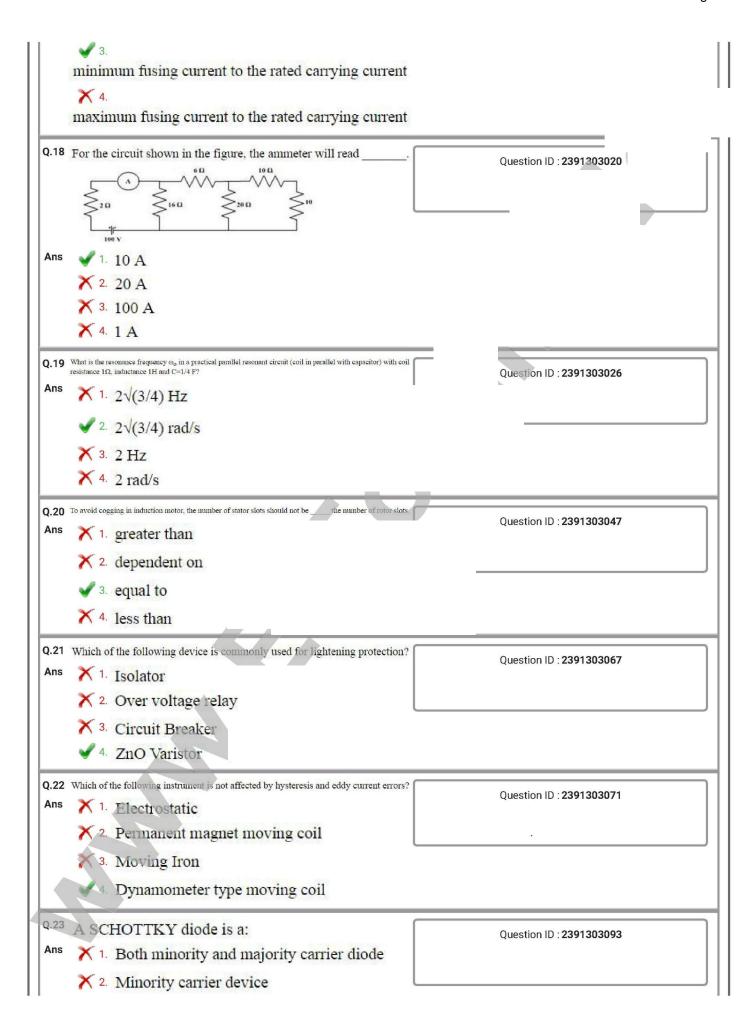


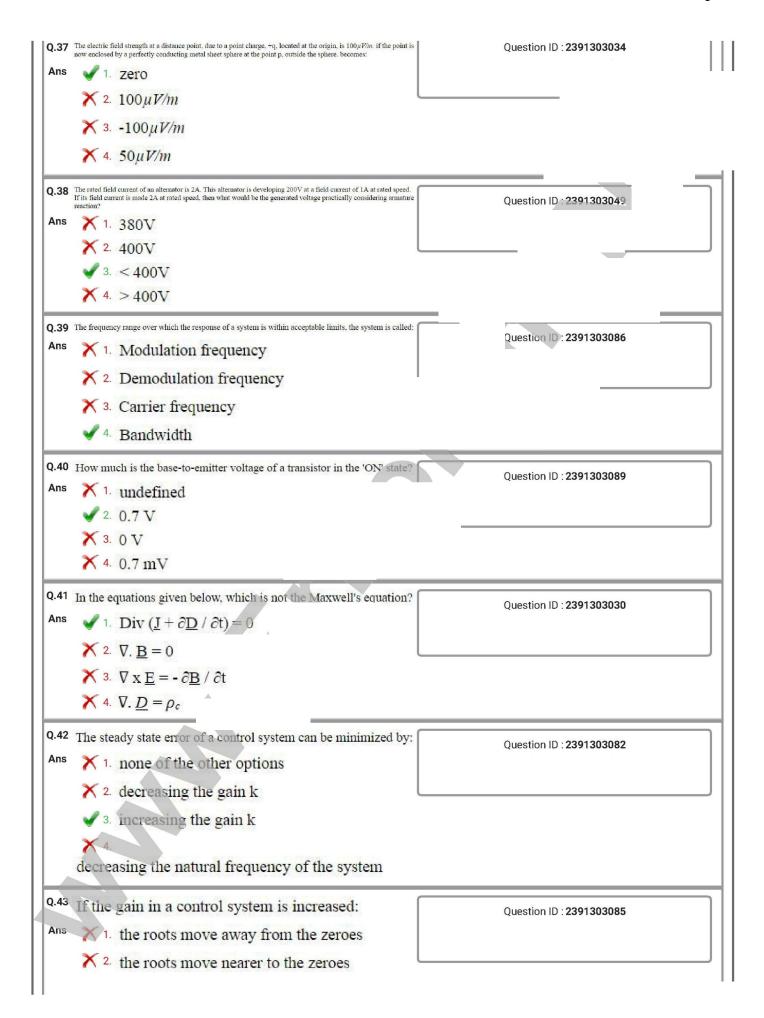
ONLINE APPLICATION FOR MANAGEMENT TRAINEES 2016-17

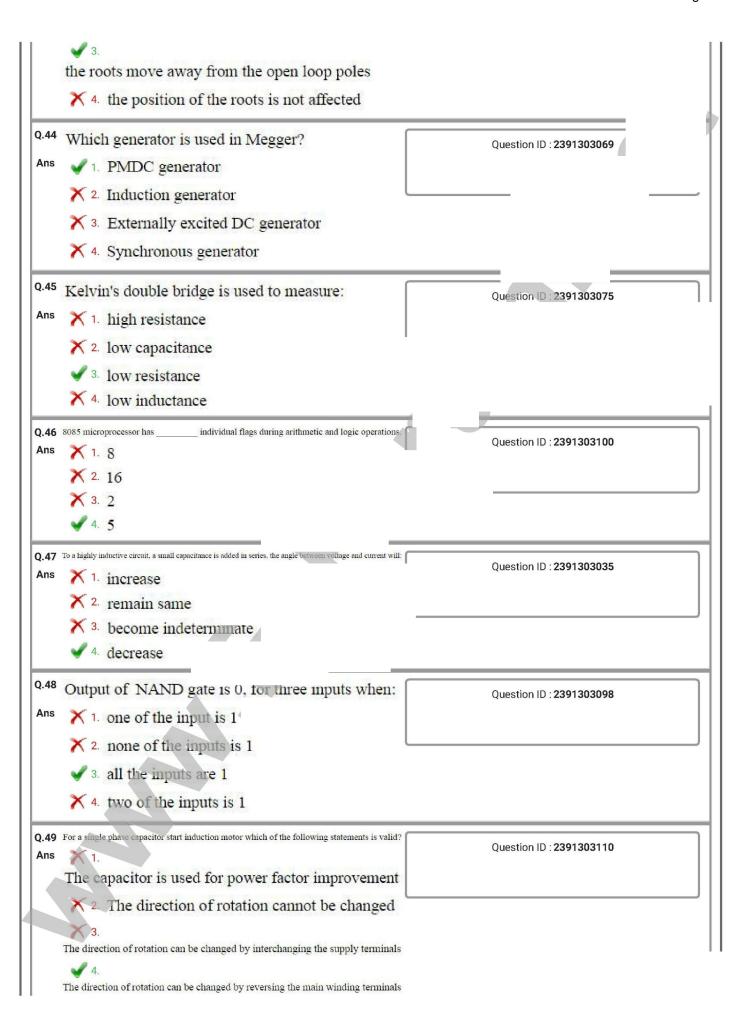
Roll No:	
Participant Name:	WWW.ALLEXAMREVIEW.COM
Test Center Name:	
Test Date:	26/03/2017
Test Time:	8:00 AM - 11:00 AM


Q.5

WWW.ALLEXAMREVIEW.IN

Section: Professional Knowledge Q.1 Match list I (Fourier series and Fourier transform) with list II (their properties) and select the answer using codes given Question ID: 2391303112 Discrete and Periodic
 Continuous and Periodic A. Fourier series
B. Continuous Fourier transform Ans ✓ 1. A-2, B-3, C-1 X 2. A-3, B-2, C-1 X 3. A-1, B-3, C-2 X 4. A-2, B-1, C-3 Q.2 A coil of 300 turns is wound on a non-magnetic core having a mean circumference of 300 mm and a cross-sectional area of 300 mm². The inductance of the coil corresponding to a magnetizing current of 3A will be (Given that $\mu_0 = 4\pi \times 10^{-7} \mathrm{Hyn}$). Question ID: 2391303036 Ans X 1. 37.68 µH X 2. 113.04 mH **√** 3. 113.04 µH X 4. 37.68 mH Q.3 The materials used for permanent magnets should have: Question ID: 2391303096 Ans X 1. low retentivity, high coercivity × 2. high retentivity, low coercivity √ 3. high retentivity, high coercivity X 4. low retentivity, low coercivity What is the use dummy coils in DC Generators? Question ID: 2391303041 Ans 1. To enhance flux density X 2. To amplify voltage 3. To provide mechanical balance for the rotor Y 4. To reduce eddy current losses


	The type zero system with step input has:	Question ID: 2391303087	
Ans	X 1. high gain constant		'
	× 2.		
	large steady-state error with high gain constant		
	√ 3. finite steady-state error		
	★ 4. zero steady-state error		
4.0	A buck regulator has an input voltage of 12 V and the required output is 5 V. What is the duty cycle of the regulator?	Question ID : 2391303103	$\overline{}$
Ans	X 1. 12/5		
	√ 2. 5/12		
	× 3. 6		
	× 4. 5/2	_	
Q.7	The area under a load curve gives:	Question ID : 2391303053	
Ans	× 1. maximum demand		
	× 2. minimum demand		
	X 4. average demand ✓ 4. average demand		
Q.8	Which starting method is not used in squirrel cage induction motors?		$\overline{}$
Ans	× 1. Resistance in stator circuit	Question ID : 2391303038	
	✓ 2. Resistance in rotor circuit		
	X 3. Auto-transformer starting		
	X 4. Star-delta starting		
	- Star Gerta starting		
Q.9	Light activated thyristor can be used as:	Question ID : 2391303108	
Ans	X 1. Amplifier		
	× 2. Oscillator		
	✓ 3. Switch		
	× 4. Filter		
Q.10	Domestic consumer load is around:	0 1 1 0 000000	$\overline{}$
Ans	✓ 1. 5 kW	Question ID : 2391303052	
	× 2. 120 kW		
	X 3. 40 kW		
	× 4 80 kW		
0.11	and the second s		$\overline{}$
Ans	RMS value of a current given by $i = 10 + 5 \cos (628 t + 30^{\circ}) is$:	Question ID : 2391303022	
AIIS	71. 5 A		
	× 2. 15.6 A		


	X 3. 3.53 A		
	✓ 4. 10.6 A		
0.12	The equation for 25 cycles current sine wave having rms value of 30 amperes, will be:		
Ans	1. 30 sin 25 t	Question ID : 2391303023	
	× 2. 30 sin 50 t		
	× 3. 42.4 sin 25 πt		
	✓ 4. 42.4 sin 50 πt		
0.10	A single phase distribution transformer rated 10kVA, 2400/240V, 60Hz has characteristics: core loss at full voltage is		_
Q. 13	A single plans unformed transformer med to VA, 2450-2401, of the land copier loss at full 'load at lagging power factor of 0.8?	Question ID : 2391303040	
Ans	★ 1. 93.92%		
	× 2. 94.95%		
	× 3. 92,95%		
	√ 4. 95.92%		
Q.14	In moving coil instruments, the scale is used.	Ounting ID (2201202072	
Ans	× 1. square	Question ID : 2391303072	
	× 2. nonlinear		
	× 3. logarithmic		
	- Constant of the Constant of		
	4. linear		
Q.15	A power MOSFET is a:	Question ID : 2391303095	
Ans	√ 1. Voltage controlled device		
	× 2. None of the other options		
	X 3.		
	Both Voltage controlled device and Current controlled device		
	X 4. Current controlled device		
Q.16	In a biased differential relay, the bias is defined as the ratio of:		
Ans	X 1. fault current and operating coil current	Question ID : 2391303064	
	2.		
	operating coil current and restraining coil current		
	X 3.		
	number of turns of restraining and operating coil		
	X 4. fault current and restraining coil current		
	in the state of th		
Q.17	Fusing factor of a fuse is defined as the ratio of:	Question ID : 2391303055	
Ans	X 1.		
	maximum fusing current to the prospective current		
	2.		
	maximum fusing current to the cutoff current		

	X 3. Fast recovery diode		
	✓ 4. Majority carrier device		
Q.24 Ans	Multi-meters cannot be used to measure:	Question ID : 2391303076	
	✓ 2. current✓ 3. voltage✓ 4. frequency		
Q.25	A second-order servo has unity feedback and an open-loop transfer function: $G(s) = 500/s(s+15)$. The settling time is:		$\overline{}$
Ans	 X 1. 2 sec ✓ 2. 0.53 sec X 3. 500 sec X 4. 0.5 sec 	Question ID : 2391303081	
Q.26 Ans	The bus admittance matrix of a power system (with respect to diagonal), has: 1. only value symmetry	Question ID : 2391303059	
	 2. both position and value symmetry 3. only position symmetry 4. complete asymmetry 		
Q.27 Ans	A solid sphere made of insulating material has a radius R and has a total charge Q distributed uniformly in its volume. What is the magnitude of the electric field intensity, E, at a distance $r(0 < r < R)$ inside the sphere? 1. $Qr/4\pi\epsilon_0 R^3$	Question ID : 2391303037	
	× 2. $3Qr/4\pi\epsilon_0 R^3$ × 3. $QR/4\pi\epsilon_0 r^3$ • $Q/4\pi\epsilon_0 r^2$		
Q.28 Ans	Which testing method is performed to determine No Load losses in DC motors? 1. Running down test 2. Field test	Question ID : 2391303042	
	 3. Swinburne's test 4. Brake test 		
Q.29 Ans	The pointer returns to its zero position on removing the source producing the deflecting torque. This happens due to: 1. Controlling torque 2. Balancing torque	Question ID : 2391303073	
	3. Damping torque 4. Mass of pointer		
Q.30	The Superposition theorem is essentially based on	Question ID : 2391303019	

Ans	✓ 1. linearity	
	× 2. duality	'
	X 3. reciprocity	
	× 4 non-linearity	
Q.31	The A, B, C, D constants of 220kV line are $A = D = 0.94 \perp 1^{\circ}$, $B = 130 \perp 73^{\circ}$, $C = 0.001 \perp 90^{\circ}$. If sending end voltage of the line for a given load delivered at nominal voltage is 240kV, then % voltage regulation of the line is:	Question ID : 2391303065
Ans	X 1. 5	,
	X 2. 9	
	√ 3. 16	
	★ 4. 21	
	Two transformers are to be operated in parallel such that they share load in proportion to their kVA ratings. The rating of the first transformer is 500kVA and its pu leakage impedance is 0.05 pu. If the rating of the second transformer is 250kVA then its pu leakage impedance is:	Ouestion ID : 2391303106
Ans	1. 0.025	
	✓ 2. 0.1 X 3. 0.05	
	× 4. 0.2	
_	4. 0.2	
Q.33 Ans	Find the resistance of an electric heater that absorbs 2400 W when connected to a 120 V supply.	Question ID : 2391303017
Alls	X 1. 20 Ω X 0. 13 Ω	
	Χ 2. 12 Ω	
	✓ 3. 6 Ω × 4.10 Ω	
	Χ 4. 10 Ω	
Q.34	Which law states that "the line integral of the magnetic field intensity H around a closed path is equal to the total current linked by the contour"?	Question ID : 2391303029
Ans	1. Kirchhoff's voltage law	
	× 2. Kirchhoff's current law	
	✓ 3. Ampere's circuit law	
	× 4. Ohm's law	
Q.35	A 3-phase transformer has its primary connected in delta and secondary in star. Secondary to primary turns ratio per phase is 5. What would be the secondary voltage for a primary voltage of 400V?	Ouestion ID : 2391303050
Ans	★ 1. 2000 V	Question ib . 2591505050
	× 2. 80 V	
	✓ 3. 3464 V	
	X 4. 138 V	
Q.36	Buchholz's relay is used to protect .	Ougation ID - 222422222
Ans	Transmission line	Question ID : 2391303058
	X 2. Generator	
	3. Transformer	
	× 4. Motor	
	TYDUUT	

	Zero sequence component is absent in case of following fault.	Question ID : 2391303068
Ans	✓ 1. L-L	
	× 2. All of the other options	
	X 3. L - L - G	
	× 4. L − G	
Q.51	Normally the human body resistance in totally wet and dry condition is respectively.	Question ID : 2391303062
Ans	$\sqrt{1.1}$ lkΩ and lMΩ	Question is . 207100002
	× 2. 0.1Ω and 10kΩ	
	\times 3. 100 Ω and 1k Ω	
	\times 4 100 Ω and 10k Ω	
Q.52	Distributed winding and short chording employed in AC machines will result in:	Question ID: 2391303109
Ans	✓ 1. reduction in both emf and harmonics	Question 10 . 2391303109
	× 2. reduction in emf and increase in harmonics	
	× 3. increase in both emf and harmonics	
	4 increase in emf and reduction in harmonics	
Q.53	CRGO laminations in a transformer are used to minimize:	0 1 10 2001000051
Ans	X 1. eddy current loss	Question ID : 2391303051
	× 2. ohmic loss	
	× 3. hysteresis loss	
	✓ 4. both eddy current and hysteresis losses	
	- Jour eddy current and nysteresis losses	
Q.54	The protection used for SCR in case of high di/dt is:	Question ID : 2391303101
Ans	★ 1. parallel capacitor	
	✓ 2 series inductance	
	× 3. snubber circuit	
	× 4. fast acting fuse	
0.55	The magnetic field on the axis of a current earrying polygonal coil will have only a horizontal component parallel to the	
Ans	plane of the coil:	Question ID : 2391303031
70	1. it is never possible	
	× 2. if the coil is an equilateral triangle	
	× 3. if the coil is a parallelogram	
	4 if the coil is a rhombus	
Q.56	Two magnetic cores A and B made up of materials with relative permeability 300 and 400 respectively have identical physical dimension then	Question ID : 2391303024
Ans	1. reluctance offered by A is more than B	Question D . 2391303024
	2. reluctance offered by A and B is equal	
	× 3. cannot be predicted without laboratory test	
	Calmot be predicted without laboratory test	

	★ 4. reluctance offered by B is more than A		
Q.57 Ans	As we go from generator end towards load, the severity of a particular fault: 1. decreases 2. does not depend on location 3. remains same 4. increases	Question ID : 2391303060	
Q.58 Ans	In an induction motor, the meaning of synchronous wattage means: 1. combined stator and rotor inputs in watts 2. stator input in watts 3. shaft output in watts	Question ID : 2391303044	
Q.59	4. rotor input in watts A two-port network N has transmission parameters $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$. The input impedance of the network at port-1, will be: N 2 X 1. AD/BC X 2. D/C	Question ID : 2391303113	
Q.60 Ans	3. AB/DC 4. A/C In a 3-phase controlled bridge rectifier, with an increase of the overlap angle, the output DC voltage: 1. increases	Question ID : 2391303097	
	 2. depends upon load inductance 3. does not change 4. decreases 		
Q.61 Ans	Norton's theorem when applied to DC Circuit results in: 1. a current source alone 2. a voltage source alone 3. a current source with a resistance in parallel 4. a voltage source with a resistance in series	Question ID : 2391303016	
Q.62 Ans	Which load flow method is sensitive to initial guess in respect of reliability of convergence of solution? 1. Newton - Raphson method 2. Runge - Kutta method 3. Gauss - Seidel method 4. Gauss elimination	Question ID : 2391303061	
Q.63		Question ID : 2391303077	

Which of the points below correctly complete(s) the given statement? The Lissajous patterns help in the measurement of 1. phase difference between two sine waves only 2. frequency of one waveform only, if the frequency of other waveform is known Ans X 1. Only 2 ✓ 2. Both 1 and 2. X 3. Neither 1 nor 2 X 4. Only 1 Q.64 A transformer having a turn's ratio 1:5 and a resistance of 500Ω is connected across the secondary terminals. What is the equivalent resistance for the current flowing in the primary? Question ID: 2391303043 Ans X 1. 100 Ω X 2. 10 Ω √ 3. 20 Ω X 4. 50 Ω Q.65 A circuit contains two unequal resistances in parallel, then: Question ID: 2391303018 1. large current flows in larger value resistance × 2. current is same in both X 3. smaller current flows in smaller value resistance 4. potential difference across each is same. Q.66 For an alternating square wave, the form factor is Question ID: 2391303021 X 1. 1.11 Ans **√** 2. 1.00 X 3. 1.414 X 4. 3.14 Q.67 The Fourier series coefficient of signal x(t) is C_K , then what will be Fourier series coefficient of the signal x(0.5t) + x(t-0.5) + x(-2.5t)Ouestion ID: 2391303114 \checkmark 1. C_K(1+e^{-jω0.5k})+C_{-K} \times 2. $C_{\rm K}(2+e^{-j\omega 0.5k})+0.5$ $C_{\rm K}$ × 3. C_K(1+e^{-jω0.5k})+C_K X 4. C_K(e+e^{-jω0.5k})+0.5 C_K Q.68 Which type of distance relay is not affected by fault arc resistance? Question ID: 2391303063 Ans 1. Mho Differential 3. Reactance 4. Impedance The z-transform of signal is given by $C(z) = \frac{1z^{-1}(1-z^{-4})}{4(1-z^{-1})^2}$. Its final value is: Q.69 Question ID: 2391303115 Ans

Q.70 Ans	 ✓ 1. 1.0 X 2. 1/4 X 3. infinity X 4. zero The sweep generator of a CRO is used to produce: X 1. sinusoidal voltage for the vertical deflection of electron beam ✓ 2. saw tooth voltage for the horizontal deflection of electron beam 	Question ID : 2391303078	
	 3. saw tooth voltage for the vertical deflection of electron beam 4. sinusoidal voltage for the horizontal deflection of electron beam 		
Q.71 Ans	In 8085 microprocessor, instruction XCHG is: X 1. 3 byte instruction X 2. 2 byte instruction X 3. 5 byte instruction 4. 1 byte instruction	Question ID : 2391303099	
Q.72 Ans	A 3-phase synchronous motor, connected to AC mains, is running at full load and unity power factor. If its shaft load is reduced to half, with field current held constant, its new power factor will be: 1. lagging 2. leading 3. unity 4. dependent on macrime parameters	Question ID : 2391303111	
Q.73 Ans	Let A and B be feed-forward and feedback paths in a control system to control the voltage. The overall voltage gain of this closed loop system is: 1. (1+AB)/A 2. A/(1+AB) 3. (1+AB)/B 4. B/(1+AB)	Question ID : 2391303080	
Q.74 Ans	For dynamic equalizing circuit used for series connected SCRs, the choice of C is based on: 1. rise time characteristics 2. turn-on characteristics 3. turn-off characteristics 4. reverse recovery characteristics	Question ID : 2391303105	
Q.75 Ans	The transfer function of a system is defined as:	Question ID : 2391303079	

	★ 1. laplace transform of the step response	
	× 2 laplace transform of the sinusoidal input	
	X 3. laplace transform of the ramp response	
	√ 4. laplace transform of the impulse response	
0.76	The length of the air gap under the poles of a DC machine is not kept uniform so as to:	
Ans	✓ ¹ obtain a suitable main field flux	Question ID : 2391303046
	★ 2. obtain better cooling	· 1
	→ 3. obtain sinusoidal armature mmf wave	
	X 4.	
	minimize the effect of armature mmf on main field	
Q.77	A conducting SCR can be opened by reducing to zero.	Ouestion ID : 2391303094
Ans	★ 1. supply current	
	× 2. supply voltage	
	√ 3. anode current	
	★ 4. grid voltage	
0.78	If the gain of the critically damped system is slightly increased, it will	
Ans	✓ 1. become an under-damped system	Question ID : 2391303084
	2. remain a critically damped system	
	X 3. become an over-damped system	
	X 4. become an oscillatory system	
Q.79	Which statement BEST describes the operation of a negative-edge-riggered D flip-flop?	Question ID : 2391303090
Ans	★ 1. The Q output is always identical to D input	
	√ 2.	
	The logic level at the D input is transferred to Q on NGT of CLK 3.	
	The Q output is always identical to the CLK input if the D input is high	
	X 4.	
	The Q output is always identical to D input when CLK = PGT	
Q.80	A zero to 300V voltmeter has an error of 12% on full scale deflection. If the true voltage is 30V then the range of readings on this voltmeter will be:	Question ID : 2391303107
Ans	X 1. 20 to 40 V	
	2-26.4 to 33.6 V	
4	× 3 29.4 to 30.6 V	
	× 4. 24 to 36 V	
Q.81	An energy meter is designed to make hundred revolutions of disc for 1 unit of energy. Calculate the number of revolutions made by the disc when connected to load carrying 50A at 230V and 0.6pf for an hour.	Question ID : 2391303070
Ans	X 1. 920 revolutions	
	✓ 2. 690 revolutions	

	X 3. 575 revolutions → 3. 575 revolutions		
	× 4. 1150 revolutions		
Q.82 Ans	The main objective of the governor system in power systems for all types of turbines is to control the: 1. Reactive power output	Question ID : 2391303056	
	✓ 2. Voltage phase angle✓ 3. Frequency		
	★ 4. Voltage magnitude		
Q.83	An alternating voltage has frequency of 50 Hz with peak value of 100V. In how many seconds after the zero value, voltage will attain the value of 50V?	Question ID : 2391303027	
Ans	X 1. 1/300 sec	question is . 237 i guesti.	
	× 2. 1/360 sec		
	× 3. 1/180 sec		
	✓ 4. 1/600 sec		
	A DC shunt motor of 200V, 10.5A, 2000 rpm has an armature resistance of 0.5Ω and field winding resistance of 400 Ω . It drives a load whose torque is constant at rated motor torque. What is the value of armature current if the source voltage drops to 175V?	Question ID : 2391303039	
Ans	X 1. 12.4A	_	
	× 2. 10.7A		
	× 3. 9.7A		
	✓ 4. 11.4A		
Q.85	A 10kW, 400V, 3 phase induction motor is started with direct-on-line starter. The motor current and power factor at starting will be $\frac{1}{2}$ respectively.	Question ID : 2391303048	
Ans	★ 1. 20A, 0.6		
	× 2. 20A, 0.2		
	✓ 3. 120A, 0.2		
	★ 4. 120A, 0.6		
	The most suitable material for spring in majority of the measuring instruments, except in low resistance instruments is:	Question ID : 2391303074	$\overline{}$
Ans	1. Phosphor-bronze		
	× 2. Platinum-silver		
	× 3. Hard rolled silver		
	× 4. Silicon-bronze		
Q.87	The % resistance of a 100 kVA, 5 kV, 5 Ω reactance is given by:	Question ID : 2391303054	
Ans	√ 1. 2%	400000110 . 207 100000-	
	2. 20%		
	3 40%		
	× 4. 4%		
Q.88	It is desirable to avoid the use of the differentiator in the control system design, because:	Question ID : 2391303083	
Ans	√ 1.	Question id . 2391303083	
	it develops noise and will saturate the amplifier		

ſ	× 2. its size is big	
	× 3. none of the other options	
	× 4. it is not economical	
0.00		
Q.89	Preferred motor in electric shaver is:	Question ID : 2391303045
Ans	★ 1. Shaded pole motor	
	✓ 2. Universal motor	
	× 3. Hysteresis motor	
	X 4. Reluctance motor	
	In a star-delta transmission system the CTs used in differential protection will be connected in:	Question ID : 2391303057
Ans	1. star connection on both sides of transformer	
	x 2. star connection on star side and delta connection on delta side	
	✓ 3.	
	delta connection on star side and star connection on delta side	
	X 4.	
	delta connection on both sides of transformer	
Q.91	The transfer function of a system is given as $100 / (s^2 + 20s + 100)$. This system is:	Question ID : 2391303088
Ans	★ 1. an unstable system	
	× 2. an over-damped system	
	× 3. an under-damped system	
	✓ 4. a critically damped system	
Q.92	A logic circuit that provides a HIGH output if one input or the other input, but not both, is HIGH, is:	Question ID : 2391303091
Ans	→ 1. OR gate	Question is . 2571555571
	× 2. NOT gate	
	✓ 3. Ex-OR gate	
	X 4. Ex-NOR gate ✓ 4. Ex-NOR gate	
Q.93	A coil of 150 turns is linked with a flux of 10 mWb when carrying a current of 10 A, inductance of the coil is:	
Ans	X 1. 1.5 H	Question ID : 2391303025
	× 2. 15 H	
	✓ 3. 0.15 H	
	× 4. 15 mH	
Q.94	A solid in which the atoms are arranged in a regular periodic geometrical pattern is known as:	Question ID : 2391303066
Ans	×1 conductor	Question 15 . 259 1000000
	2. semi-conductor	
	3. insulator	
	✓ 4. crystal	
	✓ 4. crystal	

Q.95 Which of the following is the main advantage of SMPS over linear power supply? Ans 1. No transformer is required 2. Higher efficiency	Question ID : 2391303104
 3. No filter required 4. Only one stage of conversion 	
Q.96 The electric and magnetic fields are: Ans 1. two distinctly separate and isolated phenomena 2. two parts of one unique phenomena 3. two conflicting phenomena, one suppressing the other 4. two sequential phenomena, with a retardation effect between the two fields	Question ID : 2391303032
Q.97 A modern power semiconductor device that combines the characteristics of BJT and MOSFET is: Ans 1. IGBT 2. GTO 3. FCT 4. MCT	Question ID : 2391303102
Q.98 How many 3-line-to-8-line decoders are required for a 1-of-32 decoder? Ans 1. 4 X 2. 1 X 3. 8 X 4. 2	Question ID : 2391303092
Q.99 The total charge that has entered circuit element is $g(t) = 0.50(1 - e^{-5t})$ when $t \ge 0$ and $g(t) = 0$ when $t < 0$. Determine the current in this circuit element for $t \ge 0$. Ans 1. $i(t) = -0.250e^{-5t} A$ 2. $i(t) = 0.250e^{-5t} A$ 3. $i(t) = 0.50(1 - e^{-5t})A$ 4. $i(t) = 0.50(t + 0.2e^{-5t})A$	Question ID : 2391303028
Q.10 Which of the following does not pertain to the equation $\nabla \cdot \underline{B} = 0$? Ans 1. Single magnetic pole cannot exist 2. There are no sinks and sources for magnetic field	Question ID : 2391303033
3. Magnetic field is perpendicular to the electric field **A Magnetic field is solenoidal	