
Digital Logic Design

Lecture # 8
University of Tehran

Outline

 All NAND/NOR Gate Realization of a
Circuit

 Active-Low and Active-High Logic
 RTL Design
 Decoder
 Realization of Switching Functions Using

Decoders

All NAND/NOR Gates
Realization of a Circuit
 We need to turn expressions such as

to a representation ready for an all nand/nor gate
realization by applying De Morgan law recursively.
We now want to obtain rules with which we can do
the same act in a simpler and more visual form:

)(bccdaba

All NAND/NOR Gates Realization
of a Circuit (continued…)

 For example, we want to convert the following
representation to all nand gate representation:

a
b

a

c

c

d

b

All NAND/NOR Gates Realization
of a Circuit (continued…)

 Note: When we put an extra bubble somewhere in
the circuit, another bubble must be accordingly
placed somewhere to cancel it out.

 Example (In this example we have used an inverter
to cancel off a bubble in one place.):

All NAND/NOR Gates Realization
of a Circuit (continued…)

 If we had constructed the circuit in the last example
in all and form, we would have had an increase in
transistor use and delays (because of the pull ups
and pull downs following each other in each and gate
– and = nand + inverter – as discussed in lecture #
4.

 Quote: Inverters can also be considered nand gates:

All NAND/NOR Gates Realization
of a Circuit (continued…)
 Example: We want to construct an all nor

representation of the following circuit:

 Quote: Using an all nand gate representation doesn’t
differ from an all nor gate representation in CMOS.

Active-Low and Active-High
Logic
 So far we have naturally considered F to be logic 0

and T to be logic 1. Say we change our state of
thought and look at the inputs as but on
the output . Then we would be saying
that an input or output’s definition of T or F can be
desirably changed to one of these forms. With the
above look to the meaning of T and F in inputs and
outputs, the truth table of the NAND gate would be
transformed to:

0,1 FT
1,0 FT

Active-Low and Active-High
Logic (continued…)
 With the mentioned look at the meaning of T and F,

the ‘nand’ gate can be called an ‘and’ gate with
ACTIVE-LOW output. This state can be applied to
any input or output signal. For instance the following
gate is an ‘or’ gate with active-low inputs:

 Quote: Whenever the state of an input or output
signal isn’t mentioned, we are implying ACTIVE-
HIGH.

Active-Low and Active-High
Logic (continued…)
 A question that arises here in how we benefit of this

state of thought? Consider for instance a package
that gives us an active-low output, when using such
a package, it’s output can be easily fed to a package
with an active-low input, whereas feeding such a
signal to a package with an active-high input causes
a mismatch that must be fixed with glue logic. We
were applying exactly the same concept when
putting bubbles on the inputs and outputs of or/and
gates to form a different representation of a
particular circuit.

RTL Design
 So far all we have shown was based on gate level

design. When considering functionality of elements
as a base of our design, a gate level design isn’t
meaningful enough. We will concentrate on
functional packages from now on. This level of
design referred to as RTL (Register Transfer Level)
design and the components which are called RTL
components are divided into combinational and
sequential types. All of this certainly doesn’t mean
our need for gates and transistors has been
eliminated, especially when matching is needed
between RTL components (glue logic).

Decoder
 We’ll introduce this package by examining a binary

decoder.

Decoder (continued…)
 The decoder shown in the last slide is known as a 2-

to-4 decoder and a simple structure for it can be the
following circuit:

y0

y3

y2

y1

enable

I0I1

(Discussed
later)

Decoder (continued…)
 Problems can occur in such a design. Firstly we have

used and gates (constructed of nand+inverter in
CMOS) when we don’t know whether or not the user
of our package really needs active-high outputs. We
have also, for the same reason, used a lot of pull ups
and pull downs and an excessive use of transistors.

 To resolve the mentioned problems, we change the
and gates to nand gates and so our truth table will
be:

Decoder (continued…)
 Such a package still isn’t general as such and needs

to have the ability of cascading, for the user to be
able to construct larger decoders through combining
smaller ones. Adding an extra input for
enabling/disabling the output will help us in this
arena as we will show later on.

 Looking at our design so far may cause some new
questions. For instance have we told our user that
any signal feeds to the EN input has been used to
drive 4 gates? Have we not misled the user by not
using a standard method?

Decoder (continued…)
 There can be two possible ways to resolve this, one

is to document the number of gates a particular input
is used to drive. The second and preferable solution
is to construct our structure by a convention that no
input is used to drive more than one gate. To do
this, we need to buffer the EN input through an
inverter that will change these inputs’ activity level to
low. The same can be done for inputs ‘a’ and ‘b’
without changing their activity level, as shown in the
following figure:

Decoder (continued…)
 We will now show how adding the EN input has given

our package the ability of cascading. We’ll show this
fact by constructing a 3-to-8 and a 4-to-16 decoder
using 2-to-4 decoders:

Decoder (continued…)

y0

y3

y2

y1
I0

I1
en

y0

y3

y2

y1
I0

I1
en

a b c

y0

y3

y2

y1
I0

I1
en

y0

y3

y2

y1
I0

I1
en

y0

y3

y2

y1
I0

I1
en

d

Realization of Switching
Functions Using Decoders
 Decoders can be used to realize switching functions.

To do this we will need to or outputs (relative to the
corresponding minterms) of our decoder with an
active-low inputs or gate. Example:

0

3
2
1

4

7
6
5

8

11
10
9

12

15
14
13

0

3
2
1

