SOLUTION \& ANSWER FOR ISAT-2010 - PAPER - II
 VERSION - A

[PHYSICS, CHEMISTRY \& MATHEMATICS]

PART A - PHYSICS

1. The pseudo force on the object as seen \qquad

Ans: 2 mg upwards

Sol: When the rectangular box falls with acceleration 2 g , the pseudo force acting on the mass m attached to the box is 2 mg upwards.
2. The net force (pseudo force + all real forces) on -

Ans: 0

Sol: The mass is at rest with respect to the box. Hence the net force is zero.
3. Now the robot releases the object ------

Ans: CD in time square root of H / g
Sol: When released, the relative acceleration of the mass is $(2 \mathrm{~g}-\mathrm{g})=\mathrm{g}$ upwards.
Assuming the mass is the centre ($\frac{\mathrm{H}}{2}$ from $C D)$, time required to hit $C D$ is given by
$\frac{1}{2} \mathrm{gt}^{2}=\frac{\mathrm{H}}{2}$

$$
\Rightarrow t=\sqrt{\frac{\mathrm{H}}{\mathrm{~g}}}
$$

4. A square loop and an electric dipole \vec{p} are fixed on a light plastic plate-------

Ans: Along negative z direction
Sol: $\quad \overline{\mathrm{m}} \times \overline{\mathrm{B}}=-(\overline{\mathrm{p}} \times \overline{\mathrm{E}})$
$m(-\hat{k}) \times B(\hat{j})=-[p(\hat{\mathrm{j}}) \times \overline{\mathrm{E}}]$
$\overline{\mathrm{E}}=\mathrm{E}(-\hat{\mathrm{k}})$
5. Positive electric charge is distributed uniformly on the surface of a thin spherical
Ans : $\overline{\mathrm{E}}$ is normal to the plane of the rim, pointing upwards.

Sol: By symmetry, all the field components in the plane of the rim of the bottom hemisphere will add up to zero. The normal component at P points upwards.
6. Two equal positive charges A and B are kept fixed at the \qquad

Ans: $\frac{\pi}{2}, \sin ^{-1}(3 / 4)$

Sol: For the released charge to move along Y -axis, the forces along X -axis must balance.
$\therefore \frac{\mathrm{Kq}}{10^{2}} \sin \theta=\frac{\mathrm{Kq}}{15^{2}}$
$\therefore \sin \theta=\frac{10^{2}}{15^{2}}=\frac{4}{9}$
The only choice is (b) which meets condition for motion along x.
7. An electric charge $+q$ is located at each of the points \qquad
Ans: $\frac{\mathrm{q}}{2 \pi \varepsilon_{0} \mathrm{a}} \times \frac{\mathrm{s}}{\mathrm{s}+1}$

Sol: Potential at origin

$$
\begin{aligned}
& =2 \frac{\mathrm{kq}}{\mathrm{a}}\left[1+\frac{1}{\mathrm{~s}^{2}}+\frac{1}{\mathrm{~s}^{4}}+. .\right]-\frac{2 \mathrm{kq}}{\mathrm{a}}\left[\frac{1}{\mathrm{~s}}+\frac{1}{\mathrm{~s}^{3}}+\ldots\right] \\
& =\frac{2 \mathrm{kq}}{\mathrm{a}}\left[\frac{1}{1-\frac{1}{s^{2}}}\right]-\frac{2 \mathrm{kq}}{\mathrm{as}}\left[\frac{1}{1-\frac{1}{s^{2}}}\right] \\
& =\frac{2 \mathrm{kq}}{\mathrm{a}}\left[\frac{\mathrm{~s}^{2}}{\mathrm{~s}^{2}-1}\right]\left[1-\frac{1}{\mathrm{~s}}\right] \\
& =\frac{2 \mathrm{kq}}{\mathrm{a}}\left[\frac{\mathrm{~s}^{2}}{\mathrm{~s}^{2}-1}\right] \times \frac{\mathrm{s}-1}{\mathrm{~s}} \\
& =\frac{q}{2 \pi \varepsilon_{0} a} \times \frac{\mathrm{s}}{\mathrm{~s}+1}
\end{aligned}
$$

8. An electron (magnitude of charge e, mass m) is moving in a circular orbit

Ans: $n\left(\frac{h e B}{4 \pi m}\right)$

Sol: \quad Radius of orbit $=\frac{\mathrm{mv}}{q B}$
de-Broglie wavelength $\lambda=\frac{2 \pi r}{n}$
$=\frac{2 \pi m v}{n q B}$
$\Rightarrow \frac{\mathrm{h}}{\mathrm{mv}}=\frac{2 \pi \mathrm{mv}}{\mathrm{nqB}}$
$\therefore \frac{1}{2} m v^{2}=\frac{q B}{4 \pi m} . n h$
9. A source emits sound having a range of frequencies, the

Ans :

Sol: As the listener moves towards the source apparent frequency increases. Intensity remains the same.
10. An equilateral prism $A B C$ is made of a material of refractive index \qquad

Ans: 90°

Sol:

11. An ideal gas undergoes two successive processes A and B, in the process A, the \qquad

Ans : Process A is adiabatic, process B is isothermal.

Sol: Theoretical.
12. A thermally conducting piston can move freely in a thermally insulated cylindrical vessel, separating

Ans: $\frac{1}{10}$

Sol: $\quad P V_{1}=n_{1} R T$
$P V_{2}=n_{2} R T$
$\frac{V_{1}}{V_{2}}=\frac{n_{1}}{n_{2}}=\frac{L_{1}}{L_{2}}=\frac{\frac{m_{1}}{M_{1}}}{\frac{m_{2}}{M_{2}}}=\frac{\frac{14}{28}}{\frac{20}{4}}=\frac{1}{10}$
13. A solid rectangular parallelepiped has sides of lengths x, y and z , respectively

Ans: $\frac{\Delta z}{z}(1-2 v)$

Sol: \quad Original volume $=x y z=V$
relative change in volume $=\frac{\mathrm{dV}}{\mathrm{V}}$
$=\frac{\Delta x(y z)+\Delta y(z x)+\Delta z(x y)}{x y z}$
$=\frac{\Delta x}{x}+\frac{\Delta y}{y}+\frac{\Delta z}{z}$
Given $\frac{\Delta x}{x}=\frac{\Delta y}{y}=\frac{-v \Delta z}{z}$
\therefore relative change in volume
$=\frac{-v \Delta z}{z}-\frac{v \Delta z}{z}+\frac{\Delta z}{z}$
$=\frac{\Delta z}{z}(1-2 v)$
14. \qquad which does not contain a neutral oxide.

Ans: $\mathrm{CO}_{2}, \mathrm{SO}_{3}, \mathrm{CaO}, \mathrm{XeO}_{3}$

Sol: $\mathrm{CO}_{2}, \mathrm{SO}_{3}, \mathrm{XeO}_{3}$ - acidic (non metallic oxides). CaO -basic (metallic oxide)
15. The $X-E-X$ bond angle in $E X_{3}$ is

Ans: 90°
Sol: $3 p$ orbitals are mutually perpendicular to each other.
16. The species with metal ion having d^{5} configuration is

Ans: $\mathrm{K}_{4}\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]$
Sol: Mn is in +2 oxidation state and has d^{5} configuration
17. The monobasic acid among the following is

Ans: $\mathrm{H}_{3} \mathrm{PO}_{2}$

Sol: $\mathrm{H}_{3} \mathrm{PO}_{2}$ is a monobasic acid as there is only one -OH group in it.
18. The best explosive among the following is

Ans: d

Sol: The most unstable structure.
19. An organic compound on treatment with chromic acid $/ \mathrm{H}_{2} \mathrm{SO}_{4}$ gave a clear orange solution which turned greenish and opaque immediately. The compound is

Ans:

Sol: Secondary alcohols are oxidized to ketones by chromic acid
20. Among the following, the homo polymer is

Ans:

Sol: Structure (b), (c) and (d) are copolymers
21. The correct IUPAC nomenclature of the given compound is

Ans : ethyl-3-aminomethyl-5-cyano-2-hydroxy pentanoate

Sol:

ethyl-3-aminomethyl-5-cyano-2-hydroy pentanoate
22. standard molar enthalpies of a several substances are summarised

Ans :

$$
\begin{aligned}
\text { Sol: } \Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}-\mathrm{H}_{2(\mathrm{~g})} & =0, \mathrm{H}_{(\mathrm{aq})}^{+}=0 \\
\mathrm{Br}_{2(\mathrm{~g})} & =31 \mathrm{~kJ} \\
\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & =-241.8 \mathrm{~kJ} \\
\mathrm{D}_{2} \mathrm{O}(\mathrm{~g}) & =-249.2 \mathrm{~kJ} \\
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) & =-285.2 \mathrm{~kJ}
\end{aligned}
$$

23. The observed rate of a chemical reaction is substantially lower than the collision frequency....

Ans: A, B, \& D

Sol: A, B, \& D
24. The correct statement(s) for alkali halides is /are

Ans: A, B, \& D
Sol: Metal excess defect makes NaCl -yellow, LiCl-red and KCl -violet.
25. For the cell reaction, $\mathrm{Mg}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \rightarrow$ $\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s}), \ldots$.

Ans : $3.04 \mathrm{~V},-611.8 \mathrm{~kJ} \mathrm{~mol}^{-1}, 20000$

$$
\text { Sol: } \begin{aligned}
\mathrm{E}_{\text {cell }} & =\mathrm{E}_{\text {cell }}^{0}+\frac{0.06}{2} \log \frac{\left(\mathrm{Ag}^{+}\right)^{2}}{\left(\mathrm{Mg}^{2+}\right)} \\
& =3.17+0.03 \log \frac{(0.001)^{2}}{0.02} \\
& =3.04 \mathrm{~V} \\
\Delta \mathrm{G}^{\circ} & =-\mathrm{nFE} \\
& =-2 \times 96500 \times 3.17 \mathrm{~J} \mathrm{~mol}^{-1} \\
& =-611.81 \mathrm{~kJ} \mathrm{~mol}^{-1} .
\end{aligned}
$$

26. The most thermally stable polymer is

Ans: Polyethylene

Sol: Linear chain and hence effective packing.
27. The sum of the series ...

Ans: $\frac{2}{9}$

Sol: $S=1+3 r+5 r^{2}+7 r^{3} \ldots$
$S_{r}=r+3 r^{2}+7 r^{3} .$.
$S(1-r)=1+2 r+2 r^{2}+2 r^{3} \ldots$
$S(1-r)=1+\frac{2 r}{1-r}$

$$
\begin{aligned}
& \therefore S\left(1+\frac{1}{2}\right)=1+\frac{2 \times \frac{-1}{2}}{\frac{3}{2}}=1-\frac{2}{3}=\frac{1}{3} \\
& S \times \frac{3}{2}=\frac{1}{3} \Rightarrow S=\frac{2}{9}
\end{aligned}
$$

28. A group of 47 students received $27 \ldots$

Ans:18

$$
\begin{aligned}
& \text { Sol: } n(F)=27 \quad n(B)=26 \\
& \mathrm{n}(\mathrm{C})=28 \\
& n(F \cap B \cap C)=8 \\
& n(F \cup B \cup C)=n(F)+n(B)+n(C) \\
& -n(A \cap B)-n(B \cap C) \\
& -n(F \cap C)+n(A \cap B \cap C) \\
& 47=27+26+28-()+8 \\
& \therefore \mathrm{n}(\mathrm{~F} \cap \mathrm{~B})+\mathrm{n}(\mathrm{~B} \cap \mathrm{C})+\mathrm{n}(\mathrm{E} \cap \mathrm{C})=42 \\
& \therefore \text { No student received exactly two events } \\
& =42-3 n(A \cap B \cap C)=42-24 \\
& =18
\end{aligned}
$$

29. Let $f(x)=3 \int_{0}^{x} t^{2} f(t) d t+1, \ldots$.

Ans: e
Sol: $\quad f^{\prime}(x)=3 x^{2} f(x)$

$$
\begin{aligned}
& \frac{f^{\prime}(x)}{f(x)}=3 x^{2} \Rightarrow \log f(x)=x^{3}+C \\
& \therefore f(x)=C e^{x^{3}}-(1) \\
& f(0)=3 \int_{0}^{0} f^{2}(x)+1=1 \Rightarrow C=1 \\
& \therefore f(x)=e^{x^{3}} \Rightarrow f(1)=e
\end{aligned}
$$

30. The general solution of the

Ans: $y^{4}=C\left(\frac{x-2}{x+2}\right)$

Sol: $\quad \frac{d x}{x^{2}-4}=\frac{d y}{y} \Rightarrow \log y=\frac{1}{4} \log \left(\frac{x-2}{x+2}\right)$

$$
\Rightarrow y^{4}=C\left(\frac{x-2}{x+2}\right)
$$

31. If $f(x)=[x]$ denotes the greatest \ldots.

Ans: $\frac{3}{2}-\sqrt{2}$

Sol: $\quad \int_{0}^{3 / 2}\left(\left[x^{2}\right]-[x]^{2}\right) d x$

$$
\begin{aligned}
= & \int_{0}^{3 / 2}\left[x^{2}\right] d x-\int_{0}^{3 / 2}\left[x^{2}\right] d x \\
= & \int_{0}^{1}\left[x^{2}\right] d x-\int_{1}^{\sqrt{2}}[x]^{2} d x+\int_{0}^{3 / 2}\left[x^{2}\right] d x \\
& -\left(\int_{0}^{1}[x]^{2} d x+\int_{1}^{3 / 2}[x]^{2} d x\right. \\
= & 0+(\sqrt{2}-1)+2\left(\frac{3}{2}-\sqrt{2}\right)-\left[\left(\frac{3}{2}-1\right)\right] \\
= & \frac{3-2 \sqrt{2}}{2}=\frac{3}{2}-\sqrt{2}
\end{aligned}
$$

32. The value of $\lim _{x \rightarrow \infty}\left(e^{x}+x\right)^{1 / x}$ is

Ans: 1
Sol: $\lim _{x \rightarrow \infty}\left(\left(1+\frac{x}{e^{x}}\right)^{e^{x} / x}\right)^{\frac{1}{e^{x}}}$
$=\lim _{x \rightarrow \infty}\left(\left(1+\frac{x}{e^{x}}\right)^{e^{x} / x}\right)^{\frac{1}{e^{x}}}$
$=e^{0}=1$
33. Let z_{1}, z_{2}, z_{3} be complex numbers

Ans: $z_{2}+z_{3}=0$

Sol: Put $z_{2}=-z_{3}$
$\left|z_{1}+z_{3}\right|^{2}+\left|z_{1}-z_{3}\right|^{2}=4$
Indeed $2 \times\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=4$
$\therefore \mathrm{Z}_{2}+\mathrm{z}_{3}=0$
34. The number of ways in which 7 balls ...

Ans: $7^{7}-7$

Sol: 7 balls in 7 bags; Atmost 5 bags empty
Total number of ways $=7^{7}$
Let 6 bags be empty
$\Rightarrow{ }^{7} \mathrm{C}_{1}=7$
\therefore Atmost 5 bags empty is possible in $\left(7^{7}-7\right)$ ways
35. $\tan ^{-1} \frac{2}{11}+2 \tan ^{-1} \frac{1}{7}$ is \ldots.

Ans: $\tan ^{-1}\left(\frac{1}{2}\right)$
Sol: $\tan ^{-1}\left(\frac{2}{11}+\tan ^{-1}\left(\frac{2 \cdot \frac{1}{7}}{1-\frac{1}{49}}\right)\right)$

$$
\begin{aligned}
& \tan ^{-1} \frac{\left(2 \cdot \frac{1}{7} \cdot 49\right)}{49-1} \\
& \tan ^{-1}\left(\frac{14}{48}\right)=\tan ^{-1}\left(\frac{7}{24}\right)
\end{aligned}
$$

$$
\tan ^{-1} \frac{2}{11}+\tan ^{-1}\left(\frac{7}{24}\right)
$$

$$
=\tan ^{-1}\left(\frac{\frac{2}{11}+\frac{7}{24}}{1-\frac{2}{11} \times \frac{7}{24}}\right)
$$

$$
=\tan ^{-1}\left(\frac{48+77}{11 \times 24-14}\right)
$$

$$
=\tan ^{-1}\left(\frac{125}{250}\right)=\tan ^{-1}\left(\frac{1}{2}\right)
$$

36. A traffic police reports that...

Ans: $\frac{14}{5}\left(\frac{4}{5}\right)^{9}$

Sol: $\quad \mathrm{P}$ (outside the state) $=\frac{1}{5}$
$P($ inside the state $)=1-\frac{1}{5}=\frac{4}{5}$
\therefore there can be 9 inside state or 10 inside state vehicles.
Required probability

$$
\begin{aligned}
& ={ }^{10} \mathrm{C}_{9} \cdot\left(\frac{4}{5}\right)^{9} \cdot \frac{1}{5}+{ }^{10} \mathrm{C}_{10}\left(\frac{4}{5}\right)^{10} \\
& =\frac{4^{9}}{5^{10}}(10+4)=\frac{14 \times 4^{9}}{5^{10}}
\end{aligned}
$$

37. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be three non-zero vectors

Ans: $\left(\frac{\overline{\mathrm{a}} \overline{\mathrm{c}}}{\overline{\mathrm{b}} \cdot \overline{\mathrm{c}}}\right)(\overline{\mathrm{a}} \times \overline{\mathrm{b}})$
Sol: $\quad \bar{c} \times(\bar{r} \times \bar{b})=\bar{c} \times(\bar{a} \times \bar{b})$
$(\bar{c} . \bar{b}) \stackrel{r}{r}-(\bar{c} \cdot \bar{r}) \bar{b}=(\bar{c} \cdot \bar{b}) \bar{a}-(\bar{c}-\bar{a}) \bar{b}$
$\therefore(\overline{\mathrm{c}} . \overline{\mathrm{b}}) \overline{\mathrm{r}}=(\overline{\mathrm{c}} \cdot \overline{\mathrm{b}}) \overline{\mathrm{a}}-(\overline{\mathrm{c}} . \overline{\mathrm{a}}) \mathrm{b}$
Since $\bar{c} \cdot \bar{r}=0$
$\therefore(\bar{c} . \bar{b})(\bar{r} \times \bar{a})=(\bar{c} . \bar{b}) \overline{\mathrm{a}} \times \overline{\mathrm{a}}-(\overline{\mathrm{c}} . \overline{\mathrm{a}})(\overline{\mathrm{b}} \times \overline{\mathrm{a}})$
$\therefore \overline{\mathrm{r}} \times \overline{\mathrm{a}}=\frac{(\overline{\mathrm{c}} . \overline{\mathrm{a}})}{(\overline{\mathrm{b}} \cdot \overline{\mathrm{c}})}(\overline{\mathrm{a}} \times \overline{\mathrm{b}})$
$=\left(\frac{\overline{\mathrm{a}} \overline{\mathrm{c}}}{\overline{\mathrm{b}} \cdot \overline{\mathrm{c}}}\right)(\overline{\mathrm{a}} \times \overline{\mathrm{b}})$
38. Let an object be placed at ...

Ans: $5 \sqrt{3}$

Sol: $\quad \tan 30=\frac{n}{10+x}=\frac{1}{\sqrt{3}}=\frac{n}{10+x}$

$$
10+x=\sqrt{3} h
$$

$$
10+\frac{h}{\sqrt{3}}=\sqrt{3} h
$$

$$
10 \sqrt{3}+h=3 h
$$

$$
2 h=10 \sqrt{3}
$$

$$
h=5 \sqrt{3}
$$

39. An unbiased die is rolled

Ans: $5\left(\frac{1}{2}\right)^{6}$
Sol: $5^{\text {th }}$ and $6^{\text {th }}$ trials will have even numbered faces \qquad E E
The remaining 4 trials can be filled only as follows:
2E $20 \rightarrow 1$ way
3E $10 \rightarrow 3$ ways
$40 \rightarrow 1$ ways
5 ways to fill and $P(E) P(O)=\frac{1}{2}$
$\therefore 5\left(\frac{1}{2}\right)^{6}$
40. A student is allowed to select

Ans:3

Sol: Atleast one book and Atmost n
$\Rightarrow{ }^{2 n+1} C_{1}+{ }^{2 n+2} C_{2}+\ldots+{ }^{2 n+1} C_{n}=63$
But $\sum_{r=0}^{2 n+1}{ }^{2 n+1} C_{r}=2^{2 n+1}$ and
${ }^{2 n+1} C_{r}={ }^{2 n+1} C_{2 n+1-r}$
$\therefore 2\left[{ }^{2 n+1} C_{1}+\ldots+{ }^{2 n+1} C_{n}\right]=2^{2 n+1}-2$
$\Rightarrow 2(63)=2^{2 n+1}-2$
$\Rightarrow 2 \mathrm{n}=6 \Rightarrow \mathrm{n}=3$

