AIEEE-CBSE-ENG-03

1. A function f from the set of natural numbers to integers defined by

$$f(n) = \begin{cases} \frac{n-1}{2}, & \text{when is odd} \\ -\frac{n}{2}, & \text{when n is even} \end{cases}$$

(A) one-one but not onto

- (B) onto but not one-one
- (C) one-one and onto both
- (D) neither one-one nor onto
- 2. Let z_1 and z_2 be two roots of the equation $z^2 + az + b = 0$, z being complex. Further, assume that the origin, z_1 and z_2 form an equilateral triangle, then
 - (A) $a^2 = b$

(B) $a^2 = 2b$

(C) $a^2 = 3b$

- (D) $a^2 = 4b$
- 3. If z and ω are two non–zero complex numbers such that $|z\omega|=1$, and $Arg_{\omega}(z)-Arg_{\omega}(\omega)=\frac{\pi}{2}$,

then $\overline{z}\omega$ is equal to

(A) 1

(B) - 1

(C) i

(D) - i

- 4. If $\left(\frac{1+i}{1-i}\right)^x = 1$, then
 - (A) x = 4n, where n is any positive integer
 - (B) x = 2n, where n is any positive integer
 - (C) x = 4n + 1, where n is any positive integer
 - (D) x = 2n + 1, where n is any positive integer
- 5. If $\begin{vmatrix} a & a^2 & 1+a^3 \\ b & b^2 & 1+b^3 \\ c & c^2 & 1+c^3 \end{vmatrix} = 0$ and vectors (1, a, a²) (1, b, b²) and (1, c, c²) are non-coplanar, then the

product abc equals

(A) 2

(B) - 1

(C) 1

- (D) 0
- 6. If the system of linear equations

$$x + 2ay + az =$$

$$x + 3by + bz = 0$$

$$x + 4cy + cz = 0$$

has a non-zero solution, then a, b, c

(A) are in A. P.

(B) are in G.P.

(C) are in H.P.

- (D) satisfy a + 2b + 3c = 0
- If the sum of the roots of the quadratic equation $ax^2 + bx + c = 0$ is equal to the sum of the squares of their reciprocals, then $\frac{a}{c}$, $\frac{b}{a}$ and $\frac{c}{b}$ are in
 - (A) arithmetic progression
- (B) geometric progression
- (C) harmonic progression

- (D) arithmetic-geometric-progression
- 8. The number of real solutions of the equation $x^2 3|x| + 2 = 0$ is
 - (A) 2

(B) 4

(C) 1

(D) 3

9.	The value of 'a' for which one root of the quadratic equation $(a^2 - 5a + 3) x^2 + (3a - 1) x + 2 = 0$ is twice as large as the other, is		
	(A) $\frac{2}{3}$	$(B)-\frac{2}{3}$	
	(C) $\frac{1}{3}$	(D) $-\frac{1}{3}$	
I10.	If $A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$ and $A^2 = \begin{bmatrix} \alpha & \beta \\ \beta & \alpha \end{bmatrix}$, then		
	(A) $\alpha = a^2 + b^2$, $\beta = ab$ (C) $\alpha = a^2 + b^2$, $\beta = a^2 - b^2$	(B) $\alpha = a^2 + b^2$, $\beta = 2ab$ (D) $\alpha = 2ab$, $\beta = a^2 + b^2$	
11.	A student is to answer 10 out of 13 question least 4 from the first five questions. The nutrition (A) 140 (C) 280	ons in an examination such that he must choose at omber of choices available to him is (B) 196 (D) 346	
12.	The number of ways in which 6 men and 5 women can dine at a round table if no two		
	women are to sit together is given by (A) $6! \times 5!$ (C) $5! \times 4!$	(B) 30 (D) 7! × 5 !	
13.	If 1, ω , ω^2 are the cube roots of unity, then	4.0	
	$\Delta = \begin{bmatrix} 1 & \omega^n & \omega^{2n} \\ \omega^n & \omega^{2n} & 1 \\ \omega^{2n} & 1 & \omega^n \end{bmatrix}$ is equal to		
	(A) 0 (C) ω	(B) 1 (D) ω ²	
14.	If ${}^{n}C_{r}$ denotes the number of combinations ${}^{n}C_{r+1} + {}^{n}C_{r-1} + 2 \times {}^{n}C_{r}$ equals	of n things taken r at a time, then the expression	
	$(A)^{n+2}C_r$ $(C)^{n+1}C_r$	(B) $^{n+2}C_{r+1}$ (D) $^{n+1}C_{r+1}$	
15.	The number of integral terms in the expansion of $(\sqrt{3} + \sqrt[8]{5})^{256}$ is		
	(A) 32 (C) 34	(B) 33 (D) 35	
16.	If x is positive, the first negative term in the (A) X th term	(B) 5 th term	
	(C) 8 th term	(D) 6 th term	
1 ₹.	The sum of the series $\frac{1}{1 \cdot 2} - \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4}$	upto ∞ is equal to	
1	(A) 2 log _e 2	(B) $\log_2 2 - 1$	
	(C) log _e 2	(D) $\log_{e}\left(\frac{4}{e}\right)$	

Let f(x) be a polynomial function of second degree. If f(1) = f(-1) and a, b, c are in A. P., 18. then f' (a), f' (b) and f' (c) are in

(A) A.P.

(B) G.P.

(C) H. P.

(D) arithmetic-geometric progression

	(A) a cot $\left(\frac{\pi}{n}\right)$	(B) $\frac{a}{2} \cot \left(\frac{\pi}{2n} \right)$	
	(C) a cot $\left(\frac{\pi}{2n}\right)$	(D) $\frac{a}{4} \cot \left(\frac{\pi}{2n} \right)$	
21.	If in a triangle ABC a $\cos^2\left(\frac{C}{2}\right) + c \cos^2\left(\frac{A}{2}\right)$		
	(A) are in A.P. (C) are in H.P.	(B) are in G.P. (D) satisfy a + b = c	
22.	In a triangle ABC, medians AD and BE are	e drawn. If AD = $\frac{4}{4}$ \angle DAB = $\frac{\pi}{6}$ and \angle ABE = $\frac{\pi}{3}$,	
	then the area of the \triangle ABC is (A) $\frac{8}{3}$ (C) $\frac{32}{3}$	(B) $\frac{16}{3}$ (D) $\frac{64}{3}$	
23.	The trigonometric equation $\sin^{-1} x = 2 \sin^{-1} x$	a, has a solution for	
	(A) $\frac{1}{2} < a < \frac{1}{\sqrt{2}}$	(B) all real values of a	
	(C) $ a < \frac{1}{2}$	(D) $ a \ge \frac{1}{\sqrt{2}}$	
24.	The upper $\frac{3}{4}$ th portion of a vertical pole su	btends an angle $\tan^{-1} \frac{3}{5}$ at point in the horizontal	
	plane through its foot and at a distance 40 m from the foot. A possible height of the vertice		
	pole is (A) 20 m (C) 60 m	(B) 40 m (D) 80 m	
25.	The real number x when added to its inverse gives the minimum value of the sum at x equal		
N	(A) 2 (C) – 1	(B) 1 (D) – 2	
26.	If $f: R \to R$ satisfies $f(x + y) = f(x) + f(y)$, for all $x, y \in R$ and $f(1) = 7$, then $\sum_{i=1}^{n} f(r_i)$ is		
	(A) $\frac{7n}{2}$	(B) $\frac{7(n+1)}{2}$	
	(C) 7n (n + 1)	(D) $\frac{7n(n+1)}{2}$	

If x_1 , x_2 , x_3 and y_1 , y_2 , y_3 are both in G.P. with the same common ratio, then the points (x_1, y_1)

The sum of the radii of inscribed and circumscribed circles for an n sided regular polygon of

(B) lie on an ellipse

(D) are vertices of a triangle

19.

20.

(x₂, y₂) and (x₃, y₃) (A) lie on a straight line

(C) lie on a circle

side a, is

(C) 0

(B) 2ⁿ⁻¹ (D) 1

28. Domain of definition of the function $f(x) = \frac{3}{4-x^2} + \log_{10}(x^3 - x)$, is

(A)(1,2)

(B) $(-1, 0) \cup (1, 2)$

(C) $(1, 2) \cup (2, \infty)$

(D) $(-1, 0) \cup (1, 2) \cup (2, \infty)$

$$29. \qquad \lim_{x \to \pi/2} \frac{\left[1 - \tan\left(\frac{x}{2}\right)\right] \left[1 - \sin x\right]}{\left[1 + \tan\left(\frac{x}{2}\right)\right] \left[\pi - 2x\right]^3} \ \, \text{is}$$

(A) $\frac{1}{8}$

(B) 0

(C) $\frac{1}{32}$

(D) ∞

30. If $\lim_{x\to 0} \frac{\log(3+x) - \log(3-x)}{x} = k$, the value of k is

(A) 0

(B) $-\frac{1}{x}$

(C) $\frac{2}{3}$

(D) $-\frac{2}{3}$

31. Let f(a) = g(a) = k and their f(a) = g(a) derivatives f(a), g(a) = k and are not equal for some n. Further if $\lim_{x \to a} \frac{f(a)g(x) - f(a) - g(a)f(x) + g(a)}{g(a)f(x) - f(x)} = 4$, then the value of k is

(A) 4

(B) 2

(C) 1

(D) 0

32. The function $f(x) \neq \log(x + \sqrt{x^2 + 1})$, is

(A) an even function

(B) an odd function

(C) a periodic function

(D) neither an even nor an odd function

33. If $f(x) = xe^{-\left(\frac{x}{|x|} \cdot x\right)}$, $x \neq 0$ then f(x) is x = 0

(A) continuous as well as differentiable for all x

(B) continuous for all x but not differentiable at x = 0

) neither differentiable nor continuous at x = 0

(D) discontinuous everywhere

34. If the function $f(x) = 2x^3 - 9ax^2 + 12a^2x + 1$, where a > 0, attains its maximum and minimum at p and q respectively such that $p^2 = q$, then a equals

(A) 3

(B) 1

(C) 2

(D) $\frac{1}{2}$

- If f (y) = e^y , g (y) = y; y > 0 and F (t) = $\int_0^t f(t y) g(y) dy$, then 35.
 - (A) F (t) = $1 e^{-t} (1 + t)$ (C) F (t) = $t e^{t}$

(B) F (t) = e^{t} – (1 + t) (D) F (t) = $t e^{-t}$

- If f(a + b x) = f(x), then $\int_{-\infty}^{b} x f(x) dx$ is equal to 36.
 - (A) $\frac{a+b}{2}\int_{a}^{b} f(b-x)dx$

(B) $\frac{a+b}{2}\int_{a}^{b} f(x)dx$

(C) $\frac{b-a}{2}\int_{a}^{b} f(x)dx$

- (D) $\frac{a+b}{2}\int_{a}^{b} f(a+b-x)dx$
- The value of $\lim_{x\to 0} \frac{\int\limits_0^{x^2} \sec^2 t \ dt}{x \sin x}$ is 37.
 - (A) 3

(B)2

(C) 1

- (D) 0
- The value of the integral $I = \int_{0}^{1} x (1-x)^{n} dx$ is 38.
 - (A) $\frac{1}{n+1}$
 - (C) $\frac{1}{n+1} \frac{1}{n+2}$

- $\lim_{n \to \infty} \frac{1 + 2^4 + 3^4 + \dots + n^4}{n^5}$ 39.

(B) zero

- (D) $\frac{1}{5}$
- $\frac{\sin x}{x}$, x > 0. If $\int_{1}^{4} \frac{3}{x} e^{\sin x^3} dx = F(k) F(1)$, then one of the possible values 40.

(B) 16

- (D) 64
- he area of the region bounded by the curves y = |x 1| and y = 3 |x| is
 - (A) 2 sq units

(B) 3 sq units

(C) 4 sq units

- (D) 6 sq units
- Let f(x) be a function satisfying f'(x) = f(x) with f(0) = 1 and g(x) be a function that satisfies $f(x) + g(x) = x^2$. Then the value of the integral $\int f(x) g(x) dx$, is

(A)
$$e - \frac{e^2}{2} - \frac{5}{2}$$

(B) e +
$$\frac{e^2}{2} - \frac{3}{2}$$

(C)
$$e - \frac{e^2}{2} - \frac{3}{2}$$

(D) e +
$$\frac{e^2}{2}$$
 + $\frac{5}{2}$

The degree and order of the differential equation of the family of all parabolas whose axis is 43. x-axis, are respectively

(A) 2, 1

(B) 1, 2

(C) 3, 2

(D) 2, 3

The solution of the differential equation $(1 + y^2) + (x - e^{tan^{-1}y}) \frac{dy}{dx} = 0$, is 44.

(A) $(x-2) = k e^{-\tan^{-1} y}$

(B) $2x e^{2 \tan^{-1} y} + k$

(C) $x e^{tan^{-1}y} = tan^{-1} y + k$

(D) $x e^{2 \tan^{-1} y} = e^{\tan^{-1} y} + k$

If the equation of the locus of a point equidistant from the points (a (b_1) and (a_2, b_2) is $(a_1 -$ 45. a_2) x + $(b_1 - b_2)$ y + c = 0, then the value of 'c' is

(A) $\frac{1}{2}(a_2^2 + b_2^2 - a_1^2 - b_1^2)$

(B) $a_1^2 + a_2^2 + b_1^2 - b_2^2$

(C) $\frac{1}{2}(a_1^2 + a_2^2 - b_1^2 - b_2^2)$

Locus of centroid of the triangle whose vertices are (a cost, a sin t), (b sin t, - b cos t) and 46. (1, 0), where t is a parameter, is

- (A) $(3x 1)^2 + (3y)^2 = a^2 b^2$ (C) $(3x + 1)^2 + (3y)^2 = a^2 + b^2$

- (B) $(3x-1)^2 + (3y)^2 = a^2 + b^2$ (D) $(3x+1)^2 + (3y)^2 = a^2 b^2$

 $y^2 = 0$ and $x^2 - 2qxy - y^2 = 0$ be such that each pair If the pair of straight lines x² 47. 2pxy bisects the angle between the other pair, then

(A) p = q

(B) p = -q

(C) pq = 1

(D) pq = -1

a square of side a lies above the x-axis and has one vertex at the origin. The side passing 48. through the origin makes an angle α (0 < α < $\frac{\pi}{4}$) with the positive direction of x-axis. The equation of its diagonal not passing through the origin is

- (A) y $(\cos \alpha \sin \alpha)$ x $(\sin \alpha \cos \alpha) = a$
- (B) $y (\cos \alpha + \sin \alpha) + x (\sin \alpha \cos \alpha) = a$
- (C) $(\cos \alpha + \sin \alpha) + x (\sin \alpha + \cos \alpha) = a$ (D) $(\cos \alpha + \sin \alpha) + x (\cos \alpha \sin \alpha) = a$

If the two circles $(x - 1)^2 + (y - 3)^2 = r^2$ and $x^2 + y^2 - 8x + 2y + 8 = 0$ intersect in two distinct points, then

▲) 2 < r < 8

(B) r < 2

(C) r = 2

(D) r > 2

50. The lines 2x - 3y = 5 and 3x - 4y = 7 are diameters of a circle having area as 154 sq units. Then the equation of the circle is

(B) $x^2 + y^2 + 2x - 2y = 47$ (D) $x^2 + y^2 - 2x + 2y = 62$

(A) $x^2 + y^2 + 2x - 2y = 62$ (C) $x^2 + y^2 - 2x + 2y = 47$

The normal at the point (bt₁², 2bt₁) on a parabola meets the parabola again in the point (bt₂², 51. 2bt₂), then

(A)
$$t_2 = -t_1 - \frac{2}{t_1}$$

(B)
$$t_2 = -t_1 + \frac{2}{t_1}$$

(D)
$$t_2 = t_1 - \frac{2}{t_1}$$

(D)
$$t_2 = t_1 + \frac{2}{t_1}$$

The foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{h^2} = 1$ and the hyperbola $\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}$ coincide. Then the 52. value of b2 is

(A) 1

(C)7

(D) 9

A tetrahedron has vertices at O (0, 0, 0), A (1, 2, 1), B (2, 1, 3) and C (-1, 0) angle between the faces OAB and ABC will be 2). Then 53.

(A) $\cos^{-1}\left(\frac{19}{35}\right)$

(B) $\cos^{-1}\left(\frac{17}{31}\right)$ (D) 90^{0}

 $(C) 30^{0}$

The radius of the circle in which the sphere $x^2 + y^2 + z^2 + 2x - 2y$ 54. z - 19 = 0 is cut by the plane x + 2y + 2z + 7 = 0 is

(A) 1

(C)3

(B) 2 (D) 4

The lines $\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{-k}$ and $\frac{x-1}{k} = \frac{y-4}{2}$ 55. are coplanar if

(A) k = 0 or -1

(C) k = 0 or -3

The two lines x = ay + b, z = cy + d and x = ay + b', z = c'y + d' will be perpendicular, if and 56.

(A) aa' + bb' + cc' + 1 = 0

- (B) aa' + bb' + cc' = 0
- (C) (a + a') (b + b') + (c + c') = (a + b')
- (D) aa' + cc' + 1 = 0

The shortest distance from the plane 12x + 4y + 3z = 327 to the sphere $x^2 + y^2 + z^2 + 4x - 2y$ 57. -6z = 155 is

(A) 26

(B) $11\frac{4}{13}$

(C) 13

(D) 39

Two systems of rectangular axes have the same origin. If a plane cuts them at distances a, b, c and a', b', c' from the origin, then 58.

- $\frac{1}{b^2} + \frac{1}{c^2} + \frac{1}{a'^2} + \frac{1}{b'^2} + \frac{1}{c'^2} = 0 (B) \frac{1}{a^2} + \frac{1}{b^2} \frac{1}{c^2} + \frac{1}{b'^2} \frac{1}{c'^2} = 0$
- $-\frac{1}{b^2} \frac{1}{c^2} + \frac{1}{a'^2} \frac{1}{b'^2} \frac{1}{c'^2} = 0 (D) \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} \frac{1}{a'^2} \frac{1}{b'^2} \frac{1}{c'^2} = 0$

 \vec{a} , \vec{b} , \vec{c} are 3 vectors, such that $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, $|\vec{a}| = 1$, $|\vec{b}| = 2$, $|\vec{c}| = 3$, then $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$ is 59. equal to

(A) 0

(B) - 7

(C)7

(D) 1

If \vec{u} , \vec{v} and \vec{w} are three non-coplanar vectors, then $(\vec{u} + \vec{v} - \vec{w}) \cdot (\vec{u} - \vec{v}) \times (\vec{v} - \vec{w})$ equals 60.

(A) 0

(B) $\vec{u} \cdot \vec{v} \times \vec{w}$

61.	Consider points A, B, C and D with position vectors $7\hat{i} - 4\hat{j} + 7\hat{k}$, $\hat{i} - 6\hat{j} + 10\hat{k}$, $-\hat{i} - 3\hat{j} + 7\hat{k}$ and $-\hat{i} + 3\hat{k}$ respectively. Then ABCD is a		
	(A) square(C) rectangle	(B) rhombus(D) parallelogram but not a rhombus	
62.	of the median through A is	\hat{j} + 4 \hat{k} are the sides of a triangle ABC. The length	
	(A) $\sqrt{18}$ (C) $\sqrt{33}$	(B) $\sqrt{72}$ (D) $\sqrt{288}$	
63.	A particle acted on by constant forces $4\hat{i} - \hat{i} + 2\hat{j} + 3\hat{k}$ to the point $5\hat{i} + 4\hat{j} + \hat{k}$. The total (A) 20 units (C) 40 units	$+\hat{j}-3\hat{k}$ and $3\hat{i}+\hat{j}-\hat{k}$ is displaced from the point work done by the forces is (B) 30 units (D) 50 units	
64.	Let $\vec{u}=\hat{i}+\hat{j},\vec{v}=\hat{i}-\hat{j}$ and $\vec{w}=\hat{i}+2\hat{j}+3\hat{k}$. If then $ \vec{w}\cdot\hat{n} $ is equal to (A) 0 (C) 2	\vec{v} \hat{n} is unit vector such that $\vec{u} \cdot \hat{n} = 0$ and $\vec{v} \cdot \hat{n} = 0$, (B) 1 (C) 3	
65.	The median of a set of 9 distinct observation the set is increased by 2, then the median of (A) is increased by 2 (C) is two times the original median	ns is 20.5. If each of the largest 4 observations of of the new set (B) is decreased by 2 (D) remains the same as that of the original set	
66.	In an experiment with 15 observations on x $\sum x^2 = 2830$, $\sum x = 170$, then following results were available:	
	One observation that was 20 was found to 30. Then the corrected variance is (A) 78.00 (C) 177.33	be wrong and was replaced by the correct value (B) 188.66 (D) 8.33	
67.	Five horses are in a race. Mr. A selects two of the horses at random and bets on them. probability that Mr. A selected the winning horse is		
. 1	(A) $\frac{4}{5}$ (C) $\frac{1}{5}$	(B) $\frac{3}{5}$ (D) $\frac{2}{5}$	
68	Figure A, B, C are mutually exclusive events such that P (A) = $\frac{3x+1}{3}$, P (B) = $\frac{1-x}{4}$ and P (C) = $\frac{1-2x}{2}$. The set of possible values of x are in the interval		
-			
	$(A) \left[\frac{1}{3}, \ \frac{1}{2} \right]$	(B) $\left[\frac{1}{3}, \frac{2}{3}\right]$	
	$(C) \left[\frac{1}{3}, \ \frac{13}{3} \right]$	(D) [0, 1]	

(D) $3\vec{u}\cdot\vec{v}\times\vec{w}$

(C) $\vec{u} \cdot \vec{w} \times \vec{v}$

	(C) $\frac{1}{8}$	(D) $\frac{1}{4}$
70.	The resultant of forces \vec{P} and \vec{Q} is \vec{R} . If \vec{Q} is reversed, then \vec{R} is again doubled. T (A) 3:1:1 (C) 1:2:3	\vec{Q} is doubled then \vec{R} is doubled. If the direction of then $P^2: Q^2: R^2$ is (B) $2:3:2$ (D) $2:3:1$
71.	Let R ₁ and R ₂ respectively be the maximum the maximum range on the horizontal plane (A) arithmetic–geometric progression (C) G.P.	m ranges up and down an inclined plane and R be e. Then R ₁ , R, R ₂ are in (B) A.P. (D) H.P.
72.		orming the couple is \vec{P} . If \vec{P} is turned through a softened is \vec{H} . If instead, the forces \vec{P} are turned tuple becomes $(B) \ \vec{H} \ \cos \alpha + \vec{G} \ \sin \alpha \\ (D) \ \vec{H} \ \sin \alpha - \vec{G} \ \cos \alpha$
73.	one with uniform velocity \vec{u} and the other f	The relative velocity of the second particle with $\frac{f\cos\alpha}{u}$ (D) $\frac{u\cos\alpha}{u}$

The mean and variance of a random variable having a binomial distribution are 4 and 2

(B) $\frac{1}{16}$

74. Two stones are projected from the top of a cliff h meters high, with the same speed u so as to hit the ground at the same spot. If one of the stones is projected horizontally and the other is projected at an angle θ to the horizontal then tan θ equals

(A)
$$\sqrt{\frac{2u}{gh}}$$

69.

(A) $\frac{1}{32}$

respectively, then P(X = 1) is

(B)
$$2g\sqrt{\frac{u}{h}}$$

(D)
$$u\sqrt{\frac{2}{gh}}$$

A body travels a distances s in t seconds. It starts from rest and ends at rest. In the first part of the journey, it moves with constant acceleration f and in the second part with constant retardation r. The value of t is given by

(A)
$$2s\left(\frac{1}{f} + \frac{1}{r}\right)$$

(B)
$$\frac{2s}{\frac{1}{f} + \frac{1}{r}}$$

(C)
$$\sqrt{2s(f+r)}$$

(D)
$$\sqrt{2s\left(\frac{1}{f}+\frac{1}{r}\right)}$$

Solutions

1. Clearly both one – one and onto

Because if n is odd, values are set of all non-negative integers and if n is an even, values are set of all negative integers.

Hence, (C) is the correct answer.

2.
$$z_1^2 + z_2^2 - z_1 z_2 = 0$$

 $(z_1 + z_2)^2 - 3z_1 z_2 = 0$
 $a^2 = 3b$.

Hence, (C) is the correct answer.

5.
$$\begin{vmatrix} a & a^2 & 1 \\ b & b^2 & 1 \\ c & c^2 & 1 \end{vmatrix} + \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = 0$$

(1 + abc)
$$\begin{vmatrix} a & a^2 & 1 \\ b & b^2 & 1 \\ c & c^2 & 1 \end{vmatrix} = 0$$

$$\Rightarrow$$
 abc = -1.

Hence, (B) is the correct answer

4.
$$\frac{1+i}{1-i} = \frac{(1+i)^2}{2} = i$$

$$\left(\frac{1+i}{1-i}\right)^x = i^x$$

$$\Rightarrow$$
 x = 4n.

Hence, (A) is the correct answer.

6. Coefficient determinant = 1 2a a 1 3b b = 0

$$\Rightarrow$$
 b = $\frac{2ac}{a+c}$

Hence, (C) is the correct answer

8.
$$x^2 - 3(x) + 2 = 0$$

 $(|x| - 1)(|x| - 2) = 0$

$$\Rightarrow$$
 $x = \pm 1, \pm 2.$

Hence, (B) is the correct answer

7. Let α , β be the roots

$$\alpha + \beta = \frac{1}{\alpha^2} + \frac{1}{\beta^2}$$

$$\alpha + \beta = \frac{\alpha^2 + \beta^2 - 2\alpha\beta}{(\alpha + \beta)}$$

$$\left(-\frac{b}{a}\right) = \frac{b^2 - 2ac}{c^2}$$

$$\Rightarrow$$
 2a²c = b (a² + bc)

$$\Rightarrow \frac{a}{c}, \frac{b}{a}, \frac{c}{b}$$
 are in H.P.

Hence, (C) is the correct answer

10.
$$A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} a & b \\ b & a \end{bmatrix} \begin{bmatrix} a & b \\ b & a \end{bmatrix}$$

$$= \begin{bmatrix} a^{2} + b^{2} & 2ab \\ 2ab & a^{2} + b^{2} \end{bmatrix}$$

$$\Rightarrow \alpha = a^{2} + b^{2}, \beta = 2ab.$$
Hence, (R) is the correct argument.

Hence, (B) is the correct answer.

9.
$$\beta = 2\alpha$$

$$3\alpha = \frac{3a-1}{a^2-5a+3}$$

$$2\alpha^2 = \frac{2}{a^2-5a+6}$$

$$\frac{(3a-1)^2}{a(a^2-5a+3)^2} = \frac{1}{a^2+5a+6}$$

$$\Rightarrow a = \frac{2}{3}.$$

Hence, (A) is the correct answer

- Clearly 5! × 6! 12. (A) is the correct answer
- Number of choices = ${}^5C_4 \times {}^8$ 11. = 140 + 56.Hence, (B) is the correct answer

13.
$$\Delta = \begin{vmatrix} 1 + \omega^{n} + \omega^{2n} & \omega^{n} & \omega^{2n} \\ 1 + \omega^{n} + \omega^{2n} & \omega^{2n} & 1 \\ 1 + \omega^{n} + \omega^{2n} & 1 & \omega^{n} \end{vmatrix}$$

Since, $1 + \omega^n + \omega^{2n} = 0$, if n is not a multiple of 3 Therefore, the roots are identical. Hence, (A) is the correct answer

14.
$${}^{n}C_{r+1} + {}^{n}C_{r-1} + {}^{n}C_{r} + {}^{n}C_{r}$$

$$= {}^{n+1}C_{r+1} + {}^{n+1}C_{r}$$

Hence, (B) is the correct answer

17.
$$\frac{1}{1 \cdot 2} - \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} - \dots$$
$$= 1 - \frac{1}{2} - \frac{1}{2} + \frac{1}{3} + \frac{1}{3} - \frac{1}{4} - \dots$$

$$= 1 - 2\left(\frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \dots\right)$$

$$= 2\left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots\right) - 1$$

$$= 2 \log 2 - \log e$$

$$= \log\left(\frac{4}{e}\right).$$

Hence, (D) is the correct answer.

- 15. General term = 256 C_r ($\sqrt{3}$) $^{256-r}$ [(5) $^{1/8}$]^r From integral terms, or should be 8k \Rightarrow k = 0 to 32. Hence, (B) is the correct answer.
- 18. $f(x) = ax^2 + bx + c$ f(1) = a + b + c f(-1) = a - b + c $\Rightarrow a + b + c = a - b + c$ also 2b = a + c f'(x) = 2ax + b = 2ax $f'(a) = 2a^2$ f'(b) = 2ab f'(c) = 2ac $\Rightarrow AP$. Hence, (A) is the correct answer.
- 19. Result (A) is correct answer.
- 20. (B)

21.
$$a\left(\frac{1+\cos C}{2}\right) + c\left(\frac{1+\cos A}{2}\right) = \frac{3b}{2}$$

$$\Rightarrow a + c + b = 3b$$

$$a + c = 2b.$$
Hence, (A) is the correct answer

26.
$$f(1) = 7$$

$$f(1 + 1) = f(1) + f(1)$$

$$f(2) = 2 \times 7$$
only $f(3) = 3 \times 7$

$$\sum_{r=1}^{n} f(r) = 7 \cdot (1 + 2 + \dots + n)$$

$$= 7 \cdot \frac{n(n+1)}{2}.$$

23.
$$-\frac{\pi}{4} \le \frac{\sin^2 x}{2} \le \frac{\pi}{4}$$
 $-\frac{\pi}{4} \le \sin^{-1}(a) \le \frac{\pi}{4}$

$$\frac{1}{2} \le |a| \le \frac{1}{\sqrt{2}}.$$

Hence, (D) is the correct answer

27. LHS =
$$1 - \frac{n}{1!} + \frac{n(n-1)}{2!} - \frac{n(n-1)(n-2)}{3!} + \dots$$

= $1 - {}^{n}C_{1} + {}^{n}C_{2} - \dots$
= 0.

Hence, (C) is the correct answer

30.
$$\lim_{x\to 0} \frac{\frac{1}{3+x} + \frac{1}{3-x}}{1} = \frac{2}{3}.$$

Hence, (C) is the correct answer.

28.
$$4 - x^{2} \neq 0$$

$$\Rightarrow x \neq \pm 2$$

$$x^{3} - x > 0$$

$$\Rightarrow x (x + 1) (x - 1) > 0.$$
Hence (D) is the correct answer.

29.
$$\lim_{x \to \pi/2} \frac{\tan\left(\frac{\pi}{4} - \frac{x}{2}\right)(1 - \sin x)}{4\left(\frac{\pi}{4} - \frac{x}{2}\right)(\pi - 2x)^2}$$
$$= \frac{1}{32}.$$

Hence, (C) is the correct answer

32.
$$f(-x) = -f(x)$$

Hence, (B) is the correct answer

1.
$$\sin (\theta + \alpha) = \frac{x}{40}$$

 $\sin a = \frac{x}{140}$
 $\Rightarrow x = 40$.
Hence, (B) is the correct answer

34.
$$f(x) = 0$$
 at $x = p$, q
 $6p^2 + 18ap + 12a^2 = 0$
 $6q^2 + 18aq + 12a^2 = 0$
 $f''(x) < 0$ at $x = p$
and $f''(x) > 0$ at $x = q$.

30. Applying L. Hospital's Rule
$$\lim_{x\to 2a} \frac{f(a)g'(a)-g(a)f'(a)}{g'(a)-f'(a)} = 4$$

$$\frac{k(g'(a) - ff'(a))}{(g'(a) - f'(a))} = 4$$

k = 4

Hence, (A) is the correct answer.

36.
$$\int_{a}^{b} x f(x) dx$$

$$= \int_{a}^{b} (a+b-x) f(a+b-x) dx.$$

Hence, (B) is the correct answer.

33.
$$f'(0)$$

$$f'(0-h) = 1$$

$$f'(0+h) = 0$$

$$LHD \neq RHD.$$
Hence, (B) is the correct answer.

37.
$$\lim_{x \to 0} \frac{\tan(x^2)}{x \sin x}$$
$$= \lim_{x \to 0} \frac{\tan(x^2)}{x^2 \left(\frac{\sin x}{x}\right)}$$

= 1.

Hence (C) is the correct answer.

38.
$$\int_{0}^{1} x (1-x)^{n} dx = \int_{0}^{1} x^{n} (1-x)$$
$$= \int_{0}^{1} (x^{n} - x^{n+1}) = \frac{1}{n+1} - \frac{1}{n+2}$$

Hence, (C) is the correct answer

35.
$$F(t) = \int_{0}^{t} f(t - y) f(y) dy$$
$$= \int_{0}^{t} f(y) f(t - y) dy$$

$$= x^{t} - (1 + t).$$

Hence, (B) is the correct answer.

34. Clearly
$$f''(x) > 0$$
 for $x = 2a \Rightarrow q = 2a < 0$ for $x = a \Rightarrow p = a$ or $p^2 = q \Rightarrow a = 2$.
Hence, (C) is the correct answer.

40.
$$F'(x) = \frac{e^{\sin x}}{3^x}$$

$$= \int \frac{3}{x} e^{\sin x} dx = F(k) - F(1)$$

$$= \int_{1}^{64} \frac{e^{\sin x}}{x} dx = F(k) - F(1)$$

$$= \int_{1}^{64} F'(x) dx = F(k) - F(1)$$

$$F(64) - F(1) = F(k) - F(1)$$

$$\Rightarrow$$
 k = 64.

Hence, (D) is the correct answer.

41. Clearly area =
$$2\sqrt{2} \times \sqrt{2}$$

= sq units

Let p (x, y)

$$(x - a_1)^2 + (y - b_1)^2 = (x - a_2)^2 + (y - b_2)^2$$

$$(a_1-a_2) x + (b_1-b_2) y + \frac{1}{2} (b_2^2-b_1^2+a_2^2-a_1^2) - 0.$$

Hence, (A) is the correct answer.

46.
$$x = \frac{a \cos t + b \sin t + 1}{3}, y = \frac{a \sin t - b \cos t}{3}$$

$$\left(x - \frac{1}{3}\right)^2 + y^2 = \frac{a^2 + b^2}{9}.$$

Hence, (B) is the correct answer

43. Equation
$$y^2 = 4a 9x - h$$

$$2yy_1 = 4a \Rightarrow yy_1 = 2a$$

 $yy_2 = y_1^2 = 0$.

$$v_{1/2} - v_{1/2}^2 - 0$$

Hence (B) is the correct answer.

42.
$$\int_{1}^{1} f(x) [x^{2} + f(x)] dx$$

plying this by putting f'(x) = f(x). lender, (B) is the correct answer.

tersection of diameter is the point (1, -1)

$$\pi s^2 = 154$$

$$\Rightarrow$$
 s² = 49

$$(x-1)^2 + (y+1)^2 = 49$$

Hence, (C) is the correct answer.

49.
$$\frac{dx}{dy} (1 + y^2) = (e^{\sin^{-1} y} - x)$$

$$\frac{dx}{dy} + \frac{x}{1+y^{\alpha}} = \frac{e^{sub^{-1}-y}}{1+y^2}$$

52.
$$\frac{x^2}{\left(\frac{12}{5}\right)^2} - \frac{y^2}{\left(\frac{9}{5}\right)^2} = 1$$

$$\Rightarrow e_1 = \frac{5}{4}$$

$$ae_2 = \sqrt{1 - \frac{b^2}{16}} \times 4 = 3$$

$$\Rightarrow b^2 = 7.$$
Hence (C) is the correct answer

Hence, (C) is the correct answer.

Hence, (A) is the correct answer.

49.
$$(x-1)^2 + (y-3)^2 = 2$$

 $(x-4)^2 + (y+2)^2 - 160 + 4 + 8 = 0$
 $(x-4)^2 + (y+2)^2 = 12$

(D) is the correct answer.

65.
$$0 \le \frac{3x+1}{3} + \frac{1-x}{4} + \frac{1-2x}{2} \le 1$$

 $12x+4+3-3x+6-12x \le 1$
 $0 \le 13-3x \le 12$
 $3x \le 13$
 $\Rightarrow x \ge \frac{1}{3}$
 $x \le \frac{13}{3}$.

Hence, (C) is the correct answer.

3.
$$\operatorname{Arg}\left(\frac{z}{\omega}\right) = \frac{\pi}{2}$$
$$|z\omega| = 1$$
$$\overline{z}\omega = -i \text{ or } +i.$$