Chemical Sciences Paper I(PART 'B')

41.	Complexes of which of the following metals are used in the treatment of
	rheumatoid arthritis:

- 1. Gold
- 2. Ruthenium
- 3. Iron
- 4. Copper

42. Non-heme iron-sulfur proteins are involved in:

- 1. Electron transfer.
- 2. Proton transfer.
- 3. Both electron and proton transfer
- 4. Oxygen transfer.
- 43. Active catalytic species for hydroformylation is
 - 1. $RuCl_2(PPh_3)_3$
 - 2. $HCo(CO)_3$
 - 3. $RhCl(PPh_3)_3$
 - 4. K_2PtCl_6
- 44. The unit of molar absorptivity is:
 - 1. $L \text{ mol}^{-1} \text{ cm}^{-1}$
 - 2. $L^{-1} \text{ mol cm}^{-1}$
 - $L \text{ mol cm}^{-1}$
 - 4. L mol cm
- 45. Gelatin is added during polarographic measurements to:
 - 1. reduce streaming motion of falling mercury drop
 - 2. increase I_d
 - 3. increase $E_{1/2}$
 - 4. eliminate residual current
- 46. The element that shows both +3 and +4 oxidation states is:
 - 1. Cerium
 - 2. Promethium
 - 3. Gadolinium
 - 4. Holmium

47.	The number of 3c, 2e BHB bonds present in B ₄ H ₁₀ is				
	1. 2 2. 3 3. 4 4. 0				
48.	In BrF3 as a solvent SnF4 and KF behave as				
	 acid and base, respectively base and acid, respectively acids bases 				
49.	The effective nuclear charge (Z^*) for the 1s electron of $_8O$ according to Slater's rules is nearly				
	1. 4.55 2. 3.45 3. 7.65 4. 5.45				
50.	Among the species ${\rm O_2}^+, {\rm O_2}$ and ${\rm O_2}^-,$ the order of first ionization energy is				
	1. $O_2^+ < O_2 < O_2^-$ 2. $O_2^- < O_2 < O_2^+$ 3. $O_2^- < O_2^+ < O_2$ 4. $O_2^+ < O_2^- < O_2$				
51.	CO bond order is lowest in				
	 uncoordinated CO CO bonded to one metal CO bridging two metals CO bridging three metals 				

The most **unstable** species among the following is

52.

1.

2.

3. 4. $\begin{array}{l} Ti(C_2H_5)_4 \\ Ti(CH_2Ph)_4 \end{array}$

Pb(CH₃)₄ Pb(C₂H₅)₄

	1. Mo ₂ (NMe ₂) ₆ 2. Mn ₂ (CO) ₁₀ 3. Fe ₂ (CO) ₉					
	$4. \qquad \operatorname{Re}_{2}\operatorname{Cl}_{8}^{2^{2}}$					
54.	. In which one of the following pairs the species have similar geometry?					
	 CO₂ and SO₂ NH₃ and BH₃ CO₃²⁻ and SO₃²⁻ SO₄²⁻ and ClO₄⁻ 					
55.	On oxidative addition of O ₂ to Ir(CO)Cl(PPh ₃) ₂ , the oxidation state and coordination number of Ir changes, respectively, by					
	1. 1 and 3 2. 2 and 2 3. 3 and 1					
	4. 2 and 3					
56.	In linear metal nitrosyls NO acts as a/an:					
	1. One electron donor					
	2. Two electron donor					
	3. Three electron donor4. Four electron donor					
	4. Four electron donor					
57.	Among the following molecules, the dipole moment is the highest for					
	1. NH ₃					
	2. $trans$ -[PtCl ₂ (NH ₃) ₂]					
	3. BF_3					
	$4. \qquad NF_3$					
58.	An element 'X' emits successively two β particles, one α particle, one positron and one neutron. The mass and atomic numbers of the element are decreased by, respectively,					
	1. 4 and 1					
	2. 5 and 1					
	3. 3 and 2					
	4. 3 and 1					

In which of the following species quadrupole bonding is involved?

53.

- The ¹H NMR spectrum of $(\eta^5-C_5H_5)_2$ Fe recorded at room temperature has 59. 1. One singlet 2. One multiplet
- In the estimation of Fe²⁺ by Cr₂O₇²⁻ using barium diphenylamine sulfonate as 60. indicator, H₃PO₄ is added to
 - 1.
 - 2.
 - maintain the pH of the medium decrease the $Fe^{2+/3+}$ potential increase the oxidizing power of $Cr_2O_7^{2-}$ 3.
 - 4. stabilize the indicator

Two singlets

Two multiplets

- 61. The polymeric species (SN)_n is a / an
 - 1. three dimensional conductor
 - 2. two dimensional conductor
 - 3. insulator

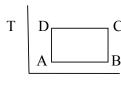
3.

4

- 4. one dimensional conductor
- 62. Among feldspar, muscovite mica and zeolite,
 - 1. all are three dimensional silicates
 - feldspar and zeolite are three dimensional, while muscovite mica is 2.
 - feldspar is three dimensional, while zeolite and muscovite mica are 3. layered
 - all are layered silicates 4.
- 63. The molar absorptivity at λ_{max} is minimum for
 - $$\begin{split} & \left[Mn(H_2O)_6\right]^{2+} \\ & \left[Cr(H_2O)_6\right]^{2+} \\ & \left[Co(H_2O)_6\right]^{2+} \\ & \left[Fe(H_2O)_6\right]^{2+} \end{split}$$
 1.
 - 2.
 - 3.
 - 4.
- The acid catalyzed hydrolysis of trans- $[Co(en)_2AX]^{n+}$ can give cis- product 64. also due to the formation of
 - 1. square pyramidal intermediate
 - 2. trigonal bipyramidal intermediate
 - 3. pentagonal bipyramidal intermediate
 - 4. face capped octahedral intermediate

65.	The total number of lines expected in ^{1}H NMR spectrum of HPF ₂ is (I = $1/2$ for both ^{19}F and ^{31}P)				
	 six four five three 				
66.	In the inner sphere reduction of $[Co(NH_3)_5Cl]^{2+}$ with $[Cr(OH_2)_6)]^{2+}$, the chloride				
	 bridges the metal centres only mediates electron transfer only bridges and mediates electron transfer both does not play any role 				
67.	The number of faces and edges in IF ₇ polyhedron are, respectively				
	1. 15 and 15 2. 10 and 15 3. 10 and 10 4. 15 and 10				
68.	Among N_2 , N_3^- , azobenzene and hydrazine, the shortest and longest $N\!-\!N$ distances are found, respectively, in				
	 N₃ and hydrozine N₂ and azobenzene N₃ and azobenzene N₂ and hydrazine 				
69.	O_2 can be converted to O_2^+ by using				
	1. PtF ₆ 2. KF 3. Na ₂ S ₂ O ₃ 4. Br ₂				
70.	Only one absorption band is observed in visible region of spectrum of				
	1. [Ni(H ₂ O) ₆] ²⁺ 2. [Ti(H ₂ O) ₆] ³⁺ 3. [Fe(CN) ₆] ⁴⁻ 4. VO ₄ ³⁻				

- 71. CFSE of transition metal complexes can be determined by
 - UV-visible spectroscopy 1.
 - 2. IR spectroscopy
 - 3. Microwave spectroscopy
 - 4. NMR spectroscopy
- Which two among $[Fe(CN)_6]^{3-}$, $[FeF_6]^{3-}$, $[Cu(bpy)_2]^{2+}$ (bpy = 2,2'-bipyridine) 72. and $[Mn(acac)_3]$ (acac = acetylacetonate anion) show the same spin-only magnetic moment?
 - 1.
 - $[Fe(CN)_6]^{3-}$ and $[FeF_6]^{3-}$ $[Fe(CN)_6]^{3-}$ and $[Cu(bpy)_2]^{2+}$ $[FeF_6]^{3-}$ and $[Mn(acac)_3]$ $[Cu(bpy)_2]^{2+}$ and $[Mn(acac)_3]$ 2.
 - 3.
 - 4.
- 73. In aqueous medium a mixture of KI and I2 converts thiosulfate to


 - 2.
 - $S_4O_6^{2-} SO_4^{2-} S_2O_6^{2-} S_2O_4^{2-}$ 3.
 - 4.
- 74. An exothermic reaction will necessarily follow the condition
 - 1. $\Delta H < 0$
 - $\Delta H > 0$ 2.
 - $\Delta H = 0$ 3.
 - 4. $\Delta S = 0$
- 75. The unit of rate constant (k) for a zero-order reaction is
 - s^{-1} 1.
 - L mol⁻¹ s⁻¹ 2.
 - 3.
 - mol L⁻¹ s⁻¹ 4.
- 76. Heating is observed when N_2 gas at 200 atm is expanded at T > 600 K. It is because
 - 1. inversion temperature is smaller than 600 K
 - 2. N₂ is a real gas
 - Joule-Thomson coefficient is negative 3.
 - 4. Joule-Thomson coefficient is positive

77. Increase in disorder is more if

- 1. heat is absorbed reversibly at higher temperature
- 2. heat is absorbed reversibly at lower temperature
- 3. heat absorbed reversibly is independent of temperature
- 4. heat absorbed reversibly is independent of phase of the system.
- 78. The term symbol of Li₂⁺ with configuration $(1\sigma_g)^2(1\sigma_u)^2(2\sigma_g)^1$ is
 - 1. \sum_{g}^{1}
 - 2. \sum_{g}^{1}
 - 3. $\sum_{k=0}^{2}$
 - 4. $\sum_{k=1}^{2}$
- 79. Which one of the following equations is used for the calculation of equilibrium constant (K) of an electrochemical cell reaction (n = number of electrons transferred, <math>F = Faraday constant and $E^{\circ} = standard redox potential$)?
 - 1. $\ln K = (nFE^o/RT)$
 - $2. \ln K = -(nFE^{o}/RT)$
 - 3. $\ln K = (RT/nFE^{o})$
 - 4. $\ln K = -(RT/nFE^{o})$
- 80. Cubic close packing of *n* spheres generates the following number of interstitial sites
 - 1. 2*n* octahedral and *n* tetrahedral sites
 - 2. *n* octahedral and *n* tetrahedral sites
 - 3. 2n octahedral and 2n tetrahedral sites
 - 4. *n* octahedral and 2*n* tetrahedral sites
- 81. The point group symmetry of the molecule CH₂Cl₂ is
 - 1. C_{2h}
 - C_{2v}
 - D_{2h}
 - 4. D_{2d}
- 82. The point group symmetries of isosceles and equilateral triangles respectively are
 - 1. C_{3v} and D_{2d}
 - 2. D_{3h} and D_{2d}
 - 3. D_{3h} and C_{2v}
 - 4. C_{3v} and C_{2v}

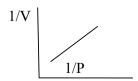
83.	The infrared spectrum of CO ₂ exhibits the following number of absorptions:				
	1. one				
	2. two				
	3. three				
	4. four				
84.	The first line in the rotational Raman spectra of a diatomic molecule appears with a Stokes shift of 12 cm ⁻¹ . The Stokes shift for the second line is				
	1. 36 cm^{-1}				
	2. 24 cm ⁻¹				
	3. 18 cm ⁻¹				
	4. 20 cm ⁻¹				
	1. 20 cm				
85.	Which of the following molecules shows EPR resonance?				
	$1. H_2O$				
	O_2				
	3. H_2O_2				
	4. CO_2				
86.	The R branch in the vibrational spectra of AX exhibits a set of equally spaced lines with a separation of $10~\text{cm}^{-1}$. The rotational constant of AX is				
	1. 10 cm^{-1}				
	2. 20 cm ⁻¹				
	3. 5 cm ⁻¹				
	4. 15 cm ⁻¹				
	1. 13 VIII				
87.	Overtones are observed in the vibrational spectra of diatomic molecules when				
	1. anharmonicity is large				
	2. anharmonicity is absent				
	3. vibration and rotational modes are coupled				
	4. an alternating electric field is applied				
	an attendants electric field is applied				
88.	Which of the following electronic transitions is disallowed?				
	1. $\pi \to \pi^*$				
	2. $\sigma \rightarrow \sigma^*$				
	3. $n \rightarrow \pi^*$				
	4. $\delta \rightarrow \delta^*$				

89. If the Carnot cycle in entropy-temperature diagram looks as below,

then the system rejects heat to the surroundings in going from

- 1. $B \rightarrow A$
- 2. $A \rightarrow B$
- $D \rightarrow C$ 3.
- 4. $C \rightarrow D$
- 90. The correlation coefficient $\rho(x, y)$ for two variables x and y satisfies
 - 1. $-1 \le \rho(x, y) \le 1$
 - 2. $-1 < \rho(x, y) < 1$
 - 3. $0 \le \rho(x, y) \le 1$
 - $0 < \rho(x, y) < 1$ 4.
- 91. When we introduce anharmonicity in the harmonic vibrator model of a diatomic molecule, the energy-level spacing changes from
 - 1. equal to gradually decreasing
 - 2. gradually decreasing to equal
 - 3. equal to gradually increasing
 - 4. gradually increasing to equal
- 92. For a one-electron atom with nuclear charge Z, the speed v_n of the electron in some n-th stationary orbit satisfies
 - $v_n \propto \, Z$ 1.
 - $v_n \propto \, Z^{\,2}$ 2.
 - 3.
 - $v_n \propto Z^{-1}$ $v_n \propto Z^{-2}$ 4
- 93. The optimized variational wavefunction gives
 - 1. all properties and energy of same quality
 - 2. properties better than the energy
 - 3. energy better than properties
 - 4. equal kinetic and potential energy values

94.	The commutator [Ly, Lx] has a value equal to			
	1.	zero		
	2.	$-iL_Z$		
	3.	$-i\eta L_Z$		
	4.	$-nL_7$		


- 95. The following statement is true for *any* hermitian operator:
 - 1. All eigenvalues are real and non-degenerate
 - 2. All eigenfunctions are real
 - 3. All eigenfunctions are complex
 - 4. All eigenvalues are real

 $-\eta L_Z$

- 96. A δ molecular orbital of a diatomic molecule is defined by
 - 1. n = 32. $\ell = 2$
 - 3. $\lambda = 2$
 - 4. $m_{\ell} = 2$
- 97. The $2p_x$ hydrogenic orbital has the ϕ -part in its wavefunction of the form
 - $e^{-i\boldsymbol{\phi}}$ 1.
 - $e^{+i\boldsymbol{\phi}}$ 2.
 - 3. sin Φ
 - 4. cos Φ
- 98. Which of the following statements about valence bond (VB) and molecular orbital (MO) theory is false?
 - The VB uses non-orthogonal basis. 1.
 - 2. The simple MO theory does not include any ionic terms.
 - 3. The VB theory views molecules as composed of atomic cores and bonding valence electrons.
 - The MOs can be delocalized over all the atoms. 4.

- 99. If \hat{A} an operator and $\hat{A}\psi = i\eta \frac{d\psi}{dx}$, then $\hat{A}^2 \psi$ is given by
 - $1. \qquad -\eta^2 \left(\frac{d\psi}{dx}\right)^2$
 - $2. \qquad -\eta^2 \frac{d^2 \psi}{dx^2}$
 - 3. $\eta^2 \left(\frac{d\psi}{dx}\right)^2$
 - 4. $\eta^2 \frac{d^2 \psi}{dx^2}$
- 100. If all the energy-levels of a system are given a constant shift by an amount α , the entropy of the system
 - 1. does not change at all
 - 2. changes by the amount of α
 - 3. decreases
 - 4. increases, but irregularly
- 101. An equimolar mixture of two macromolecules of molar masses 10,000 and 30,000 will have the number average molar mass equal to:
 - $1. \qquad \overline{M}_n = 10,000$
 - 2. $\overline{M}_n = 15,000$
 - 3. $\overline{M}_n = 20,000$
 - $4. \qquad \overline{M}_n = 25,000$
- 102. Addition of a positive catalyst to an exothermic reaction
 - 1. increases exothermicity and activation barrier
 - 2. decreases exothermicity, but increases barrier
 - 3. increases exothermicity only
 - 4. decreases activation barrier, but does not change the exothermicity.
- 103. The electrical conductivity of a crystalline solid increases with temperature. The solid is a
 - 1. superconductor
 - 2. metal
 - 3. semiconductor
 - 4. semimetal

- 104. K_{sp} values for CuS, FeS, PbS and ZnS are 8.5×10^{-45} , 6.3×10^{-18} , 3.4×10^{-28} and 1.6×10^{-24} , respectively. If H_2S gas is passed through a solution containing these ions with same molar concentration, the ion that will precipitate first is
 - 1. Pb^{2+}
 - 2. Zn^{2+}
 - 3. Fe^{2+}
 - 4. Cu^{2+}
- 105. The experimental adsorption data of a gas on a solid surface at temperature T exhibits the following variation with pressure. V is the volume of gas adsorbed.

Which of the following statements is true?

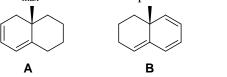
- 1. Heat of coverage varies linearly with temperature
- 2. Adsorption is multilayer
- 3. Heat of adsorption is independent of coverage
- 4. Complete coverage cannot be determined
- 106. The second order Bragg diffraction from the 100 planes of a cubic crystal is equivalent to
 - 1. the second order diffraction from the 200 planes
 - 2. first order diffraction from the 200 planes
 - 3. first order diffraction from the 400 planes
 - 4. first order diffraction from the 100 planes
- 107. IUPAC name of the compound given below is

- 1. 4-methylcyclohex-4-enecarboxylic acid
- 2. 4-methylcyclohex-3-enecarboxylic acid
- 3. 1-methylcyclohexene-4-carboxylic acid
- 4. 2-methylcyclohexene-5-carboxylic acid

108. The major product formed in the reaction given below is

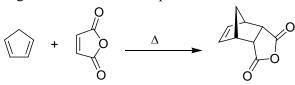
CHO
$$\frac{\text{i. NH}_2\text{OH}}{\text{ii. P}_2\text{O}_5}$$

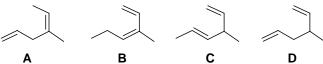
- 1. NC
- 2. NHCHO
- \sim CONH₂
- 109. Cope rearrangement involves
 - 1. [1,5]-sigmatropic rearrangement
 - 2. [4+2]-cycloaddition reaction
 - 3. [3,3]-sigmatropic rearrangement
 - 4. 6π -electrocyclisation reaction
- 110. The major product formed in the reaction given below is


- 1. CI
- 2.
- 3. ONHNH₂
- 4. COOH

111. The stereochemical descriptors for the chiral centre and olefin in the compound given below, are

- 1. 4R, 2Z
- 2. 4S, 2Z
- 3. 4*R*, 2*E*
- 4. 4S, 2E
- 112. In the compound given below, the hydrogens H_A and H_B are


- 1. homotopic
- 2. enantiotopic
- 3. diastereotopic
- 4. isotopic
- 113. An organic compound with molecular formula C₃H₆Cl₂ exhibits only one signal in the ¹H NMR spectrum. The compound is
 - 1. 2,2-dichloropropane
 - 2. 1,2-dichloropropane
 - 3. 1,3-dichloropropane
 - 4. 1,1-dichloropropane
- 114. The order of λ_{max} in the UV-Vis spectra for the compounds **A-C** is


С

- 1. A > B > C
- $2. \qquad B > A > C$
- 3. B > C > A
- 4. C > B > A
- 115. The photochemical Paterno-Büchi reaction is a cycloaddition between
 - 1. two >C=C< groups
 - 2. a > C = O and > C = C < groups
 - 3. a >C=N-R and >C=C< groups
 - 4. a > C = S and > C = C < groups

116. The reaction given below is an example of

- 1. $_{\pi}4_{s} + _{\pi}2_{s}$ cycloaddition
- 2. $_{\pi}4_{s} + _{\pi}2_{a}$ cycloaddition
- 3. $_{\pi}4_{a} + _{\pi}2_{s}$ cycloaddition
- 4. $_{\pi}4_{a} + _{\pi}2_{a}$ cycloaddition
- 117. Which one among the dienes **A-D** will undergo [3,3]-sigmatropic shift upon heating

- 1. A
- 2. B
- 3. C
- 4. D
- 118. The LUMO of the ground state buta-1,3-diene is
 - 1.
 - 2.
 - 3.
 - 4.

119. The major product formed in the reaction given below is

OH OTs EtOH /
$$\Delta$$

- 1. OTs
- 2.
- 3. OTs
- 4. CHO
- 120. The transformation given below can be achieved using

- 1. BH₃.THF followed by H_2O_2 / NaOH
- 2. alkaline KMnO₄ / NaIO₄
- 3. pyridinium chlorochromate
- 4. $PdCl_2 / CuCl_2 / O_2 / H_2O$
- 121. The base peak in the electron impact mass spectrum (EI MS) of acetophenone is
 - 1. 120
 - 2. 105
 - 3. 77
 - 4. 65
- 122. In the reaction given below, the orientation of two bromine substituents in the product is

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$$

- 1. equatorial at both C-1 and C-2
- 2. equatorial at C-1 and axial at C-2
- 3. axial at C-1 and equatorial at C-2
- 4. axial at both C-1 and C-2

123.	3. Cyclohexyl benzyl ether is converted to cyclohexanol using						
	1. 2. 3. 4.	5% aq. KOH hydrazine hyd H ₂ -Pd/C tetrabutylamr		ride			
124.	ole moment?						
		<u> </u>	B		=C=C=		
	1. 2. 3. 4.	A B C D	Ь	C	D		
125.		The major products formed in the nitration (HNO $_3$ / $H_2SO_4)$ of aniline and acetanilide are					
	1. 2. 3. 4.	 <i>m</i>-nitroaniline and <i>p</i>-nitroacetanilide <i>p</i>-nitroaniline and <i>m</i>-nitroacetanilide 					
126.	26. Which one of the following name reactions is an example of <i>atom ec reaction</i> ?					atom economy	
	1. 2. 3. 4.	Wittig reaction Grignard reaction Dieckmann con Diels-Alder re	tion ondensation				
127.	The order of nucleophilicity among PhNH ₂ , EtNH ₂ and PhNHNH ₂ is						
	1. 2. 3. 4.	PhNHNH ₂ > EtNH ₂ > PhN PhNHNH ₂ > EtNH ₂ > PhN	$H_2 > PhNHN$ EtN $H_2 > PhN$	\widetilde{H}_2 \widetilde{H}_2			
128.	The order of acid strengths of CH ₃ COOH, CF ₃ COOH and CCl ₃ COOH is						
	 CCl₃COOH > CF₃COOH > CH₃COOH CCl₃COOH > CH₃COOH > CF₃COOH CF₃COOH > CCl₃COOH > CH₃COOH CF₃COOH > CH₃COOH > CCl₃COOH 						

129. The major product formed in the reaction given below is

- 1.
- 2. Me
- 4.

3.

130. The most suitable reagent to achieve the transformation, given below, is

- 1. CrO_3 / H_2SO_4
- 2. MnO_2
- 3. $KMnO_4/H^+$
- 4. RuCl₃ / NaIO₄
- 131. An *optically active* compound **A** having molecular formula C₆H₁₂ on catalytic hydrogenation gives an *optically inactive* compound (C₆H₁₄). The compound **A** is
 - 1. 2-methylpentene
 - 2. 3-methylpentene
 - 3. 3,3-dimethylbutene
 - 4. 4-methylpentene
- 132. The reagent suitable for converting oct-4-yne to *trans*-oct-4-ene is
 - 1. $H_2 Pd/C$
 - 2. $Pd / CaCO_3 / H_2$
 - 3. NaBH₄
 - 4. Na / liq. NH₃

- 133. Which one of the following is a polar aprotic solvent?
 - 1. toluene
 - 2. carbon tetrachloride
 - 3. *N*,*N*-dimethylformamide
 - 4. acetic acid
- 134. The major product formed in the reaction, given below, is

135. The major product formed in the reaction, given below, is

- 1. CHO
- 2.
- 3. NH₂
- 4. CN

136. The most suitable reagent for carrying out the transformation given below, is

- 1. aq. H_2SO_4
- 2. Hg(OAc)₂ followed by reaction with NaBH₄ / NaOH
- 3. B_2H_6 followed by reaction with H_2O_2 / NaOH
- 4. m-CPBA followed by reaction with dil H_2SO_4
- 137. Natural product abietic acid, given below, is a

- 1. monoterpene
- 2. sesquiterpene
- 3. diterpene
- 4. triterpene
- 138. The major product formed in the reaction of ethyl acetoacetate with sodium hydride (1 equivalent) and methyl iodide (1 equivalent) is
 - 1. OE
 - 2. Me OEt
 - 3. MeO O OEt
 - 4.

- 139. The reaction of phenylacetylene with one equivalent of methylmagnesium bromide followed by reaction with benzaldehyde provides
 - 1. Ph——OH
 - 2. Ph—Me
 - 3. Me H
 - 4. Ph———Me
- 140. Sucrose is a disaccharide consisting of
 - 1. glucose and glucose
 - 2. glucose and galactose
 - 3. glucose and fructose
 - 4. glucose and mannose