AIEEE - 2009

(Division of Aakash Educational Services Ltd.)

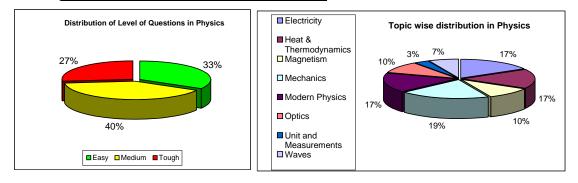
	C	OD	ES		CODES CODES									
Q.No.	Α	В	С	D	Q.No.	Α	В	С	D	Q.No.	Α	В	С	D
01	2	1	4	1	31	3	2	1	4	61	3	2	4	4
02	1	4	4	1	32	4	1	2	3	62	3	4	3	4
03	3	2	4	1	33	3	2	3	4	63	3	1	4	1
04	1	3	3	1	34	3	3	4	4	64	3	3	1	1
05	2	3	2	4	35	3	2	3	2	65	2	1	3	2
06	1	1	1	2	36	3	2	3	3	66	3	1	4	3
07	4	1	4	1	37	4	1	1	3	67	1	2	3	2
08	3	1	4	1	38	4	4	4	4	68	2	1	4	4
09	4	2	4	1	39	3	1	2	3	69	4	1	4	4
10	2	1	3	4	40	4	3	2	1	70	4	4	4	2
11	4	2	1	4	41	3	4	1	4	71	3	4	3	3
12	2	4	4	4	42	3	1	4	4	72	1	1	4	3
13	2	3	4	4	43	3	2	2	2	73	2	3	1	1
14	3	3	3	1	44	2	2	3	4	74	3	3	4	4
15	4	2	2	3	45	2	3	4	2	75	2	3	4	4
16	2	2	4	3	46	4	2	3	2	76	2	2	3	1
17	2	2	3	1	47	2	1	1	2	77	2	1	4	2
18	2	1	3	1	48	1	4	2	4	78	2	1	4	1
19	3	1	4	1	49	1	2	3	1	79	2	3	3	1
20	1	2	1	4	50	2	1	3	1	80	4	1	2	3
21	2	2	2	4	51	2	2	3	3	81	1	4	3	1
22	4	2	3	1	52	2	2	4	3	82	1	3	3	4
23	4	2	3	2	53	3	4	1	1	83	3	3	3	4
24	1	1	3	4	54	2	1	3	4	84	2	1	4	1
25	4	1	4	2	55	2	2	1	4	85	1	4	1	1
26	1	1	1	4	56	3	1	1	4	86	3	1	1	3
27	4	3	3	2	57	3	1	1	1	87	3	3	2	4
28	3	2	3	1	58	2	1	3	2	88	4	4	3	4
29	2	2	2	2	59	2	4	3	2	89	3	2	4	1
30	2	2	2	4	60	3	3	2	2	90	2	2	1	1

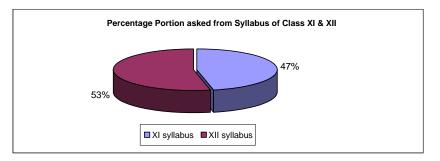
Though every care has been taken to provide the answers correctly but the Institute shall not be responsible for error, if any.

(Division of Aakash Educational Services Ltd.)

Regd. Office: Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-110075 Ph.: (011) 47623456, Fax: (011) 25084124. Distance Learning Program (DLP) / Correspondence Course Division: Aakash Tower, Plot No.-4, Sector-11, Dwarka, New Delhi-110075. Ph : (011) 47623417 / 423, Fax : (011) 25084124 . Janakpuri: A-1/18, Janakpuri, Delhi-110058 Ph: 011-47011456. Fax No: 011-25514826 South Delhi: D-15, South Extension Part-II, New Delhi-110049 Ph: 011-43123234, 26261664 Fax: 011-24604230. Noida: K-4, 4th Floor, Ocean Heights ,Sector-18, Noida, U.P. Ph: 0120-6475081/82,Fax:0120-4227252.Chandigarh: S.C.O. 332-334, Top Floor, Sector-34A, Chandigarh-160009 Ph: (0172) 4333800/817, Fax: (0172) 4333820. Dehradun: Ballupur Chowk: 144, Usha Complex, GMS Road ,Ballupur Chowk, Dehradun, Ph: 0135-3298167, 6455995 Fax: 0135-2724552. Rajpur Road: 69, Rajpur Road Dehradun Ph: 0135-3298168, 6455996, 2742120. Fax: 0135-2742181 Mumbai : Andheri 406, 4th Floor, Sagar Avenue (Near Shopper's Stop), SV Road, Andheri (West), Mumbai-400058. Ph: (022) 26256986/87 Fax: (022) 26256989 Dadar- 101-104, 1st Floor, Tirthankar Building, S.K. Bole Road, (Opp. Jain Health Centre), Dadar (W), Mumbai-400028. Ph: (022) 24321556/65 Fax: (022) 24311557 Vashi - 733-734, 3rd Floor, Tower 7, International Infotech Park (Above Vashi Station) Vashi, Navi Mumbai-400705 Ph: (022) 27814411/41, Fax: (022) 27814222. Pune: Wanowrie- 406, 4th Floor, South Block, Sacred World, Vithal Shivakar Marg, Wanowrie, Pune. Ph: (020) 26806577/88, Fax: (020) 26806544. Vishrantwadi - 113/4, Dataram Bhawan, 1st Floor, Alandi Road, Vishrantwadi, Pune.Ph: (020) 32542903.

TOP RANKERS ALWAYS FROM AAKASH

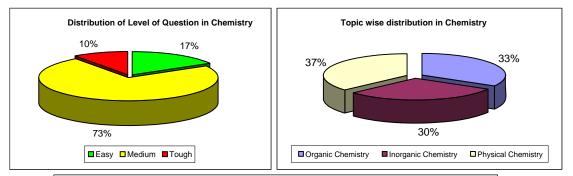

	XII	XI	XII	XI	XII	XII	XI	XI	
	Hoctricity	Heat & Thermodynamics	Magnetism	Mechanics	Modern Physics	Ontics	Unit and Measurements	Waves	Total
Easy	2	2	0	2	2	2	0	0	10
Medium	2	2	2	2	2	0	1	1	12
Tough	1	1	1	2	1	1	0	1	8
Total	5	5	3	6	5	3	1	2	30

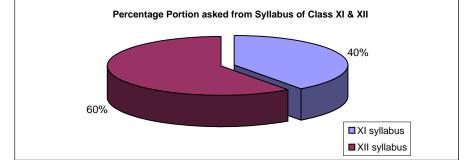

ANALYSIS OF PHYSICS PORTION OF AIEEE 2009

XI syllabus

14

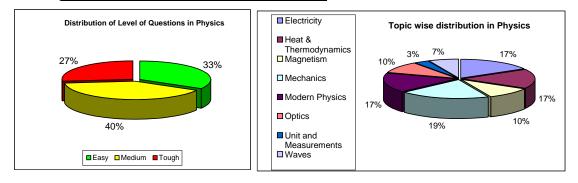
XII syllabus 16

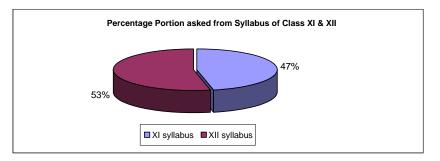




ANALYSIS OF CHEMISTRY PORTION OF AIEEE 2009

	Organic Chemistry	Inorganic Chemistry	Physical Chemistry	Total
Easy	3	0	2	5
Medium	7	6	9	22
Tough	0	3	0	3
Total	10	9	11	30


	XII	XI	XII	XI	XII	XII	XI	XI	
	Hoctricity	Heat & Thermodynamics	Magnetism	Mechanics	Modern Physics	Ontics	Unit and Measurements	Waves	Total
Easy	2	2	0	2	2	2	0	0	10
Medium	2	2	2	2	2	0	1	1	12
Tough	1	1	1	2	1	1	0	1	8
Total	5	5	3	6	5	3	1	2	30


ANALYSIS OF PHYSICS PORTION OF AIEEE 2009

XI syllabus

14

XII syllabus 16

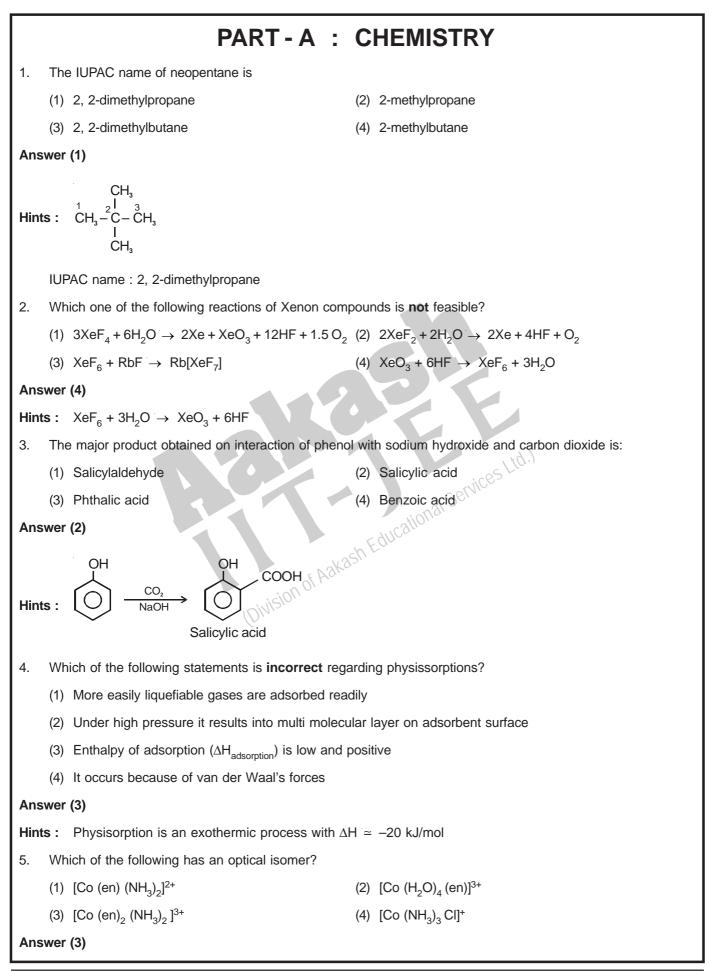
Dated : 26/04/2009

(Division of Aakash Educational Services Ltd.)

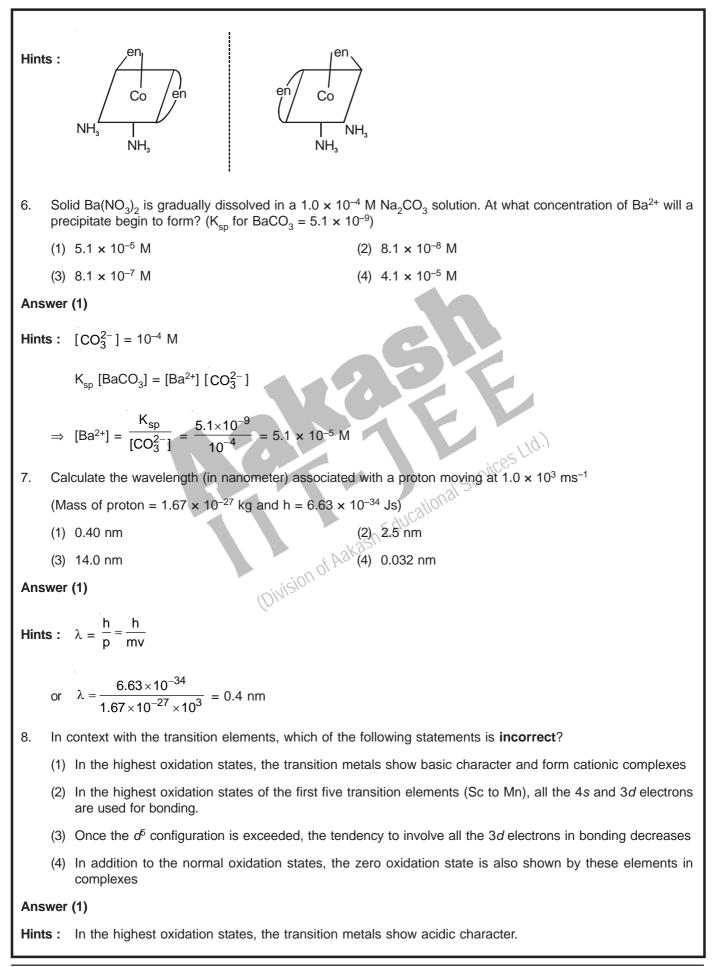
Regd. Office : Aakash Tower, Plot No.-4, Sec-11, MLU, Dwarka, New Delhi-110075 Ph.: 011-47623456 Fax : 011-25084124

Solutions of AIEEE 2009

Time : 3 hrs.


CODE - B

Max. Marks: 432


Chemistry, Mathematics & Physics

Important Instructions :

- 1. Immediately fill in the particulars on this page of the Test Booklet with Blue/Black Ball Point Pen. Use of pencil is strictly prohibited.
- 2. The Answer Sheet is kept inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars carefully.
- 3. The test is of **3 hours** duration.
- 4. The Test Booklet consists of **90** questions. The maximum marks are **432**.
- 5. There are **three** parts in the question paper. The distribution of marks subjectwise in each part is as under for each correct response.
 - Part A CHEMISTRY (144 marks) –Question No. 1 to 24 consist FOUR (4) marks each and Question No. 25 to 30 consist EIGHT (8) marks each for each correct response.
 - Part B MATHEMATICS (144 marks) Question No. 31 to 32 and 39 to 60 consist FOUR (4) marks each and Question No. 33 to 38 consist EIGHT (8) marks each for each correct response.
 - Part C PHYSICS (144 marks) Questions No.61 to 84 consist FOUR (4) marks each and Question No. 85 to 90 consist EIGHT (8) marks each for each correct response
- 6. Candidates will be awarded marks as stated above in instructions No. 5 for correct response of each question. ¼ (one fourth) marks will be deducted for indicating incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.
- 7. Use Blue/Black Ball Point Pen only for writing particulars/marking responses on Side-1 and Side-2 of the Answer Sheet Use of pencil is strictly prohibited.
- 8. No candidate is allowed to carry any textual material, printed or written, bits of papers, pager, mobile phone, any electronic device, etc. except the Admit Card inside the examination hall/room.
- **9.** On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator on duty in the Room/Hall, however the candidates are allowed to take away this Test Booklet with them.
- 10. The CODE for this Booklet is **B**. Make sure that the CODE printed on Side-2 of the Answer Sheet is the same as that on this booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet
- **11.** Do not fold or make any stray marks on the Answer Sheet.

Aakash IIT-JEE - Regd. Office : Aakash Tower, Plot No. 4, Sector-11, Dwarka, New Delhi-75 Ph.: 47623456 Fax : 25084124

Aakash IIT-JEE - Regd. Office : Aakash Tower, Plot No. 4, Sector-11, Dwarka, New Delhi-75 Ph.: 47623456 Fax : 25084124

9. In an atom, an electron is moving with a speed of 600 m/s with an accuracy of 0.005%. Certainity with which the position of the electron can be located is (h = 6.6×10^{-34} kg m²s⁻¹, mass of electron, $e_m = 9.1 \times 10^{-31}$ kg) (1) 5.10×10^{-3} m (2) 1.92 × 10⁻³ m (3) 3.84 × 10⁻³ m (4) 1.52 × 10⁻⁴ m Answer (2) **Hints :** $\Delta p \cdot \Delta x \ge \frac{h}{4\pi}$ $\Delta \mathbf{x} = \frac{\mathbf{h}}{4\pi \cdot \mathbf{m} \Delta \mathbf{y}}$ $6.6 \times 10^{-34} \times 100$ $4 \times 3.14 \times 9.1 \times 10^{-31} \times 600 \times 0.005$ = 1.92 × 10⁻³ m 10. Which of the following pairs represents linkage isomers? (1) [Pd(P Ph₃)₂ (NCS)₂] and [Pd(P Ph₃)₂(SCN)₂] (2) [Co (NH₃)₅ NO₃]SO₄ and [Co(NH₃)₅SO₄] NO₃ (3) [Pt $Cl_2(NH_3)_4$]Br₂ and [PtBr₂(NH₃)₄]Cl₂ ional Services Ltd. (4) $[Cu(NH_3)_4]$ [PtCl₄] and [Pt(NH₃)₄] [CuCl₄] Answer (1) Hints : SCN⁻ is an ambidentate ligand. In bond dissociation energy of B-F in BF₃ is 646 kJ mol⁻¹ whereas that of C-F in CF₄ is 515 kJ mol⁻¹. The 11. correct reason for higher B-F bond dissociation energy as compared to that of C-F is (1) Stronger σ bond between B and F in BF₃ as compared to that between C and F in CF₄ (2) Significant $p\pi - p\pi$ interaction between B and F in BF₃ whereas there is no possibility of such interaction between C an F in CF_{4} (3) Lower degree of $p\pi$ - $p\pi$ interaction between B and F in BF₃ than that between C and F in CF₄ (4) Smaller size of B-atom as compared to that of C-atom Answer (2) **Hints** : In BF₃, F forms $p\pi - p\pi$ back bonding with B. 12. Using MO theory predict which of the following species has the shortest bond length? (1) O₂⁺ (2) O_2^- (3) O₂²⁻ (4) O_2^{2+} Answer (4) Hints : Higher is the bond order, shorter is the bond length. Bond order of O_2^{2+} is 3.0

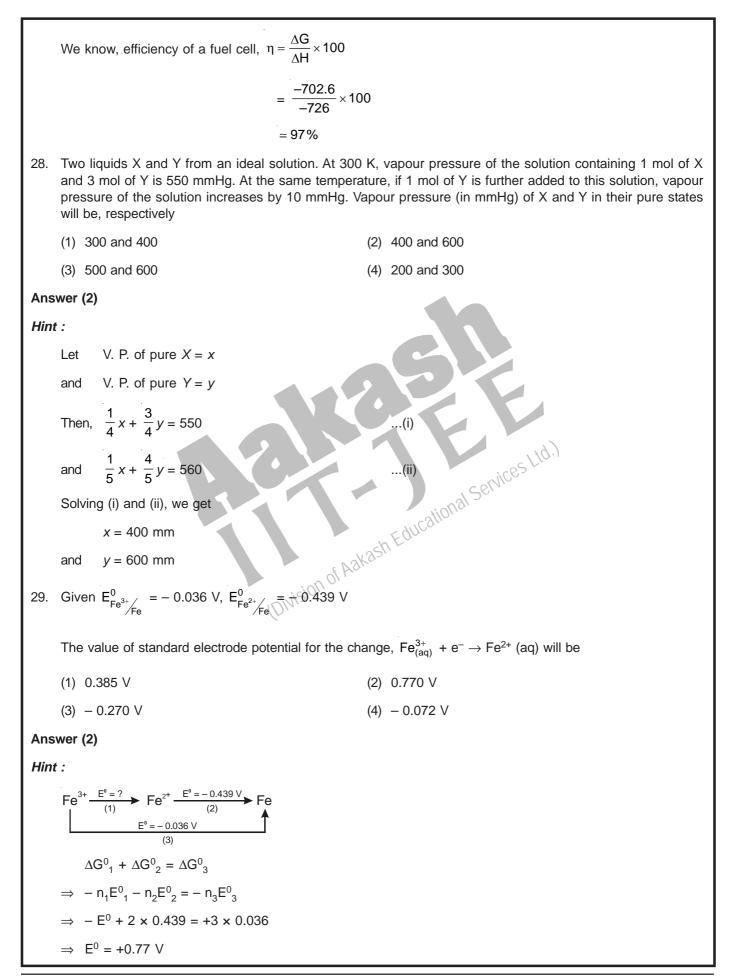
13.		was mixed wit ned. The liquid		f concentra	ated H_2SO_4 was ac	dded. A comp	ound with a fruity smell
Ans	(1) HCH wer (3)	Ю	(2) CH ₃ COCH ₃	(3)	CH3COOH	(4) CH ₃ OH
Hint	s: Liau	id + ethanol -	$\xrightarrow{H^+}$ Fruity smell co	mpound			
	· · · · · ·		,,				
	↓ Cork		Must be oster				
	Cart	oxylic acid	Must be ester				
	CH3COC	$H + C_2 H_5 OH$	$\xrightarrow{H^+}$ CH ₃ COOC ₂ H ₅				
14.		-	on heating with aqueo			nyde?	
Anci	(1) CH ₃ (wer (3)	CH ₂ CI	(2) CH_2CICH_2CI	(3)	CH ₃ CHCl ₂	(4) CH ₃ COCI
Hint:	s: CH _g gem-	synthetic rubh	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	$= CH_2$ (2) 2 (4) of Aakas herising ag	$H_2C = CH - CN$ $H_2C = CH - C = C$ ent, N = Nitrile)	and $H_2C = CI$ CH_2 and H_2C	H – CH = CH ₂ S = CH – CH = CH ₂
16.	The two	functional arc	ups present in a typica	l carbohvo	lrate are		
		O and -COO		-	>C = O and -OH	l	
	(3) –OH	and –CHO		. ,	-OH and -COOH		
Ans	wer (2)						
Hint							
		•	e contains –OH and >C				
17.	it?				is not strictly acco	ording to the p	property written against
			HI : increasing acid s	-	- 11		
	0	e e	$_{3}$ < SbH ₃ : increasing b				
	. ,		ncreasing first ionization $D_2 < PbO_2$: increasing				
Ans	wer (2)		$\sigma_2 \sim 100 \sigma_2$. more asing	onaioing			
Hint							
		nore basic.					

18. A binary liquid solution is prepared by mixing n-heptane and ethanol. Which one of the following statements is correct regarding the behaviour of the solution? (1) The solution is non-ideal, showing +ve deviation from Raoult's Law (2) The solution is non-ideal, showing -ve deviation from Raoult's Law (3) n-heptane shows +ve deviation while ethanol shows -ve deviation from Raoult's Law (4) The solution formed is an ideal solution Answer (1) Hints : Ethanol has H-Bonding, n-heptane tries to break the H-bonds of ethanol, hence, V.P. increases. Such a solution shows positive deviation from Raoult's Law. The set representing the **correct** order of ionic radius is 19. (1) $Na^+ > Li^+ > Mg^{2+} > Be^{2+}$ (2) $Li^+ > Na^+ > Mg^{2+} > Be^{2+}$ (3) $Mg^{2+} > Be^{2+} > Li^+ > Na^+$ (4) Li⁺ > Be²⁺ > Na⁺ > Mg²⁺ Answer (1) Hints : $Na^+ > Li^+ > Mg^{2+} > Be^{2+}$ 20. Arrange the carbanions, $(CH_3)_3 \overline{C}$, $\overline{C}CI_3$, $(CH_3)_2 \overline{C}H$, $C_6H_5 \overline{C}H_2$, in order of their decreasing stability Kash Educational Services (1) $(CH_3)_2\overline{C}H > \overline{C}CI_3 > C_6H_5\overline{C}H_2 > (CH_3)_3\overline{C}$ (2) $\overline{C}CI_3 > C_6H_5\overline{C}H_2 > (CH_3)_2\overline{C}H > (CH_3)_3\overline{C}$ (3) $(CH_3)_3\overline{C} > (CH_3)_2\overline{C}H > C_6H_5\overline{C}H_2 > \overline{C}CI_3$ (4) $C_6H_5\overline{C}H_2 > \overline{C}CI_3 > (CH_3)_3\overline{C} > (CH_3)_2\overline{C}H_3$ Answer (2)

Hints :

 $\mathsf{CCl}_3^{\ominus} > \mathsf{C}_6\mathsf{H}_5\mathsf{CH}_2^{\ominus} > (\mathsf{CH}_3)_2 \overset{\ominus}{\mathsf{CH}} > (\mathsf{CH}_3)_3 \overset{\ominus}{\mathsf{C}}$

- 21. Knowing that the chemistry of lanthanoids (Ln) is dominated by its +3 oxidation state, which of the following statements is **incorrect**?
 - (1) The ionic sizes of Ln (III) decrease in general with increasing atomic number
 - (2) Ln (III) compounds are generally colourless
 - (3) Ln (III) hydroxides are mainly basic in character
 - (4) Because of the large size of the Ln (III) ions the bonding in its compounds is predominently ionic in character


Answer (2)

Hints :

Ln (III) compounds are generally coloured.

22. The alkene that exhibits geometrical isomerism is (1) 2 - methyl propene (2) 2 - butene (3) 2 - methyl - 2 - butene (4) Propene Answer (2) Hints : CH_3 C=C H_3 and CH_3 C=C H_3 C=C H_3 C=C H_3 C=C H_3 CH_3 C=C H_3 CH_3 C=C H_3 CH_3 CH_3 C=C H_3 CH_3 CH_3 C=C H_3 CH_3 CH_3 cis-2-Butene trans-2-Butene 23. The number of stereoisomers possible for a compound of the molecular formula $CH_3 - CH = CH - CH(OH) - Me$ is (1) 2 (2) 4 (3) 6 (4) 3 Answer (2) Hints : $CH_{3}CH = CH - CH(OH)Me$ has Me CH₃C=C^H_{CH(OH)Me} + its enantiomer Me + its enantiomer of Aakash Educational + ÔH 24. In Cannizzaro reaction given below 2PhCHO $\xrightarrow{: OH}$ PhCH₂OH + PhCO₂^{\ominus} the slowest step is (1) The transfer of hydride to the carbonyl group (2) The abstraction of proton from the carboxylic group (3) The deprotonation of PhCH₂OH (4) The attack of : $\overset{\ominus}{OH}$ at the carboxyl group Answer (1) Hints : In Cannizzaro reaction, the transfer of hydride to the carbonyl group is the rate determining step.

25.	On the basis of the following thermochemical data	$: (\mathcal{H} f G^{\circ} H^+_{(aq)} = 0)$
	$H_2O(I) \rightarrow H^+(aq) + OH^-(aq); \Delta H = 57.32 \text{ kJ}$	
	$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(I); \Delta H = -286.20 \text{ kJ}$	
	The value of enthalpy of formation of OH ⁻ ion at 25	°C is
	(1) –228.88 kJ	(2) +228.88 kJ
	(3) –343.52 kJ	(4) –22.88 kJ
Ans	swer (1)	
Hint	ts:	
	I. $H_2O(I) \rightarrow H^+(aq) + OH^-(aq); \Delta H = 57.32 \text{ kJ}$	
	II. $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(I); \Delta H = -286.20 \text{ kJ}$	
	Adding I & II we get,	
	$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H^+(aq) + OH^-(aq)$	
	$\Delta H = 57.32 - 286.2$	
	= -228.88 kJ	
26.	Copper crystallises in fcc with a unit cell length of	361 pm. What is the radius of copper atom?
	(1) 127 pm (2) 157 pm	(3) 181 pm (4) 108 pm
Ans	swer (1)	"onal Ser
Hint	is:	E ducano.
	$r = \frac{a}{2\sqrt{2}} = \frac{361}{2\sqrt{2}} = 127.6 \text{ pm}$	361 pm. What is the radius of copper atom? (3) 181 pm (4) 108 pm ShEducational Services (4) 108 pm
27.	In a fuel cell methanol is used as fuel and oxygen	gas is used as an oxidizer. The reaction is
	$CH_{3}OH(I) + \frac{3}{2}O_{2}(g) \rightarrow CO_{2}(g) + 2H_{2}O(I)$	
		for $CH_3OH(I)$, $H_2O(I)$ and $CO_2(g)$ are -166.2, -237.2 and of combustion of methanol is -726 kJ mol ⁻¹ , efficiency of
	(1) 87%	(2) 90%
	(3) 97%	(4) 80%
Ans	swer (3)	
Hint	ts:	
	$CH_{3}OH(I) + \frac{3}{2}O_{2}(g) \rightarrow CO_{2}(g) + 2H_{2}O(I)$	
	$\Delta G_{reaction} = \Delta G_{products} - \Delta G_{reactant}$	
	= [-394.4 - 2 × 237.2] - [-166.2]	
	= -702.6 kJ	

30.	The half life period of a first order chemical reaction 99% of the chemical reaction will be (log $2 = 0.301$	n is 6.93 minutes. The time required for the completion of)										
	(1) 23.03 minutes	(2) 46.06 minutes										
	(3) 460.6 minutes	(4) 230.3 minutes										
Ans	swer (2)											
Hint	t :											
	$t_{1/2} = \frac{\ln 2}{k}$											
	$\Rightarrow k = \frac{2.303 \times 0.301}{6.93}$											
	Also, $t = \frac{2.303}{k} \log\left(\frac{a}{a - 0.99a}\right)$											
	$\Rightarrow t = \frac{2.303}{2.303 \times 0.301} \times 6.93 \log\left(\frac{1}{0.01}\right)$											
	= 46.05 minutes											
	PART-B : MATHEMATICS											

Directions : Questions number 31 to 35 are Assertion-Reason type questions. Each of these questions contains two statements :

Statement -1 (Assertion) and Statement-2 (Reason)

Each of these questions also has four alternative choices, only one of which is the correct answer. You have to select the correct choice.

31. **Statement-1** : ~ ($p \leftrightarrow \neg q$) is equivalent to $p \leftrightarrow q$.

Statement-2 : ~ ($p \leftrightarrow -q$) is a tautology.

- (1) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1
- (2) Statement-1 is true, Statement-2 is false
- (3) Statement-1 is false, Statement-2 is true
- (4) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1

Answer (2)

Hint :

р	q	~q	p ↔ (~q)	~[p ↔ (~q)]	p ↔ q
Т	Т	F	F	Т	Т
Т	F	Т	Т	F	F
F	Т	F	Т	F	F
F	F	Т	F	Т	Т

 \therefore Statement (1) is true and statement (2) is false.

32. Let A be a 2 x 2 matrix

Statement-1 : adj (adj A) = A

Statement-2 : |adj A| = |A|

- (1) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1
- (2) Statement-1 is true, Statement-2 is false
- (3) Statement-1 is false, Statement-2 is true
- (4) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1

Answer (1)

Hint :

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Then adj $(A) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

 \therefore |A| = |adj A| = ad - bc

Also adj[adj A] = $\begin{bmatrix} a & b \\ c & d \end{bmatrix} = A$

ducational Services Ltd. : Both statements are true but (2) is not correct explanation of (1)

33. Let
$$f(x) = (x + 1)^2 - 1, x \ge -1$$
.

Statement-1 : The set $\{x : f(x) = f^{-1}(x)\} = \{0, -1\}.$

b

Statement-2 : f is a bijection.

- (1) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1
- (2) Statement-1 is true, Statement-2 is false
- (3) Statement-1 is false, Statement-2 is true
- (4) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1

Answer (2)

Hint :

We have, $f(x) = (x + 1)^2 - 1$, $x \ge -1$

- \Rightarrow f'(x) = 2 (x + 1) \ge 0 for x \ge 1
- \Rightarrow f(x) is one-one

Since co-domain of the given function is not given, hence it can be considered as R, the set of reals and consequently R is not onto.

Hence f is not bijective statement-2 is false.

Also $f(x) = (x + 1)^2 - 1 \ge -1$ for $x \ge -1$ $R_f = [-1, \infty)$ \Rightarrow Clearly $f(x) = f^{-1}(x)$ at x = 0 and x = -1. Statement-1 is true.

34. **Statement-1**: The variance of first *n* even natural numbers is $\frac{n^2 - 1}{n}$.

Statement-2: The sum of first *n* natural numbers is $\frac{n(n+1)}{2}$ and the sum of squares of first *n* natural

numbers is
$$\frac{n(n+1)(2n+1)}{6}$$
.

- (1) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1
- (2) Statement-1 is true, Statement-2 is false
- (3) Statement-1 is false, Statement-2 is true
- (4) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1

Answer (3)

Hint :

Statement (2) is true.

$$var x = \frac{\sum x_i^2}{n} - \left(\frac{\sum x_i}{n}\right)^2$$

$$= \frac{4 n (n + 1) (2n + 1)}{6n} - (n + 1)^{2}$$

$$= \frac{2}{3} (n + 1) (2n + 1) - (n + 1)^{2}$$

$$= \frac{(n + 1)}{3} \{4n + 2 - 3n - 3\}$$

$$= \frac{(n + 1) (n - 1)}{3}$$
Division of Aakash Educational Services Ltd.

 $\frac{4 n (n + 1) (2 n + 1)}{- (n + 1)^2}$

$$= \frac{(n+1)(n-1)}{3}$$
$$= \frac{n^2 - 1}{3}$$

... Statement (1) is false.

Statement (2) is true.

35. Let f(x) = x |x| and $g(x) = \sin x$.

Statement-1 : gof is differentiable at x = 0 and its derivative is continuous at that point.

Statement-2 : gof is twice differentiable at x = 0.

- (1) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1
- (2) Statement-1 is true, Statement-2 is false
- (3) Statement-1 is false, Statement-2 is true
- (4) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1

Answer (2)

Hint : f(x) = x |x| and $g(x) = \sin x$ $(got) (x) = \begin{cases} -\sin x^2 & x < 0 \\ 0 & x = 0 \\ \sin x^2 & x > 0 \end{cases}$ For first derivative LHD = $\lim_{x \to 0^{-}} \frac{-\sin x^2}{x} = \lim_{x \to 0^{-}} \frac{-x \sin x^2}{x^2} = 0$ = 0 $\mathsf{RHD} = \lim_{x \to 0^+} \frac{\sin x^2}{x} \times \frac{x}{x} = 0$ \therefore gof is differentiable at x = 0. $(gof)'(x) = \begin{cases} -2x\cos x^2 & x < 0\\ 0 & x = 0\\ 2x\cos x^2 & x > 0 \end{cases}$ of Aakash Educational Services Ltd.) abr. For second derivative, $LHD = \lim_{x \to 0^{-}} \frac{-2x \cos x^2}{x} = \mathsf{RHD} = \lim_{x \to 0^+} \frac{2x \cos x^2}{x} = 2$:. (gof) is not twice differentiable at x = 2. 36. The area of the region bounded by the parabola $(y - 2)^2 = x - 1$, the tangent to the parabola at the point (2, 3) and the x-axis is (1) 6 (2) 9 (3) 12 (4) 3 Answer (2)

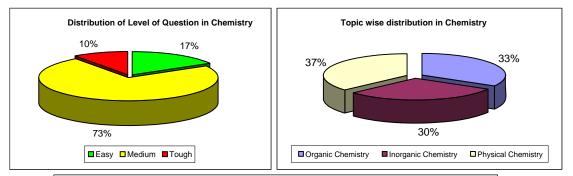
Hints : The equation of tangent at (2, 3) to the given parabola is x = 2y - 4

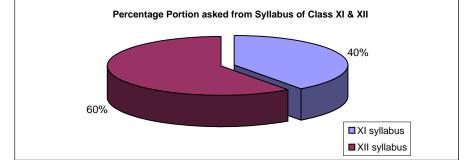
Required area =
$$\int_{0}^{3} \{(y-2)^{2} + 1 - 2y + 4\} dy$$

= $\left[\frac{(y-2)^{3}}{3} - y^{2} + 5y\right]_{0}^{3}$
= $\frac{1}{3} - 9 + 15 + \frac{8}{3}$
= 9 sq. units.

Given $P(x) = x^4 + ax^3 + bx^2 + cx + d$ such that x = 0 is the only real root of P(x) = 0. If P(-1) < P(1), then 37. in the interval [-1, 1] (1) P(-1) is not minimum but P(1) is the maximum of P (2) P(-1) is minimum but P(1) is not the maximum of P (3) Neither P(-1) is the minimum nor P(1) is the maximum of P (4) P(-1) is the minimum and P(1) is the maximum of P Answer (1) **Hints** : We have $P(x) = x^4 + ax^3 + bx^2 + cx + d$ $P'(x) = 4x^3 + 3ax^2 + 2bx + c$ (0, d) $P'(0) = 0 \implies c = 0$ 0 Also P'(x) = 0 only at x = 0P'(x) is a cubic polynomial changing its sign from (–)ve to (+)ve and passing through O. $\therefore P'(\mathbf{x}) < 0 \forall \mathbf{x} < 0$ $P'(\mathbf{x}) > 0 \forall \mathbf{x} > 0$ Hence the graph of P(x) is upward concave, where P'(x) = 0Now P(-1) < P(1) \Rightarrow P(-1) cannot be minimum in [-1, 1] as minima in this interval is at x = 0. Services Hence in [-1, 1] maxima is at x = 1Hence P(-1) is not minimum but P(1) is the maximum of P. The shortest distance between the line y - x = 1 and the curve $x = y^2$ is 38. (Division of Aakash (2) $\frac{3\sqrt{2}}{5}$ (1) $\frac{2\sqrt{3}}{8}$ (4) $\frac{3\sqrt{2}}{2}$ (3) $\frac{\sqrt{3}}{}$ Answer (4) **Hints** : Let there be a point $P(t^2, t)$ on $x = y^2$ Its distance from x - y + 1 = 0 is $\frac{t^2 - t + 1}{\sqrt{2}}$ Min $(t^2 - t + 1)$ is $\frac{3}{4}$ Shortest distance = $\left|\frac{3}{4\sqrt{2}}\right| = \frac{3\sqrt{2}}{8}$

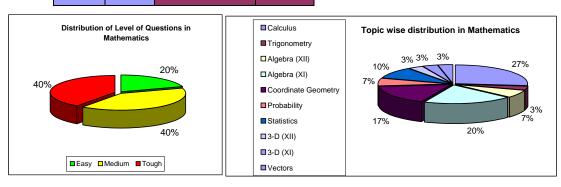
39. Let the line $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$ lie in the plane $x + 3y - \alpha z + \beta = 0$. Then (α, β) equals (1) (-6, 7) (2) (5, -15)(3) (-5, 5) (4) (6, -17)Answer (1) The point (2, 1, -2) is on the plane $x + 3y - \alpha z + \beta = 0$ Hints : $2 + 3 + 2\alpha + \beta = 0$ Hence $2\alpha + \beta = -5$... (i) $1(3) + 3(-5) + -\alpha(2) = 0$ Also $3 - 15 - 2\alpha = 0$ $2\alpha = -12$ $\alpha = -6$ Put $\alpha = -6$ in (i) $\beta = 12 - 5 = 7$ \therefore (α , β) = (-6, 7) 40. From 6 different novels and 3 different dictionaries, 4 novels and 1 dictionary are to be selected and arranged in a row on a shelf so that the dictionary is always in the middle. Then the number of such arrangements is tion of Aak (4) Less than 500 (2) At least 750 but less than 1000 (1) At least 500 but less than 750 (3) At least 1000 Answer (3) **Hints** : The number of ways in which 4 novels can be selected = ${}^{6}C_{4}$ = 15 The number of ways in which 1 dictionary can be selected = ${}^{3}C_{1}$ = 3 4 novels can be arranged in 4! ways. :. The total number of ways = $15 \times 4! \times 3 = 15 \times 24 \times 3 = 1080$. 41. In a binomial distribution $B\left(n, p = \frac{1}{4}\right)$, if the probability of at least one success is greater than or equal to $\frac{9}{10}$, then *n* is greater than (2) $\frac{9}{\log_{10} 4 - \log_{10} 3}$ (1) $\frac{1}{\log_{10} 4 + \log_{10} 3}$ (4) $\frac{1}{\log_{10} 4 - \log_{10} 3}$ (3) $\frac{4}{\log_{10} 4 - \log_{10} 3}$ Answer (4)

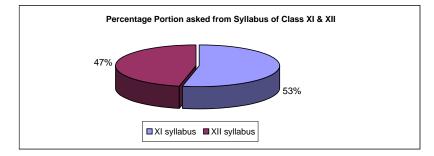

$Hints: 1 - \left(\frac{3}{4}\right)^n \ge \frac{9}{10}$	
$\Rightarrow \left(\frac{3}{4}\right)^n \le 1 - \frac{9}{10} = \frac{1}{10}$	
$\Rightarrow \left(\frac{4}{3}\right)^n \ge 10$	
$\Rightarrow n[\log_4 - \log_3] \ge \log_{10} 10 = 1$	
$\Rightarrow n \ge \frac{1}{\log 4 - \log 3}$	
42. The lines $p(p^2 + 1)x - y + q = 0$ and $(p^2 + 1)^2x + (p^2 $	$p^2 + 1)y + 2q = 0$ are perpendicular to a common line for
(1) Exactly one value of p	(2) Exactly two values of p
(3) More than two values of p	(4) No value of p
Answer (1)	
Hints : Lines perpendicular to same line are parallel to	each other.
$\therefore -p(p^2 + 1) = p^2 + 1$, td.)
$\therefore -p(p^2 + 1) = p^2 + 1$ $\Rightarrow p = -1$ $\therefore \text{ There is exactly one value of } p.$ 43. If <i>A</i> , <i>B</i> and <i>C</i> are three sets such that $A \cap B = A$	CONICES L
\therefore There is exactly one value of <i>p</i> .	tional St.
43. If A, B and C are three sets such that $A \cap B = A$	$\cap C \text{ and } A \cup B = A \cup C, \text{ then}$
43. If A, B and C are three sets such that $A \cap B = A$ (1) $A = C$ (3) $A \cap B = \phi$ Answer (2)	(2) $B = C$
$(3) A \cap B = \phi$	(4) $A = B$
Hints : $A \cap B = A \cap C$ and $A \cup B = A \cup C$	
$\Rightarrow B = C$	
44. For real x, let $f(x) = x^3 + 5x + 1$, then	
(1) f is onto R but not one-one	(2) <i>f</i> is one-one and onto R
(3) f is neither one-one nor onto R	(4) f is one-one but not onto R
Answer (2)	
Hints: $f(x) = x^3 + 5x + 1$	
$f'(x) = 3x^2 + 5 > 0 \ \forall \ x \in R$	
Hence $f(x)$ is monotonic increasing. Therefore it is o	one-one.
Also it onto on R	
Hence it one-one and onto R .	



ANALYSIS OF CHEMISTRY PORTION OF AIEEE 2009

	Organic Chemistry	Inorganic Chemistry	Physical Chemistry	Total
Easy	3	0	2	5
Medium	7	6	9	22
Tough	0	3	0	3
Total	10	9	11	30

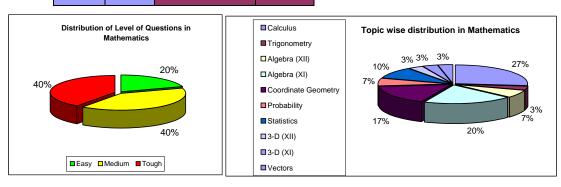


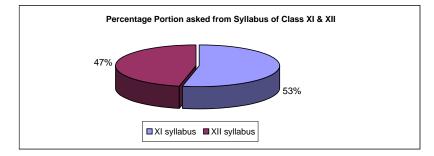

ANALYSIS OF MATHEMATICS PORTION OF AIEEE 2009

	XII	XI	XII	XI	XI	XII	XI	XII	XI	XII	
	Calculus	Trigonom etry	Algebra (XII)	Algebra (XI)	Coordinate Geometry	Probability	Statisti cs	3-D (XII)	3-D (XI)	Vectors	Total
Easy	2	0	0	1	0	1	1	0	1	0	6
Medium	3	1	1	2	3	0	1	0	0	1	12
Tough	3	0	1	3	2	1	1	1	0	0	12
Total	8	1	2	6	5	2	3	1	1	1	30

XI syllabus 16 XII syllabus

14




ANALYSIS OF MATHEMATICS PORTION OF AIEEE 2009

	XII	XI	XII	XI	XI	XII	XI	XII	XI	XII	
	Calculus	Trigonom etry	Algebra (XII)	Algebra (XI)	Coordinate Geometry	Probability	Statisti cs	3-D (XII)	3-D (XI)	Vectors	Total
Easy	2	0	0	1	0	1	1	0	1	0	6
Medium	3	1	1	2	3	0	1	0	0	1	12
Tough	3	0	1	3	2	1	1	1	0	0	12
Total	8	1	2	6	5	2	3	1	1	1	30

XI syllabus 16 XII syllabus

14

45. The differential equation which represents the family of curves $y = c_1 e^{c_2 x}$, where c_1 and c_2 are arbitrary constants, is (1) y'' = y' y(2) yy'' = y'(4) $y' = y^2$ (3) $yy'' = (y')^2$ Answer (3) **Hints :** Put $e^{c_2} = k$ Then $y = c_1 k^x$ $\Rightarrow \log_e y = \log_e c_1 + x \log_e k$ $\Rightarrow \frac{1}{v}y' = \log_e k$ $\Rightarrow \frac{1}{y}y^{\prime\prime}-\frac{1}{y^2}(y^{\prime})^2=0$ $\Rightarrow yy'' = (y')^2$ *c*−1 46. Let *a*, *b*, *c* be such that $b(a + c) \neq 0$. If -b b+1c + 1 = 0, then the value (−1)ⁿ⁺¹b of n is (2) Any odd integer (1) Any even integer ision of Aak(4) Zero (3) Any integer Answer (2) **Hints**: Applying D' = D is first determinant and $R_2 \leftrightarrow R_3$ and $R_1 \leftrightarrow R_2$ in second determinant $\begin{vmatrix} a & -b & c \\ a+1 & b+1 & c-1 \\ a-1 & b-1 & c+1 \end{vmatrix} + \begin{vmatrix} a(-1)^{n+2} & b(-1)^{n+1} & c(-1)^n \\ a+1 & b+1 & c-1 \\ a-1 & b-1 & c+1 \end{vmatrix} = 0$ Then $\begin{vmatrix} a + (-1)^{n+2}a & -b + (-1)^{n+1}b & c + (-1)^n c \\ a + 1 & b + 1 & c - 1 \\ a - 1 & b - 1 & c + 1 \end{vmatrix} = 0 \text{ if } n \text{ is an odd integer.}$ 47. The remainder left out when $8^{2n} - (62)^{2n+1}$ is divided by 9 is (1) 2 (2) 7 (3) 8 (4) 0 Answer (1) **Hints :** Put n = 0Then when 1 - 62 is divided by 9 then remainder is same as when 63-61 is divided by 9 which is 2.

48. Let y be an implict function of x defined by $x^{2x} - 2x^x \cot y - 1 = 0$. Then y'(1) equals (1) 1 (2) log 2 (3) -log 2 (4) -1 Answer (4) **Hints**: $(x^{x})^{2} - 2 \cdot x^{x} \cot y = 1$, \therefore when $x = 1, y = \frac{\pi}{2}$ Differentiating, $2.x^{x}.x^{x}(1 + \log_{e} x) - 2\left[-x^{x} \operatorname{cosec}^{2} y \frac{dy}{dx} + \operatorname{cot} y.x^{x}(1 + \log x)\right] = 0$ Put x = 1 and $y = \frac{\pi}{2}$ $2+2.\frac{dy}{dx}-2\times 0=0$ $\frac{dy}{dx} = -1$ 49. If the roots of the equation $bx^2 + cx + a = 0$ be imaginary, then for all real values of x, the expression $3b^2x^2 + 6bcx + 2c^2$ is (1) Less than 4ab (2) Greater than -4ab (4) Greater than 4ab (3) Less than -4ab $\int_{a} \pi i a r y c^{2} - 4ab < 0$ $\int_{a} \pi i a r y c^{2} - 4ab < 0$ $\int_{a} \pi i a r y c^{2} - 4ab < 0$ $\int_{a} \pi i a r y c^{2} - 4ab < 0$ $\int_{a} \pi i a r y c^{2} - 4ab < 0$ $\int_{a} \pi i a r y c^{2} - 4ab < 0$ $\int_{a} \pi i a r y c^{2} - 4ab < 0$ $\int_{a} \pi i a r y c^{2} - 4ab < 0$ $\int_{a} \pi i a r y c^{2} - 4ab < 0$ $\int_{a} \pi i a r y c^{2} - 4ab < 0$ $\int_{a} \pi i a r y c^{2} - 4ab < 0$ $\int_{a} \pi i a r y c^{2} - 4ab < 0$ $\int_{a} \pi i a r y c^{2} - 4ab < 0$ $\int_{a} \pi i a r y c^{2} - 4ab < 0$ $\int_{a} \pi i a r y c^{2} - 4ab < 0$ $\int_{a} \pi i a r y c^{2} - 4ab < 0$ $\int_{a} \pi i a r y c^{2} - 4ab < 0$ $\int_{a} \pi i a r y c^{2} - 4ab < 0$ $\int_{a} \pi i a r y c^{2} - 4ab < 0$ $\int_{a} \pi i a r y c^{2} - 4ab < 0$ $\int_{a} \pi i a r y c^{2} - 4ab < 0$ $\int_{a} \pi i a r y c^{2} - 4ab < 0$ $\int_{a} \pi i a r y c^{2} - 4ab < 0$ $\int_{a} \pi i a r y c^{2} - 4ab < 0$ $\int_{a} \pi i a r y c^{2} - 4ab < 0$ $\int_{a} \pi i a r y c^{2} - 4ab < 0$ $\int_{a} \pi i a r y c^{2} - 4ab < 0$ $\int_{a} \pi i a r y c^{2} - 4ab < 0$ Answer (2) **Hints** : $bx^2 + cx + a = 0$ $\therefore 3b^2 > 0$ $\therefore f(x) \ge \left(-\frac{D}{4a}\right)$ $f(x) \geq -c^2$ Now $c^2 - 4ab < 0$ $c^2 < 4ab$ $-c^{2} > -4ab$ $\therefore \quad f(x) > -4ab.$ The sum to infinity of the series $1 + \frac{2}{3} + \frac{6}{3^2} + \frac{10}{3^3} + \frac{14}{3^4} + \dots$ is 50. (1) 3 (2) 4 (3) 6 (4) 2 Answer (1)

Hints : Let
$$S = 1 + \frac{2}{3} + \frac{6}{3^2} + \frac{10}{3^4} + \frac{13}{3^4} +$$

Hints:
$$2(\cos\beta \cos\gamma + \sin\beta \sin\gamma) + 2(\cos\gamma \cos\alpha + \sin\gamma \sin\alpha) + 2(\cos\alpha \cos\beta + \sin\alpha \sin\beta) + \sin^2\alpha + \cos^2\beta + \sin^2\gamma + \cos^2\gamma = 0$$

 $\Rightarrow (\sin\alpha + \sin\beta + \sin\gamma)^2 + (\cos\alpha + \cos\beta + \cos\gamma)^2 = 0$
 $\Rightarrow (\sin\alpha + \sin\beta + \sin\gamma)^2 = 0 = \cos\alpha + \cos\beta + \cos\gamma$
 \therefore Both A and B are true.
53. One ticket is selected at random from 50 tickets numbered 00, 01, 02, ..., 49. Then the probability that the sum of the digits on the selected ticket is 8, given that the product of these digits is zero, equals
(1) $\frac{1}{7}$ (2) $\frac{5}{14}$ (3) $\frac{1}{50}$ (4) $\frac{1}{14}$
Answer (4)
Hints: Restricting sample space as $S = (00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 20, 30, 40)$.
 \therefore *P*(sum of digits is 8) = $\frac{1}{14}$.
54. Three distinct points *A*, *B* and *C* are given in the 2 - dimensional coordinate plane such that the ratio of the distance of any one of them from the point (1, 0) to the distance from the point (-1, 0) is equal to $\frac{1}{3}$. Then the circumcentre of the triangle *ABC* is at the point
(1) $(\frac{5}{4}, 0)$ (2) $(\frac{5}{2}, 0)$ (3) $(\frac{5}{3}, 0)$ (4) (6, 0)
Answer (1)
Hints: Let (*x*, *y*) denote the coordinates of *A*, *B* and *C*.
Then, $\frac{(x-1)^2 + y^2}{(x+1)^2 + y^2} = \frac{1}{9}$
 $\Rightarrow 9x^2 + 9y^2 - 18x + 9 = x^2 + y^2 + 2x + 1$ (1) the distance from the point (-1, 0) is equal to $\frac{1}{3}$. Then the circumonal services LUA
 $\Rightarrow 8x^2 + 8y^2 - 20x + 8 = 0$
 $x^2 + y^2 - \frac{5}{2}x + 1 = 0$ (1) (2) (2) (2) (1) (3) (2) (2) (4) (0, 0)
Answer (2)
Hints: $\overline{x} = \frac{1 + (1 + d) + (1 + 2d) +, (1 + 10d)}{101}$
 $\overline{x} = \frac{101 + d(1 + 2d) +, (1 + 100d)}{101}$
 $\overline{x} = \frac{101 + d(1 + 2d) +, (1 + 100d)}{101}$
 $\overline{x} = \frac{101 + d(1 + 2d) +, (1 + 100d)}{101}$
 $\overline{x} = \frac{101 + d(2 + 3) +, (10)}{101}$
 $\overline{x} = 1 + 150d$

Mean deviation =
$$\frac{11+50d-1|+|1+50d-1-d|+....|1+50d-1-100d|}{101}$$

=
$$\frac{50d+49d+48d+....d+0+d+2d+.....50d}{101}$$

=
$$\frac{2 \times d \times \left(\frac{50\times51}{2}\right)}{101}$$

 $\Rightarrow \frac{50\times51\times d}{101} = 255$
 $\Rightarrow d = 10.1$
56. The ellipse $x^3 + 4y^2 = 4$ is insortibed in a rectangle aligned with the coordinate axes, which in turn is insortibed in another ellipse ints bases shough the point (4, 0). Then the equation of the ellipse is
(1) $x^2 + 12y^2 = 16$
Answer (1)
Hints : Let the equation of the required ellipse is
 $\frac{x^2}{16} + \frac{y^2}{2} = 1$
But the ellipse passes through (2, 1)
 $\Rightarrow \frac{1}{4} + \frac{1}{B^2} = 1$
 $\Rightarrow \frac{1}{B^2} = \frac{3}{4}$
 $\Rightarrow b^2 = \frac{4}{3}$
Hence equation is
 $\frac{x^2}{16} + \frac{y^2 \times 3}{4} = 1$
 $\Rightarrow x^2 + 12y^2 = 16$
57. If $\left| 2 - \frac{4}{Z} \right| = 2$, then the maximum value of $|Z|$ is equal to
(1) $\sqrt{5} + 1$
 $(2) 2$
(3) $2 + \sqrt{2}$
(4) $\sqrt{3} + 1$
Answer (1)

Hints:
$$\left| Z - \frac{4}{Z} \right| = 2$$

$$\Rightarrow \left| Z - \frac{4}{Z} \right| \ge \left| |Z| - \frac{4}{|Z|} \right|$$

$$\Rightarrow \left| Z \right| - \frac{4}{|Z|} \le 2$$

$$\Rightarrow \left| Z \right|^2 - 4 - 2|Z| \le 0$$

$$\Rightarrow \left| Z \right|^2 - 2|Z| - 4 \le 0$$

$$1 - \sqrt{5} \le |Z| \le 1 + \sqrt{5}$$

Hence maximum value = $1 + \sqrt{5}$

- 58. If P and Q are the points of intersection of the circles $x^2 + y^2 + 3x + 7y + 2p 5 = 0$ and $x^{2} + y^{2} + 2x + 2y - p^{2} = 0$, then there is a circle passing through P, Q and (1, 1) for
 - (1) All except one value of p
 - (2) All except two values of p
 - (3) Exactly one value of p
 - (4) All values of p

Answer (1)

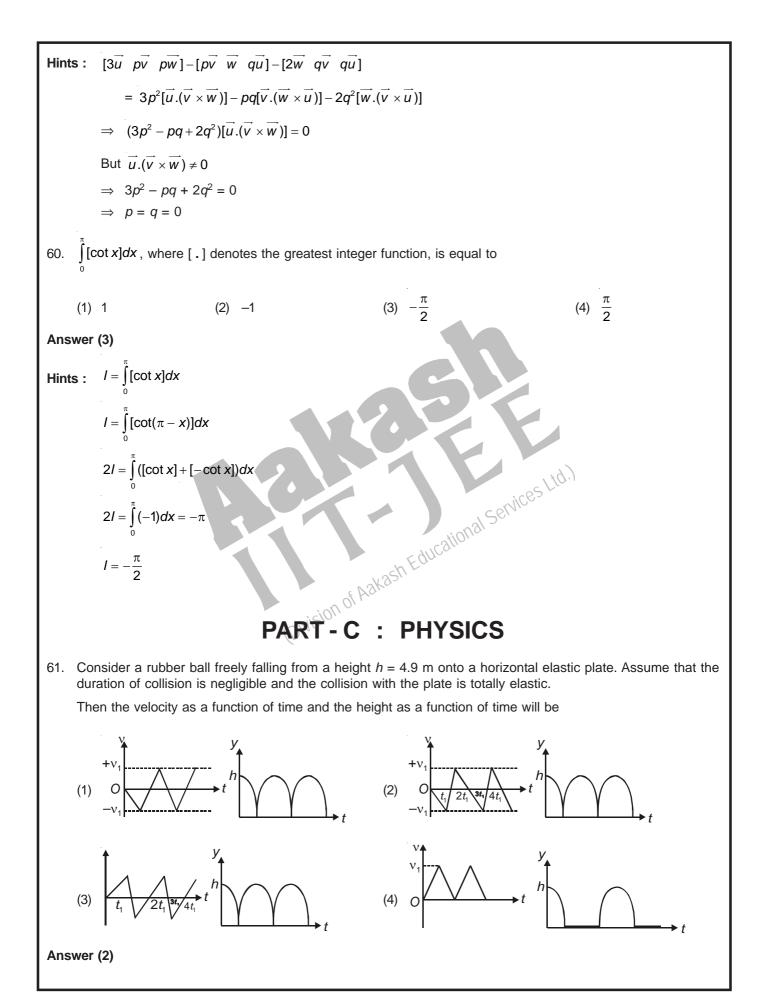
 $(-\rho^2) = 0, \lambda \neq -1$ passes through point of intersection U, A Vision of Aakash Educational Hints: $x^2 + y^2 + 3x + 7y + 2p - 5 + \lambda(x^2 + y^2 + 2x + 2y)$ of given circles.

Since it passes through (1, 1), hence

$$7 - 2p + \lambda(6 - p^2) =$$

$$\Rightarrow 7 - 2p + 6\lambda - \lambda p^2 = 0$$

If $\lambda = -1$, then $7 - 2p - 6 + p^2 = 0$


$$p^2 - 2p + 1 = 0$$

- p = 1
- $\therefore \lambda \neq -1$ hence $p \neq 1$
- \therefore All values of p are possible except p = 1

59. If $\vec{u}, \vec{v}, \vec{w}$ are non-coplanar vectors and p, q are real numbers, then the equality $[3\vec{u}, \vec{pv}, \vec{pw}] - [\vec{pv}, \vec{w}, \vec{qu}] - [2\vec{w}, \vec{qv}, \vec{qu}] = 0$ holds for

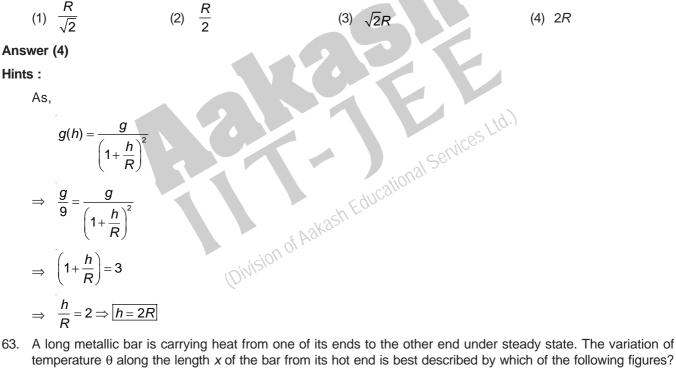
- (1) Exactly two values of (p, q)
- (2) More than two but not all values of (p, q)
- (3) All values of (p, q)
- (4) Exactly one value of (p, q)

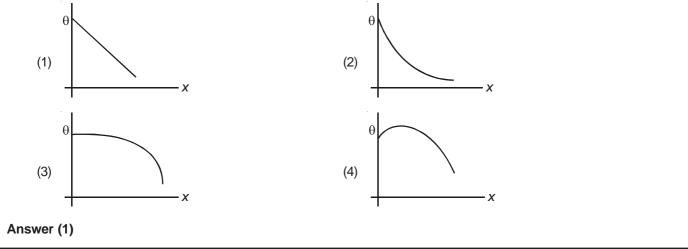
Answer (4)

Hints :

From v = u + at

$$v = 0 - g \times t$$

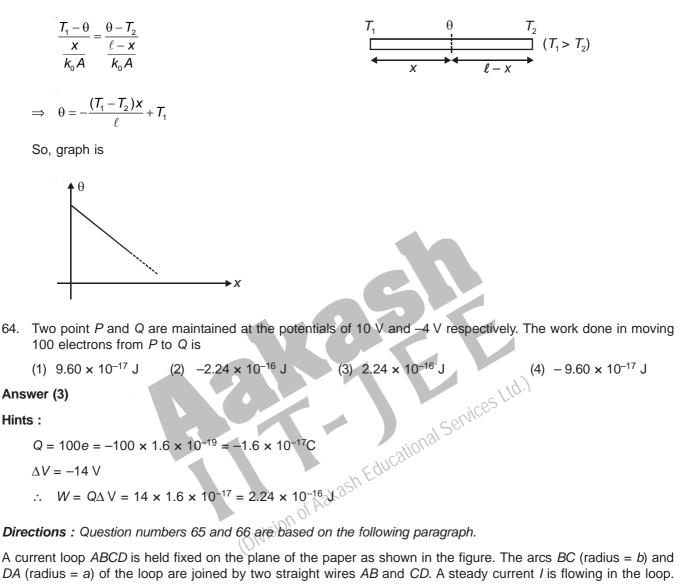

 $\Rightarrow v = -gt$

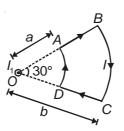

And just after collision velocity is upwarded then after some time it becomes zero and then negative. Same process repeats.

From
$$S = ut + \frac{1}{2}at^2$$

 $h = 4.9 - \frac{1}{2}gt^2$
4.9 m

So, graph will be downward parabola.


62. The height at which the acceleration due to gravity becomes $\frac{g}{9}$ (where g = the acceleration due to gravity on the surface of the earth) in terms of *R*, the radius of the earth, is


As rate of heat flow through the rod is constant through each section.

Directions : Question numbers 65 and 66 are based on the following paragraph.

the plane of the paper is kept at the origin.

A current loop ABCD is held fixed on the plane of the paper as shown in the figure. The arcs BC (radius = b) and DA (radius = a) of the loop are joined by two straight wires AB and CD. A steady current I is flowing in the loop. Angle made by AB and CD at the origin O is 30°. Another straight thin wire with steady current I, flowing out of

65. The magnitude of the magnetic field (B) due to the loop ABCD at the origin (O) is

(1)
$$\frac{\mu_0 l(b-a)}{24ab}$$
 (2) $\frac{\mu_0 l}{4\pi} \left[\frac{b-a}{ab} \right]$
(3) $\frac{\mu_0 l}{4\pi} \left[2(b-a) + \frac{\pi}{3}(a+b) \right]$ (4) Zero

Answer (1)

Hints :

Magnetic field due to AB and CD is zero

$$\vec{B}_{\text{net}} = \frac{\mu_0}{4\pi} \times \frac{l}{a} \times \frac{\pi}{6} \hat{k} + \frac{\mu_0}{4\pi} \times \frac{l}{b} \times \frac{\pi}{6} (-\hat{k})$$
$$= \frac{\mu_0}{24} \times l \left\{ \frac{1}{a} - \frac{1}{b} \right\} \hat{k}$$
$$= \frac{\mu_0 l(b-a)}{24ab} \hat{k}$$

66. Due to the presence of the current I_1 at the origin

(1) The forces on AD and BC are zero

(2) The magnitude of the net force on the loop is given by $\frac{l_1 l}{4\pi} \mu_0 \left[2(b-a) + \frac{\pi}{3}(a+b) \right]$

B

R

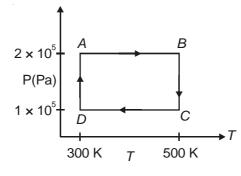
b

- (3) The magnitude of the net force on the loop is given by $\frac{\mu_0 I_1}{24ab}(b-a)$
- (4) The forces on AB and DC are zero

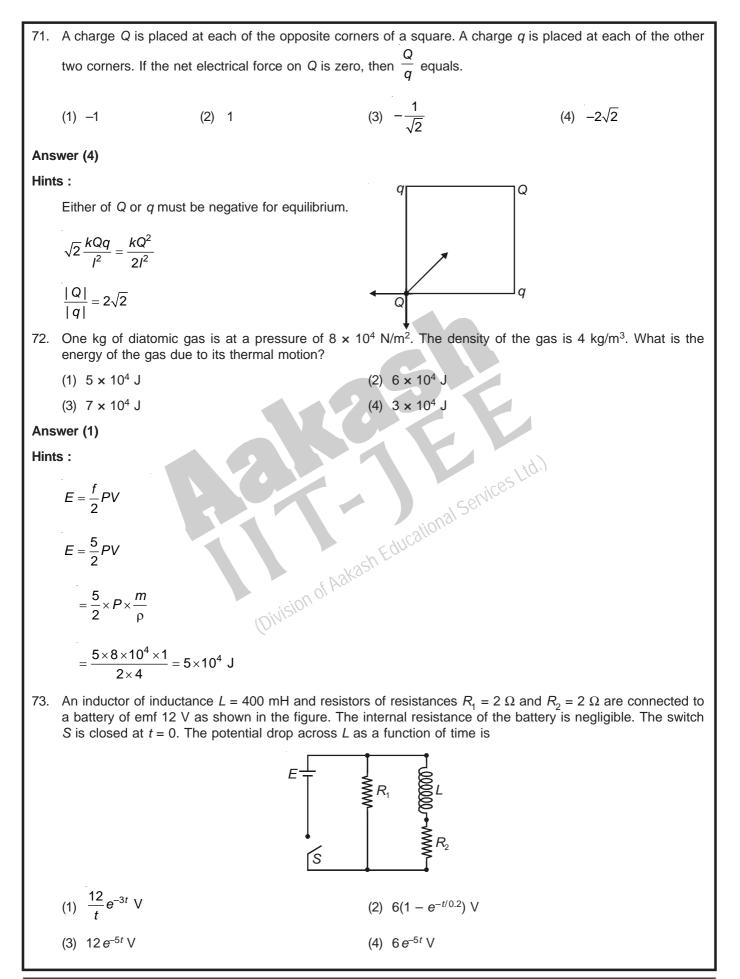
Answer (1)

Hints :

In wire DA

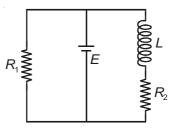

$$\therefore F_{DA} = 0$$

 $\neg AB, d\vec{\ell} \times \vec{B}$ is upwards In wire *BC*, $\vec{B} \uparrow \downarrow d\vec{\ell} \therefore F_{BC} = 0$ In wire *CD*, $d\vec{\ell} \times \vec{B}$ is downward-Since, *AB* and


So,
$$\overrightarrow{F_{AB}} + \overrightarrow{F_{CD}} = 0.$$

Directions : Question numbers 67, 68 and 69 are based on the following paragraph

Two moles of helium gas are taken over the cycle ABCDA, as shown in the P-T diagram


67.	Assuming the gas	to be ideal t	he work done	e on the ga	s in taking it f	form A to B is			
	(1) 300 R	(2) 400) R	(3)	500 R		(4) 200 R		
Ans	swer (2)								
Hint	is :								
	Since process is is	sobaric							
	$W_{AB} = 2 \times R \times 200 = 400R$								
68.	The work done on	the gas in ta	aking it from	D to A is					
	(1) +414 <i>R</i>	(2) –69	90 <i>R</i>	(3)	+690 <i>R</i>		(4) –414 <i>R</i>		
Ans	swer (1)								
Hint	s:								
	Since process is is	othermal							
	$\therefore W_{DA} = 2.303 >$		$\log\left(\frac{1}{2}\right)$						
	= -415.8	RJ							
	So, work done on	the gas = 41	5.8 <i>R</i> J						
Ren	emarks : The exact answer is 415.8R J but the option given in the question is approximate.								
69.	The net work done	on the gas	in the cycle	ABCDA is					
	(1) 276R	(2) 10	76R	(3)	1904 <i>R</i>		(4) Zero		
Ans	swer (1)					as Lto	7.)		
Hints :									
	$W_{\text{total}} = W_{DA} + W_{B}$	_{BC} , since W	$_{AB} + W_{CD} = 0$)	sucational				
	The net work done on the gas in the cycle <i>ABCDA</i> is (1) 276 <i>R</i> (2) 1076 <i>R</i> (3) 1904 <i>R</i> (4) Zero swer (1) ts : $W_{total} = W_{DA} + W_{BC}$, since $W_{AB} + W_{CD} = 0$ $= 2.303 \times 2 \times R \times 300 \log(\frac{1}{2}) + 2.303 \times 2 \times R \times 500 \log(2)$ = 277.2R (1) marks : The exact answer is 277.2 <i>R</i> but the option given in the question is approximate. In an experiment the angles are required to be measured using an instrument. 29 divisions of the main scale								
	$= 2.303 \times 2R \times 200 \log(2)$								
	= 277.2 <i>R</i>		(DIALS						
Ren	narks : The exact a	nswer is 277	.2R but the c	ption given	in the question	on is approxim	ate.		
70.	In an experiment the angles are required to be measured using an instrument. 29 divisions of the main scale exactly coincide with the 30 divisions of the vernier scale. If the smallest division of the main scale is half-a-degree (= 0.5°), then the least count of the instrument is								
	(1) Half minute	(2) On	e degree	(3)	Half degree		(4) One minu	ute	
Ans	swer (4)								
Hint	s:								
	29 Div of M.S = 30 Div of V.S								
	1 Div of V.S = $\frac{29}{30}$ Div of M.S								
	Least count = 1 Div of M.S – 1 Div V.S								
	$=\frac{1}{30}$ Div. of N	Л.S							
	$=\frac{1}{30}\times\frac{1}{2}=\frac{1}{60}$	$\frac{1}{2}$ = 1 minute							

Answer (3)

Hints :

Given circuit is

I through inductor as a function of time is

$$I = \frac{E}{R_2} \left\{ 1 - e^{-t/L/R_2} \right\}$$

$$V_L = L \frac{dI}{dt} = E e^{-\frac{R_2 t}{L}}$$

$$= 12 e^{-5t}$$

74. Statement 1: The temperature dependence of resistance is usually given as $R = R_0(1 + \alpha \Delta t)$. The resistance of a wire changes from 100 Ω to 150 Ω when its temperature is increased from 27°C to 227°C. This implies that $\alpha = 2.5 \times 10^{-3}/{}^{\circ}C.$

Statement 2: $R = R_0(1 + \alpha \Delta t)$ is valid only when the change in the temperature ΔT is small and $\Delta R = (R - R_0) < < R_0.$

- (1) Statement 1 is true, statement 2 is true; Statement 2 is the correct explanation of Statement 1
- (2) Statement 1 is true, Statement 2 is true; Statement 2 is not the correct explanation of Statement 1
- (4) Statement 1 is true, Statement 2 is false of AAKASN **ver (3)** (Divisic

Answer (3)

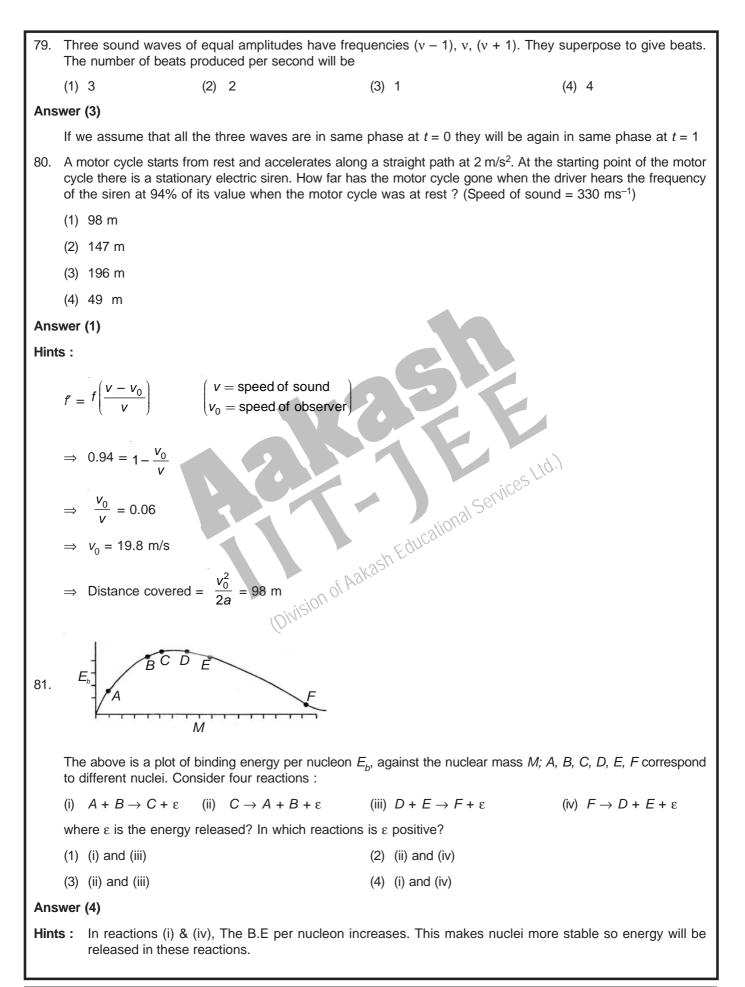
Hints :

As relation $R = R_0(1 + \alpha \Delta t)$ is valid only when $\Delta R < < R_0$.

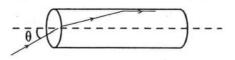
Hence statement 1 is false and statement 2 is true.

- 75. The transition from the state n = 4 to n = 3 in a hydrogen like atom results in ultraviolet radiation. Infrared radiation will be obtained in the transition from
 - (1) $3 \rightarrow 2$ (2) $4 \rightarrow 2$ (4) $2 \rightarrow 1$ (3) $5 \rightarrow 4$

Answer (3)


Hints :

Energy gap between 4th and 3rd state is more than the gap between 5th and 4th state,


And
$$\Delta E = \frac{hc}{\lambda}$$

 $\lambda_{5-4} > \lambda_{4-3}$

A mixture of light, consisting of wavelength 590 nm and an unknown wavelength, illuminates Young's double 76. slit and gives rise to two overlapping interference patterns on the screen. The central maximum of both lights coincide. Further, it is observed that the third bright fringe of known light coincides with the 4th bright fringe of the unknown light. From this data, the wavelength of the unknown light is (1) 885.0 nm (2) 442.5 nm (3) 776.8 nm (4) 393.4 nm Answer (2) Hints : As 4th bright fringe of unknown wavelength coincides with 3rd bright fringe of known wavelength $\Rightarrow \quad \frac{4\lambda D}{d} = 3\frac{(590 \text{ nm})D}{d}$ $\Rightarrow \quad \lambda = \frac{3 \times 590}{4} = 442.5 \text{ nm}$ 77. A particle has an initial velocity of $3\hat{i} + 4\hat{j}$ and an acceleration of $0.4\hat{i} + 0.3\hat{j}$. Its speed after 10 s is (1) $7\sqrt{2}$ units (2) 7 units (3) 8.5 units (4) 10 units Division of Aakash Educational Services Ltd.) Answer (1) Hints : $\vec{v} = \vec{u} + \vec{a}t$ $=(3\hat{i}+4\hat{j})+10(0.4\hat{i}+0.3\hat{j})$ $=(3\hat{i}+4\hat{j})+(4\hat{i}+3\hat{j})$ $= 7\hat{i} + 7\hat{j}$ $|\vec{v}| = 7\sqrt{2}$ units 78. The surface of a metal is illuminated with the light of 400 nm. The kinetic energy of the ejected photoelectrons was found to be 1.68 eV. The work function of the metal is (1) 1.41 eV (2) 1.51 eV (3) 1.68 eV (4) 3.09 eV Answer (1) Hints : According to enstein photo electric equation $\frac{hc}{\lambda} - \phi = \mathsf{K}_{\mathsf{max}}$ \Rightarrow (3.10 eV - 1.68 eV) = K_{max} \Rightarrow K_{max} = 1.42 ev Aakash IIT-JEE - Regd. Office : Aakash Tower, Plot No. 4, Sector-11, Dwarka, New Delhi-75 Ph.: 47623456 Fax : 25084124

(30)

82. A transparent solid cylindrical rod has a refractive index of $\frac{2}{\sqrt{3}}$. It is surrounded by air. A light ray is incident at the mid-point of one end of the rod as shown in the figure.

The incident angle θ for which the light ray grazes along the wall of the rod is

(1)
$$\sin^{-1}\left(\frac{\sqrt{3}}{2}\right)$$
 (2) $\sin^{-1}\left(\frac{2}{\sqrt{3}}\right)$ (3) $\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$ (4) $\sin^{-1}\left(\frac{1}{2}\right)$

Answer (3)

Hints :

$$-\frac{1}{\theta}$$

θ_C = sin⁻

$$f + \theta_C = 90^\circ$$

Using snell's law

 $\sin \theta$

 $\overline{\sin\phi}$ = μ

 \Rightarrow sin $\theta = \mu \cos \theta_{C}$

$$\Rightarrow \sin\theta = \mu \sqrt{1 - \frac{1}{\mu^2}} = \sqrt{\mu^2 - \frac{1}{\mu^2}}$$
$$\Rightarrow \theta = \sin^{-1} \left(\frac{1}{\sqrt{3}}\right)$$

Division of Aakash Educational Services Ltd.) 83. Two wires are made of the same material and have the same volume. However wire 1 has cross-sectional area A and wire 2 has cross-sectional area 3A. If the length of wire 1 increases by Δx on applying force F, how much force is needed to stretch wire 2 by the same amount?

(1) 4F (2) 6F (4) F (3) 9F

Answer (3)

Hints :

$$\frac{F}{A} = Y \frac{\Delta I}{I}$$

$$\Rightarrow F = Y \frac{\Delta I A^{2}}{AI} = Y \frac{\Delta I A^{2}}{V}$$

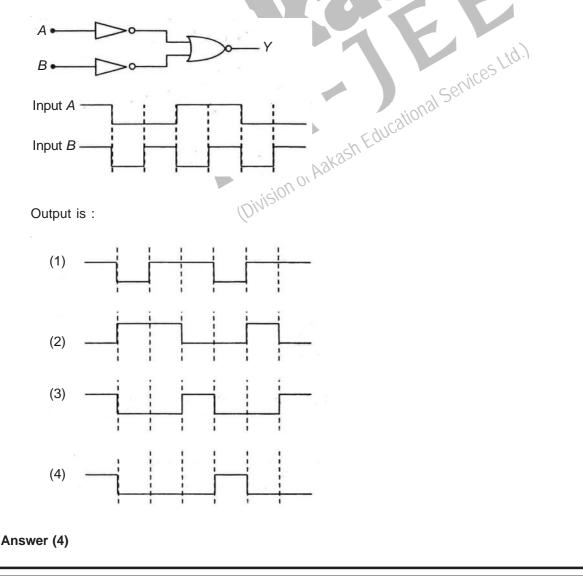
$$\Rightarrow F \propto A^{2}$$

$$\Rightarrow \frac{F}{F'} = \frac{1}{9}$$

$$\Rightarrow F' = 9F$$

This question contains Statement-1 and statement-2. Of the four choices given after the statements, choose the one that best describes the two statements.

Statement 1: For a charged particle moving from point P to point Q, the net work done by an electrostatic 84. field on the particle is independent of the path connecting point P to point Q.


Statement 2 : The net work done by a conservative force on an object moving along a closed loop is zero.

- (1) Statement-1 is true, Statement-2 is true; Statement-2 is the correct explanation of Statment-1.
- (2) Statment-1 is true, Statement-2 is true; Statement-2 is not the correct explanation of Statement-1.
- (3) Statement-1 is false, Statement-2 is true.
- (4) Statement-1 is true, Statement-2 is false.

Answer (1)

Hints :

- $W_e = -q (V_f V_j)$ It depends on initial and final point only, because electrostatic field is a conservative field.
- 85. The logic circuit shown below has the input waveforms 'A' and 'B' as shown. Pick out the correct output waveform.

Aakash IIT-JEE - Regd. Office : Aakash Tower, Plot No. 4, Sector-11, Dwarka, New Delhi-75 Ph.: 47623456 Fax : 25084124

Hint

$$y = \left(\overline{\overline{A} + \overline{B}}\right) = A \cdot B$$

The combination represents AND Gate Truth table.

Α	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

86. If x, v and a denote the displacement, the velocity and the acceleration of a particle executing simple harmonic motion of time period T, then, which of the following does not change with time ?

(2) $aT + 2\pi v$

(4) $a^2T^2 + 4\pi^2v^2$

Services Ltd

- (1) aT/x
- (3) *aT*/v

Answer (1)

Hint

$$x = A \sin(\omega t + \phi)$$

 $a = -A\omega^2 \sin(\omega t + \phi)$

So $\frac{aT}{x} = -\omega^2 T$ (which is constant)

87. A thin uniform rod of length *I* and mass *m* is swinging freely about a horizontal axis passing through its end. Its maximum angular speed is ω . Its centre of mass rises to a maximum height of

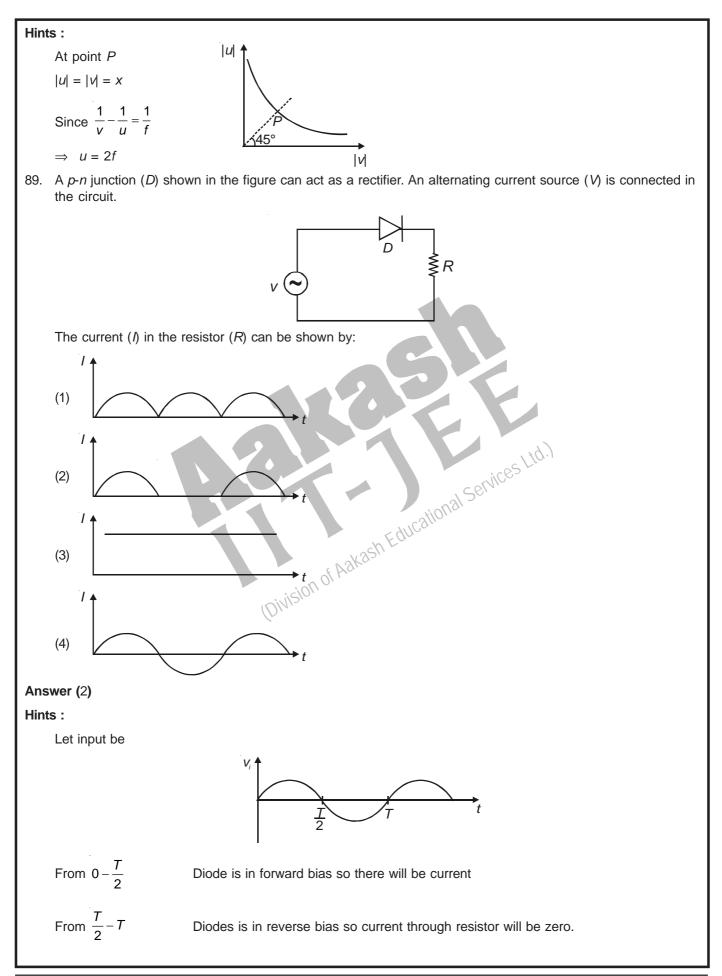
(1)
$$\frac{1}{6} \frac{l\omega}{g}$$
 (2) $\frac{1}{2} \frac{l^2 \omega^2}{g}$ (3) $\frac{1}{6} \frac{l^2 \omega^2}{g}$ (4) $\frac{1}{3} \frac{l^2 \omega^2}{g}$

Answer (3)

Hints :

Loss in kinetic energy = Gain in potential energy

$$\frac{1}{2}I\omega^2 = mgh$$


$$\Rightarrow \qquad \frac{1}{2} \left(\frac{m\ell^2}{3} \right) \omega^2 = mgh$$

88. In an optics experiment, with the position of the object fixed, a student varies the position of a convex lens and for each position, the screen is adjusted to get a clear image of the object. A graph between the object distance u and the image distance v, from the lens, is plotted using the same scale for the two axes. A straight line passing through the origin and making an angle of 45° with the *x*-axis meets the experimental curve at *P*. The coordinates of *P* will be:

(1)
$$\left(\frac{f}{2}, \frac{f}{2}\right)$$
 (2) (f, f) (3) $(4f, 4f)$ (4) $(2f, 2f)$

 $\Rightarrow h = \frac{\ell^2 \omega^2}{6q}$

Answer (4)

90. Let $\rho(r) = \frac{Q}{\pi R^4} r$ be the charge density distribution for a solid sphere of radius *R* and total charge *Q*. For a point '*p*' inside the sphere at distance r_1 from the centre of the sphere, the magnitude of electric field is:

(1)
$$\frac{Q}{4\pi\epsilon_0 r_1^2}$$
 (2) $\frac{Q r_1^2}{4\pi\epsilon_0 R^4}$ (3) $\frac{Q r_1^2}{3\pi\epsilon_0 R^4}$ (4) 0

Answer (2)

Hints :

Consider a gaussian surface of radius r_1