Marks) refrigeration. 2 of 4 (06 Marks)
- 12. 12. 5a. t0Blrtlrt4t24 PART-B Choose the coffect answers for the following: (04 Marfuq) i) Compound side swiveling method is used to produce ..., 1.i.," A) Hole B) Tlreads .. I, C) Knurl D) Taper ii) Lathe Dog is A) A part B) A component i;..'..'C) An accessory D) An assembly r i iii) . .., is an operation to produce a conical surface at the end ofapredrilled hole A) Counter Boring B) Counter sinkiilg. -, C)'Tapping D) Reaming--...,1 ' iv) The sripporting section (core) ofa drill is called A) Web B) Tang, C) Land D) {qi€in With a neat sketch, explain. the principle and operdft'lrfr to produce a 'taper' on lathe by tail stock set over method' ,,1 ,r, .' (06 Marks) Differentiate between cross slidti and.comiiriifrd slide. (04 Marks) With a neat sketctr, explain the ope;\$pyi'ff a radial drilling machine. (06 Marks) .: 1:r- Choose the correct answ,gr'g for the following: 1'i (04 Marks) i) Conventional miUing is also called A) End milling Ir B) illimhmilling C) Peripheral milling D) Up milting ii) The millitrgiprocess used to produce V blocks is calloel"i ""- A) For.rn milling B) Slot milling C)"Angular milling D) Slab milling'.'.': iii) Flint is an example for a abrasive A) Artificial B) Natural i...: -, I C) Strong D) Weak iv) The bond used for manufacturing elastic grinding wheels is called ,, , . A) Shellac B) Vitrified C) Resinoid D) Oxy chlorid" , ., , b. 6a. c. d. (06 Mar*r)- _ b. Differentiate between up milling and down milling. c. List any four differences between horizontal milling machine and vertical milling d. With a neat sketch, explain the principle of centreless cylindrical grind 3of4
- 14. USN 10ELE15/2s D) Kirchhoffs law (05 Marks) iii) the equivalent (06 Marks) c. d. o. E! 2 fs = v') --t drq u= boc .].o) 5! a,i; -q-ooo o= =q c) o< -; ci o z o o. First/Second Semester B.E. Degree Examination, June/July 2013 Basic Electrical Engineering Time: 3 hrs. Max. Marks:llOb Note: 1. Answer ony FIVE full questions, choosing at least two from each port. 2. Answer oll objective type questions only on OMR sheet page 5 of the answer booklet. 3. Answer to objective type questions on sheets other than OMR will not be valued. (04 Marks) PART-A I a. Choose the correct answers for the following: i) The condition for the validity under Ohm's law is that the A) temperature should remain constant B) cunent should be proportional to voltage C) resistance must be wire wound type D) all of the above. ii) A linear resister is one v(,hich obey's A) Ampere's law B.1 Lenz's law C) ohms law b. iv) Resistance of a wire always increases if A) temperature is reduced B) temperature is increased C) number of free electrons available become less D; number of free electrons available become more. Find the resistance ofthe circuit shown (Rap). Fie.Ql(b) 2.5amperes. Find i) cunent in other resistors ii) resistor X resistance. Refer fig. Ql(d). !rr- iii) The resistance of a conductor having length 0, area ofcross section a and resistivity p is given as A) R=+ B) R=Pl c) R:pta o) R= I laap State and explain Kirchoff's laws. (0!I{arks}) In the parallel arrangement of resistors shown the current flowing in the 8f) resistor is /,f'' -,' Fig.Ql(d) I of4
- 15. 15. a. Choose the comect answers for the following: i) The law that hnds application in electrolysis 10ELEt5/25 (04 Marks) A) Faraday's law B) Coulomb's law C) Ohm's law D) Lenz's law ii) According to Faraday's law of electro magnetic induction an emf is induced in a conductor whenever it A) lies in a magnetic field B) lies perpendicular to the magnetic field C) cuts the magnetic flux D) moves parallel to the direction of magnetic field. iii) "In all cases of electromagnetic induction, an induced voltage will cause a current to ' flow in a closed circuit in such a direction that the magnetic field which is caused by that current will oppose the change that produces the current" is the original statffnent of A) Lenz's law C) Fleming's law of induction B) rms value to average value D) peak value to rms value B) D) Faraday's law of magnetic induction Ampere's law iv) Which law is synonymous to the occurrence of diamagnetism A) Ampere's law B) Maxwell's law C) Coulomb's law D) Lenz's law. b. State and explain Faraday's laws of electromagnetic induction. (08 Marks) c. Derive the expression for energy stored in an inductor. (08 Marks) a. Choose the correct answers for the following: (0,1 Marks) i) The form factor is the ratio of A) average value to rms value C) peak value to average value ii) In an R L series circuit the pf is A) leading B) lagging C) zero iii) The power factor of an ac circuit is equal to D) unity A) cosine of the angle C) unity for a resistive circuit B) sine of the phase angle D) unity for a reactive circuit b. iv) In a pure capacitive circuit, the current will A) lag behind the voltage by 900 B) lead the voltage by 900 C) remain !n phase with voltage D) None of these Derive an expresSion for the impedance of an ac circuit con5isting of a resistance an inductance and a capacitance connected in series. (10 Marks) 125 volts at 60Hz is applied across a capacitance connected in series with a non inductive resistor. The combination canies a current of 22A and causes a power loss of 96.8 w in the resistor. Power loss in the capacitor is negligible. Calculate the resistance and capacitance. (06 Marks) a- Choose the correct answers for the following: i) In a 3 phase balanced star corulected load, neutral current is equal to A) Zero B) I'C) ILD) Unpredictable ii) The relationship between the line and phase voltage of a delta connected circuit is given by A) VI: Vp B)vL: JJ vp C) Vr: V.: ?V, 11 iii) The power in a 3 phase system is given by 1/3 V; 11-cos Q, where \$ is the phase angle between A) line voltage and line current C) line voltage and phase current B) phase voltage and phase current D) phase voltage and line current 2of4 (04 Marks) 6 D)
- 16. 16. 10ELE15/25 iv) Three equal impedances are t-rst connected in delta across a 3 phase balanced supply. Ilthe same impedances are connected in star across the same supply A) phase currents will be one third B) line currents will be one third C) power consumed will be one third D) None of these b. Derive the relationship between a line current and a phase cunent and a line voltage and c. d. phase voltage related to a star connected load. Mention different types of wiring used in domestic dwellings. PART B Choose the correct answers for the lbllowing: i) The emf generated in a dc generator depends upon B) commutation D) terminal voltage (07 Marks) (03 Marks) (04 Marks) (04 Marks) Explain construction and working principle ofinduction tlpe single phase energy meter. (06 Marks) ii) The dc generator having residual magnetism gives zero induced em { the speed will be A) zero B) very small C) rated one A) brush contact drop C) number ofparallel paths iii) The field coils of a dc machine are made of A) carbon B) copper C) mica to step down the voltage D) any D) steel D) statorB) held C) armature b. The emf generated in the armature of a shunt generator is 625 volts, when delivering its full load current of 400 A to the external circuit. The field current is 6 amp and the armature resistance is 0.060. What is the terminal voltage? (08 Marks) c. A 220 volts series motor is taking a current ol 40 amperes. Resistance of armature 0.50, resistance of series field is 0.250hm.

Calculate i) Voltage at the brushes ii) Back emf iii) Power wasted in armature iv) Power wasted in series field. (08 Marks) iv) The rotating part of a dc machine is called the A) rotor Choose the correct answers for the following: i) Transformer is used A) to step up the voltage B) C) on dc ii) A transformer does not transfrom D) to step up or step down the voltage A) power B) voltage C) cument D) impedance iii) In a transformer, electrical power is transl'erred lrom primary to secondary A) through air C) through insulating medium iv) The two windings of a transformer are B; by magnetic flux D) none olthese B) inductively linked D1 electrica lly linked ::i A) conductively linked C) not linked at all b. Explain principle of operation of a equation. single phase transformer and A single phase. 20 KVA transformer has 1000 primary turns and 2500 secondary turns. The net cross sectional area of the core is 100cm2. When the primary winding is connected to 500V, 50Hz supply, calculate i) the maximum value ofthe flux density in the core ii) the voltage induced in the secondary winding and iii) the primary and secondary full load currents. (08 Marks) 3 of4

17. 10ELE15/25 7 a. Choose corect answers for the following: (04 Marks) i) In a synchronous machine, the stator frame is made of, A) Stain steel B) CRCoGS C) Cast iron or welded steel plates D) Laminated silicon steel ii) The stator core of a synckonous machine is laminated so as to reduce, A) Eddy current loss '.-"-' B) Hysteresis C) Both eddy current and hysteresis loss D) The size and weight of the machine 'iii) The stator slot insulations in synchronous made o { A) Mica cloth B) Fibre glass C) Polister sheets D) Any of these iv) The machine that supplies dc to the rotor is called the, A) Recti.iier B) Exciter C) Convertor D) Invertor b. Derive EMF equation of an alternator. (08 Marks) c. Explain construction and working principle ofsynchronous generator. (08 Marks) 8 a. Choose the correct answers for the following: (04 Marks) i) Ifa single phase induction motor runs at a speed lower than the rated one, the most likely defect is, A) improper size fuses B) Worn-out bearings or low voltage or over load C) Open-circuit in the winding D) Shon-circuit in the winding ii) If the starting winding of a single phase induction motor is left in the circuit, A) the motor will run faster B) the motor will run slower C) there will be undue sparking D) the auxillary winding will get over-heated due to continuous flow of current and may get damaged. iii) Which of the following types of motors are not single phase ac motors? A) Induction type'motors B) Commutalor type motors C) Synchronoris type motors D) Schrage motors iv) Which of the following types of motors are not the induction motors? A) Repulsion motors B) Split phase motors C). Stiaded pole motors D) Repulsion start induction motors b. Explain construction and working principle of star-delta stafier. (08 Marks) c. What is meant by the slip of the induction motor? Under what circumstances the slip is i) unity and ii) zero. (08 Marks) 4of4

Recommended
More from this author

Dynamic Simulations with Bullet Physics in Maya

Maya 2015 Essential Training

Maya Tips and Tricks

1st semester chemistry stream (2013-June) Question Papers BGSIT Library and Information Center 45.540

1st and 2and Semester Physics Streem (2013-December) Question Papers
BGSIT Library and Information Center
1,990

1st and 2and Semester Physics Straem (2014-June) Question Papers BGSIT Library and Information Center 457

Engineering Physics Jntu Model Paper {Www.Studentyogi.Com} guest3f9c6b

5,748

Physics Stream (2013-January) Question Papers B G S Institute of Technology

<u>1st and 2and Semester Physics Stream (2014-December) Question Papers BGSIT Library and Information Center</u> 301

1st and 2and Semester Chemistry Streem (2013-December) Question Papers BGSIT Library and Information Center 2.939

Physics Stream (2011-July) Question Papers B G S Institute of Technolgy 2,069

Engineering Drawing Jntu Model Paper {Www.Studentyogi.Com} guest3f9c6b 12,969

School of Dentistry 2007-2008 dentistryinfo 3.172

M.Sc., Physics model questions -Dec 2008 (Bharathiar University)

Ganapathy ThayammalMurugesan

2,189

Chemisty Stream (2013-January) Question Papers B G S Institute of Technolgy

<u>Class XI - PUC-I annual exam question paper for year Annual exam-2014</u> <u>Nagaraja Babu Adiki</u> <u>36,141</u>

Opening Learning Horizons: eLearning Papers Special Edition 2012 eLearning Papers 20,972

I P.U.C(CLASS -XI) MODEL QUESTION PAPER FOR ANNUAL EXAM FEB-2014 Nagaraja Babu Adiki 7 281

1st semester chemistry stream (2015-June) Question Papers
BGSIT Library and Information Center
229

3rd Semester Mechanical Engineering (June/July-2015) Question Papers BGSIT Library and Information Center


```
MINISTER STATE OF THE PROPERTY OF THE PROPERTY
```

4th Semester Mechanical Engineering (June/July-2015) Question Papers BGSIT Library and Information Center

5th Semester Mechanical Engineering (June/July-2015) Question Papers BGSIT Library and Information Center

77

6th Semester Mechanical Engineering (June/July-2015) Question Papers
BGSIT Library and Information Center

7th Semester Mechanical Engineering (June/July-2015) Question Papers BGSIT Library and Information Center

62

8th Semester Mechanical Engineering (June/July-2015) Question Papers BGSIT Library and Information Center

89

3rd Semester Electronic and Communication Engineering (June/July-2015) Question......
BGSIT Library and Information Center

<u>48</u>

4th Semester Electronic and Communication Engineering (June/July-2015) Question...... BGSIT Library and Information Center

51

5th Semester Electronic and Communication Engineering (June/July-2015) Question...... BGSIT Library and Information Center

<u>54</u>

6th Semester Electronic and Communication Engineering (June/July-2015) Question...... BGSIT Library and Information Center