Entrance Examination, 2011 M.Sc. (Statistics-OR)

Hall Ticket No.	
man ricket 140.	

Time: 2 hours Max. Marks. 75

Part A: 25 marks Part B: 50 marks

Instructions

- Write your Booklet Code and Hall Ticket Number on the OMR Answer Sheet given to you. Also write the Hall Ticket Number in the space provided above.
- 2. There is negative marking.
- 3. Answers are to be marked on the OMR answer sheet.
- Please read the instructions carefully before marking your answers on the OMR answer sheet.
- Hand over the question paper booklet and the OMR answer sheet at the end of the examination.
- No additional sheets will be provided. Rough work can be done in the question paper itself/space provided at the end of the booklet.
- Calculators are not allowed.
- 8. There are a total of 50 questions in Part A and Part B together.
- The appropriate answer should be coloured in either a blue or black ball point or sketch pen. DO NOT USE A PENCIL.

PART A

- Find the correct answer and mark it on the OMR sheet.
- A right answer gets 1 mark and wrong answer gets -0.33 mark
 - 1. The number of 4 digit numbers greater than 1000 in which all the numerals are distinct is
 - [A] $9^2 \times 8 \times 7$.
 - [B] $10 \times 9 \times 8 \times 7$.
 - [C] $10^2 \times 9 \times 8$.
 - $[\mathbf{D}] \ 9 \times 8 \times 7 \times 6.$
 - 2. Eight points are chosen on the circumference of a circle. How many different chords can be drawn by joining any two points?
 - [A] 28.
 - [B] 8.
 - [C] 16.
 - [D] 64.
 - 3. Let A and B be two events with $P(A \cup B) = 0.6$ and $P(A \cap B) = 0.3$, then $P(A^c) + P(B^c)$ is
 - [A] 0.8.
 - [B] 1.1.
 - [C] 1.2.
 - [D] 1.
 - 4. A and B_1 are independent events, so are A and B_2 , then
 - [A] A and $B_1 \cap B_2$ are always independent.
 - [B] if B_1 and B_2 are independent, then A and $B_1 \cap B_2$ are always independent.
 - [C] A and $B_1 \cup B_2$ are always independent.
 - [D] none of the above is true.
 - 5. Three numbers are selected from the set $\{1, 2, ..., 10\}$, the probability that the selected numbers are such that the minimum is at most 5 lies in the interval
 - [A] $(\frac{1}{3}, \frac{1}{2}]$.
 - [B] $(\frac{1}{2}, \frac{2}{3}]$.
 - [C] $(\frac{2}{3}, \frac{3}{4}]$.
 - [D] $(\frac{3}{4}, 1)$.

- 6. If p = 0.1 and n = 5, then the corresponding binomial distribution is
 - [A] right skewed.
 - [B] left skewed.
 - [C] symmetric.
 - [D] bimodal.
- 7. A population is distributed according to the four standard blood types as follows

$$A:42\%$$
, $O:33\%$, $B:18\%$, $AB:7\%$

Assuming that the people chose their partners independently of the blood types, what is the probability that a randomly selected couple from this population will have same blood type?

- [A] $(0.42)^2$.
- $[\mathbf{B}] (0.33)^2.$
- [C] $(0.18)^2$.
- [D] $(0.42)^2 + (0.33)^2 + (0.18)^2 + (0.07)^2$.
- 8. From a box containing N_1 white balls (all alike) and N_2 blue balls (all alike), n balls are drawn randomly with replacement, the expected number of white balls in the sample is
 - $[\mathbf{A}] rac{nN_1}{N_2}$.
 - [B] $\frac{nN_2}{N_1}$.
 - [C] $\frac{nN_1}{N_1+N_2}$.
 - [D] $\frac{N_1}{n(N_1+N_2)}$.
- 9. The expected values of two random variables X_1 and X_2 are equal to μ , whereas $Var(X_1) > Var(X_2)$, one can say that
 - [A] X_1 and X_2 are identically distributed.
 - [B] X_1 is more likely to be near μ than X_2 .
 - [C] X_2 is more likely to be near μ than X_1 .
 - [D] $P(X_2 > X_1) = 1$.
- 10. Let X denote the number of times a gambler has to throw two distinct fair dice till the sum of the numbers that show up is 8, then the random variable X is distributed as
 - [A] Binomial (100,5/36).
 - [B] Geometric (5/36).
 - [C] Binomial (100,5/36).
 - [D] Geometric (1/36).

- 11. 10% of shirts produced in a work shop are defective, the expected number of defective shirts in a randomly selected sample of 100 shirts from this work shop is
 - [A] 1.
 - [**B**] 5.
 - [C] 10.
 - [D] 20.
- If X has Poisson distribution with mean 10, then it is true that
 - [A] P(X = 7) > P(X = 8).
 - [B] P(X = 8) > P(X = 10).
 - [C] P(X = 10) > P(X = 6).
 - [D] P(X = 14) > P(X = 13).
- 13. Let X be a random variable having Poisson distribution with mean 2, also let Y = 2X 1, then the variance of Y is
 - [A] 3.
 - [B] 4.
 - [C] 7.
 - [D] 8.
- 14. A number is randomly chosen from the interval [0,1], the probability that its second decimal digit is 1 is
 - [A] 0.1.
 - [B] 0.2.
 - [C] 0.5.
 - [D] 0.9.
- 15. The height of men is normally distributed with mean $\mu = 167$ cm and standard deviation $\sigma = 3$ cm. What is the percentage of the population of men that have height greater than 167 cm?
 - [A] 30%.
 - [B] 50%.
 - [C] 70%.
 - [D] 100%.

16. The probability density function of a random variable X is

$$f_X(x) = \frac{e^{-|x|}}{2}, \quad -\infty < x < \infty.$$

Then the moment generating functions $M_X(t)$ and $M_Y(t)$ of X and Y = -X respectively satisfy

- $[\mathbf{A}] \ M_Y(t) = -M_X(t) \quad \forall t \in \mathcal{R}.$
- [B] $M_Y(t) = M_X(t) \quad \forall t \in \mathcal{R}.$
- [C] $M_Y(t) = -M_X(t)$ only when $t \ge 0$.
- [D] $M_Y(t) = -M_X(t)$ only when t < 0.
- 17. The median and standard deviation of 25 numbers are \mathbf{m} and \mathbf{s} respectively, 5 is added to the largest and 5 is subtracted from the smallest numbers. For this new set of observations, the median $\mathbf{m_1}$ and standard deviation $\mathbf{s_1}$ satisfy
 - [A] $m_1 > m$ and $s_1 = s$.
 - [B] $m_1 = m$ and $s_1 > s$.
 - [C] $\mathbf{m_1} = \mathbf{m}$ and $\mathbf{s_1} < \mathbf{s}$.
 - [D] $m_1 > m$ and $s_1 > s$.
- 18. The differences between every pair of real numbers $x_1, x_2, ...x_n, n \ge 2$ are known, however $x_1, x_2, ..., x_n$ are not known, if **m** and **s** are the mean and standard deviation respectively of these numbers, it is true that
 - [A] both m and s can be determined.
 - [B] neither m nor s can be determined.
 - [C] s can be determined but not m.
 - [D] m can be determined but not s.
- 19. The correlation coefficient $\rho_{X,Y}$ between two random variables X and Y is $-\frac{1}{2}$, so $\rho_{-X,Y}$ is
 - $[A] \frac{1}{2}.$
 - [B] $\frac{1}{2}$.
 - [C] 0.
 - [D] 1.
- 20. The maximum likelihood estimator of any parameter θ
 - [A] is always unbiased for θ .
 - [B] is always a sufficient estimator for θ .
 - [C] has the smallest mean square error always.
 - [D] none of the above is correct.

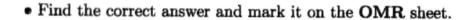
- 21. Four random numbers where selected from the interval $(0, \theta)$, they were 0.6, 0.49, 032, 0.83, the maximum likelihood estimate of θ is
 - [A] 0.83.
 - [B] 0.56.
 - [C] 0.715.
 - [D] 0.575.
- 22. Let $A = \{1, 2, 3, 4\}$ and $B = \{6, 7\}$. The number of different onto functions from A to B is
 - [A] 16.
 - [B] 2.
 - [C] 14.
 - [D] 8.
- 23. The sequence $\{a_n\}$ is defined as follows

$$a_n = \sum_{j=0}^n j \binom{n}{j} \frac{1}{2^n}, \quad n = 1, 2, \dots$$

Identify the correct answer

- [A] The sequence $\{a_n\}$ is not monotonic.
- $[\mathbf{B}] \lim_{n \to \infty} a_n = \infty.$
- $[\mathbf{C}] \lim_{n\to\infty} a_n = 1.$
- $[\mathbf{D}] \lim_{n \to \infty} a_n = 0.$
- 24. A and B are two $n \times n$ real matrices, if Rank (B) = n 3 and AB = 0, then for any $n \ge 7$
 - [A] Rank (A) = Rank (B).
 - [B] Rank $(A) \leq 3$.
 - [C] Rank (A)>n-3.
 - [D] Rank (A)> 3.
- 25. For any set of real numbers $x_1, x_2, ..., x_n$, where $n \geq 2$, let $\bar{E} = \frac{1}{n} \sum_{i=1}^n e^{x_i}$, then
 - $[\mathbf{A}] e^{\bar{x}} > \bar{E}.$
 - $[\mathbf{B}] e^{\bar{x}} = \bar{E}.$
 - $[\mathbf{C}] e^{-\bar{x}} = \bar{E}.$
 - $[\mathbf{D}] e^{\bar{x}} \leq \bar{E}.$

PART B



• A	right answer	gets 2	marks	and	wrong	answer	gets	-0.	6	6 ma	٧K
-----	--------------	--------	-------	-----	-------	--------	------	-----	---	------	----

26.	The probability that at least one of the events A, B occurs is 0.8 and the proba-
	bility that at most one of them occurs is 0.5, the probability that exactly one of
	them occurs

- [A] is 0.3.
- [B] is 0.2.
- [C] is 0.
- [D] cannot be determined from the data given.

27. A fair coin is tossed three times, given that at least one of the first two tosses showed tails, the probability that exactly one head showed up

- [A] is $\frac{1}{2}$.
- [B] is $\frac{1}{4}$.
- [C] is $\frac{1}{8}$.
- [D] cannot be determined.

28. The probability that among seven people no two were born in the same day of the week is

- [A] $\frac{1}{77}$.
- [B] $\frac{2}{77}$.
- [C] $\frac{5!}{7^7}$.
- [**D**] $\frac{7!}{77}$.

29. The coefficient of x in $P(x) = 2x^2 - bx + 3$ is selected from the set $\{-7, -6, ..., 0, 1, ..., 6, 7\}$ with probability $\frac{1}{15}$ each. The probability that P(x) has real roots is

- [A] $\frac{1}{15}$.
- [B] $\frac{1}{5}$.
- [C] $\frac{2}{5}$.
- $[\mathbf{D}] \frac{3}{5}.$

30. The probability mass function of a random variable X is given by

$$P(X = x) = \frac{1}{3} \left(\frac{2}{3}\right)^{j-1}$$
 $j = 1, 2, ...$

P(X = 101|X > 100) is

- [A] $\frac{1}{3}$.
- [B] $\frac{2}{3}$.
- [C] $\left(\frac{1}{3}\right)^{100}$
- $\left[\mathbf{D}\right]\left(\frac{2}{3}\right)^{100}$
- 31. The random variable X takes values in the set $\{1,2,3,4,5\}$ and it is given that $P(X \ge 2) + P(X \ge 3) + P(X \ge 4) = \frac{7}{3}$ and $E(X) = \frac{11}{3}$ so P(X = 5)
 - [A] cannot be determined from the data given.
 - [B] is $\frac{1}{2}$.
 - [C] is $\frac{1}{3}$.
 - [D] is $\frac{1}{4}$.
- 32. The amount of bread that a bakery sells in a day is a random variable with density function

$$f(x) = \begin{cases} cx & 0 \le x < 3\\ c(6-x) & 3 \le x < 6\\ 0 & \text{otherwise} \end{cases}$$

what is c?

- [A] $\frac{1}{9}$.
- [B] $\frac{2}{9}$.
- [C] $\frac{1}{3}$.
- $[\mathbf{D}] \cdot \frac{4}{9}$.
- 33. The cubic equation (x-3)(x-5)(x-8)+1 has
 - [A] some complex roots.
 - [B] all real roots and the largest is in the interval (5,6].
 - [C] all real roots and the smallest is in the interval (1, 2].
 - [D] all real roots and the largest is in the interval (7,8].

34. Let X be a random variable having distribution function

$$F(x) = \begin{cases} 0 & \text{if } x < 0 \\ x + \frac{1}{8} & \text{if } 0 \le x < 0.5 \\ 1 & \text{if } x \ge 0.5 \end{cases}$$

Then $P(0 < X \le 0.5)$

- [A] $\frac{1}{2}$.
- [B] $\frac{5}{8}$.
- [C] $\frac{3}{4}$.
- $[\mathbf{D}]^{\frac{7}{8}}$.

35. From a bag containing 5 white balls (all alike), take out at least one ball, that is you may take out 1,2,3,4 or 5 balls with equal probabilities, paint the selected balls blue and replace them, now take out 3 balls without replacement, the probability that one of them is blue is

- [A] 0.9.
- [B] 0.7.
- [C] 0.6.
- [**D**] 0.3.

36. The mean marks of a class of 60 students is m and variance is s^2 , the mean marks of another class of 40 students is m+5 and variance is s^2 . Identify the correct statement regarding the mean marks M and variance S^2 of all the 100 students

- [A] $\mathbf{M} = \mathbf{m}$ and $\mathbf{S}^2 > \mathbf{s}^2$.
- [B] M = m and $S^2 = s^2$.
- [C] M > m and $S^2 = s^2$.
- [D] M > m and $S^2 > s^2$.

37. For the two sets of numbers given below

$$A_1 = \{7, 7, 9, 12, 14, 16, 18\}$$
 and $A_2 = \{8, 8, 8, 8, 8, 8, 19\}$

Let R_i , M_i and S_i , i = 1, 2, denote the range, median and standard deviation of the numbers of the sets A_i , i = 1, 2, respectively, it can be seen that

- [A] $R_1 = R_2$, $M_1 = M_2$ and $S_1 = S_2$.
- [B] $R_1 = R_2$, $M_1 > M_2$ and $S_1 > S_2$.
- [C] $R_1 = R_2$, $M_1 > M_2$ and $S_1 < S_2$.
- [D] $R_1 = R_2$, $M_1 > M_2$ and $S_1 = S_2$.

38. The probability distribution of a random variable X is as follows

X	0	1	2	3	
P(X=x)	p_1	p_1	p_2	p_2	

where $0 < p_1 < 1/2$. From the above distribution we have the following random sample of size 5 $\{0, 2, 2, 3, 1\}$. The maximum likelihood estimate of p_1 is

- [A] 0.1
- [B] 0.2
- [C] 0.3
- [D] 0.4

39. Let $\lfloor x \rfloor$ denote the largest integer $\leq x$, $\forall x \in \mathcal{R}$, eg. $\lfloor 2.66 \rfloor = 2$, $\lfloor -3.5 \rfloor = -4$. The function $f: \mathcal{R} \to \mathcal{R}$ defined as

$$f(x) = x \lfloor x \rfloor$$

- [A] is not continuous at any $x \in \mathcal{Z} \setminus \{0\}$.
- [B] is not continuous at any $x \in \mathcal{Z}$.
- [C] is continuous at every $x \in \mathcal{R}$ but not differentiable at $x \in \mathcal{Z}$.
- [D] is continuous and differentiable at every $x \in \mathcal{R}$.

40. Suppose a man has invested in the share market which earns 10% in the first year and 50% in the second year, what is his average rate of return?

- [A] 40.
- [B] 10.
- [C] 28.45.
- [D] 30.

41. X_1 and X_2 are independent and identically distributed random variable with finite mean μ and finite variance σ^2 , define $U_1 = \frac{2X_1 + X_2}{3}$ and $U_2 = \frac{X_1 + X_2}{2}$, then

- [A] $E(U_1) = E(U_2)$ and $Var(U_1) = Var(U_2)$.
- [B] $E(U_1) = E(U_2)$ and $Var(U_1) > Var(U_2)$.
- [C] $E(U_1) > E(U_2)$ and $Var(U_1) = Var(U_2)$.
- [D] $E(U_1) = E(U_2)$ and $Var(U_1) < Var(U_2)$.

- 42. Suppose $X_1, X_2, ... X_n$ is a random sample from the $Exp(1/\lambda)$ population. Denote $U = \frac{1}{n} \sum_{k=1}^{n} X_k$ and $V = \frac{1}{n} \sum_{k=1}^{n} X_k^2$, then an unbiased estimator for λ^2 is
 - [A] $U^2/2$.
 - [B] $2/U^2$.
 - [C] V/2.
 - [D] 2/V.
- 43. $X_1, X_2, ..., X_n$ is a random sample from the $N(\mu, \mu^2)$ population, define U and V as in Question No: 42, the maximum likelihood estimator of μ is
 - [A] U.
 - [B] U^2 .
 - [C] V.
 - [D] none of the above 3.
- 44. A die is rolled 60 times with resulting frequency distribution as given below

Faces	1	2	3	4	5	6
Frequency	11	10	9	10	12	8

To test the hypothesis that the die is fair, the value of the χ^2 goodness-of-fit test statistic is

- [A] 0.
- [B] 1.
- [C] 2.
- [D] 3.
- 45. Suppose \bar{X} is the sample mean based on a random sample from a density $\theta x^{\theta-1}$, for 0 < x < 1, and zero otherwise, where $\theta > 0$, then the moment estimator of θ is
 - $[\mathbf{A}] \ \tilde{X}.$
 - [**B**] $1/\bar{X}$.
 - [C] $(1 \bar{X})/\bar{X}$.
 - [D] $\bar{X}/(1-\bar{X})$

- 46. Let X be sample of size 1 from discrete uniform distribution over the set $\{1, 2, \theta\}$, where $\theta \in \{3, 4\}$. For testing the hypothesis $H_0: \theta = 3$ against $H_1: \theta = 4$, the size and the power of the test which rejects H_0 if X = 4, are respectively.
 - [A] 0 and $\frac{1}{3}$.
 - [B] 0 and $\frac{1}{4}$.
 - [C] $\frac{1}{4}$ and $\frac{1}{3}$.
 - [D] $\frac{1}{4}$ and $\frac{1}{4}$.
- 47. C_i is the α_i , i = 1, 2, level critical region to test the null hypothesis H_0 against the alternative H_1 , which of the following is true
 - [A] if $\alpha_1 < \alpha_2$ then $C_1 \subset C_2$.
 - [B] if $\alpha_1 < \alpha_2$ then $C_2 \subset C_1$.
 - [C] if $\alpha_1 < \alpha_2$ then $C_1 = C_2$.
 - [D] if $\alpha_1 \neq \alpha_2$ then C_1 and C_2 may be disjoint.
- 48. Let $f(x) = x^{1/x}$. Then the maximum value of f is
 - [A] 1/e.
 - [B] e.
 - [C] $e^{1/e}$.
 - [D] 1.
- 49. Consider the linear programming problem

minimise
$$u_1 + pu_2$$

subject to $u_1 \ge 0, u_2 \ge 0$
 $3u_1 + u_2 \ge 3$
 $u_1 + 2u_2 \ge 4$
 $u_1 + 6u_2 \ge 6$.

For which value or values of p is there is no solution to this problem?

- [A] only 2.
- [B] only 0.
- [C] any value less than 0.
- [D] any value greater than 0.

50. How many points with integer coordinates lie in the feasible region defined by

$$3x + 4y \le 12, \quad x \ge 0, \quad y \ge 1.$$

- [A] 3.
- [**B**] 6.
- [C] 8.
- [D] 4.