... Powered By IITians

Manipal Medical Entrance Exam Solved Paper 2012

Physics

1. An ideal monoatomic gas is taken thorough the theromodynamic states $A \rightarrow B \rightarrow C \rightarrow D$ via the paths shown in the figure. If U_{A}, U_{B}, U_{C} and U_{D} represent the internal energy of the gas in states A, B, C and D respectively, then which of the following is not true?

(a) $U_{A}=U_{D}$
(b) $U_{B}<U_{A}$
(c) $U_{B}=U_{C}$
(d) $U_{C}>U_{D}$
2. The external diameter of a 314 m long copper tube is 1.2 cm and the internal diameter is 1 cm . Calculate its resistance if the specific resistance of copper is $2.2 \times 10^{-8} \Omega-\mathrm{m}$
(a) $5.0 \times 10^{-2} \Omega$
(b) $4.4 \times 10^{-2} \Omega$
(c) $3.14 \times 10^{-2} \Omega$
(d) $2.2 \times 10^{-2} \Omega$
3. A voltmeter of range 2 V and resistance 300Ω cannot be converted into ammeter of range
(a) 1 A
(b) 1 mA
(c) 100 mA
(d) 10 mA
4. If a magnet is suspended at an angle 30° to the magnetic meridian, the dip needle makes angle of 45° with the horizontal. The real dip is
(a) $\tan ^{-1}(\sqrt{3} / 2)$
(c) $\tan ^{-1}(3 / \sqrt{2})$
(b) $\tan ^{-1}(\sqrt{3})$
(d) $\tan ^{-1}(2 / \sqrt{3})$
(a) 2×10^{-2}
(b) 4×10^{-2}
(c) 4×10^{4}
(d) 4×10^{10}
5. In the Wheatstone's network given, $P=10 \Omega$, $Q=20 \Omega, R=15 \Omega, S=30 \Omega$, the current passing through the battery (of negligible internal resistance) is

(a) 0.36 A
(b) zero
(c) 0.18 A
(d) 0.72 A
6. Two tangent galvanometers A and B have coils of radii 8 cm and 16 cm respectively and resistance 8Ω each. They are connected in parallel with a cell of emf 4 V and negligible internal ressistance. The deflections produced in the tangent galvanometers A and B are 30° and 60° respectively. If A has 2 turns, then B must have
(a) 18 turns
(b) 12 turns
(c) 6 turns
(d) 2 tums
7. A current of 5 A is passing through a metallic wire of cross-sectional area $4 \times 10^{-6} \mathrm{~m}^{2}$. If the density of charge caniers of the wire is $5 \times 10^{26} \mathrm{~m}^{-3}$, the drift velocity of the electrons will be
(a) $1 \times 10^{2} \mathrm{~ms}^{-1}$
(b) $1.56 \times 10^{-2} \mathrm{~ms}^{-1}$
(c) $1.56 \times 10^{-3} \mathrm{~ms}^{-1}$
(d) $1 \times 10^{-2} \mathrm{~ms}^{-1}$
8. A single slit Fraunhofer diffraction pattern is formed with white light. For what wavelength of light, the third secondary maximum in the diffraction pattern coincides with the second secondary maximum in the pattern for red light of wavelength $6500 \AA$?
(a) $4400 \AA$
(b) $4100 \AA$
(c) $4642.8 \AA$
(d) $9100 \AA$
 potential of each single drop was
(a) 10 V
(b) 7.5 V
(c) 5 V
(d) 2.5 V
9. Water fises in plant fibres due to
(a) capillarity
(b) viscosity
(c) fluid pressure
(d) osmosis
10. During an adiabatic process, the cube of the pressure is found to be inversely proportional to the fourth power of the volume. Then, the ratio of specific heats is
(a) 1
(b) 1.33
(c) 1.67
(d) 1.4
11. The volume of a nucleus is directly proportional to
(a) A
(b) A^{3}
(c) \sqrt{A}
(d) $A^{1 / 3}$
(where, $A=$ mass number of the nucleus)
12. A Carnot's engine has an efficiency of 50% at sink temperature $50^{\circ} \mathrm{C}$. Calculate the temperature of source.
(a) $133^{\circ} \mathrm{C}$
(b) $143^{\circ} \mathrm{C}$
(c) $100^{\circ} \mathrm{C}$
(d) $373^{\circ} \mathrm{C}$
13. What is the Q-value of the reaction?

$$
\mathrm{P}+{ }^{7} \mathrm{Li} \longrightarrow{ }^{4} \mathrm{He}+{ }^{4} \mathrm{He}
$$

The atomic masses of ${ }^{1} \mathrm{H},{ }^{4} \mathrm{He}$ and ${ }^{7} \mathrm{Li}$ are $1.0078254 \mathrm{u}, 4.0026034 \mathrm{u}$ and 7.016004 u respectively
(a) 17.35 MeV
(b) 18.06 MeV
(c) 177.35 MeV
(d) 170.35 MeV
22. The water of volume $4 \mathrm{~m}^{3}$ at the height 20 m is pressed by $2 \times 10^{5} \mathrm{~N}$ pressure. The work done by motor is
(a) $8 \times 10^{5} \mathrm{~J}$
(b) $16 \times 10^{5} \mathrm{~J}$
(c) $12 \times 10^{5} \mathrm{~J}$
(d) $32 \times 10^{5} \mathrm{~J}$
23. The wavelength of K_{α} line in copper is $1.5 \AA$. The ionsation energy of K electron in copper is
(a) $11.2 \times 10^{-1.7} \mathrm{~J}$
(b) $12.9 \times 10^{-16} \mathrm{~J}$
(c) $1.7 \times 10^{-15} \mathrm{~J}$
(d) $10 \times 10^{-16} \mathrm{~J}$
24. A proton is moving in a uniform magnetic field B in a circular path of radius a in a direction perpendicular to Z axis along which field B exists. Calculate the angular momentum. If the radius is a and charge on proton is e.
(a) $\frac{B e}{a^{2}}$
(b) $e B^{2} a$
(c) $a^{2} e B$
(d) $a e B$
25. Curie-Weiss law is obeyed by iron
(a) at curie temperature only
(b) at all temperatures
(c) below curie temperature
(d) above curie temperature
26. When light is incidence on a diffraction grating, then the zero order maximum will be
(a) spectrum of the colours
(b) white
(c) one of the component colours
(d) absent
27. The wavelength of first line of Balmer series is $6563 \AA$. The wavelength of first line of Lymen series will be
(a) $1215.4 \AA$
(b) $2500 \AA$
(c) $7500 \AA$
(d) $600 \AA$
28. The reactance of inductance at $10^{4} \mathrm{~Hz}$ is $10^{4} \Omega$. Its reactance at $2 \times 10^{4} \mathrm{~Hz}$ will be
(a) $10^{4} \Omega$
(b) $2 \times 10^{4} \Omega$
(c) $3 \times 10^{4} \Omega$
(d) $4 \times 10^{4} \Omega$
29. In adiabatic process, the work done by system is 50 J , then
(a) the temperature of the system will be increase 50 J
(b) the temperature of the system will be constant
(c) the internal energy of the system will be increase 50 J
(d) the internal energy of the system will be decrease 50 J
30. The ozone layer is important because
(a) it prevents the cooling of each at night
(b) it prevents the IR rays coming from the space
(c) it prevents UV rays from the meteors coming from the space
(d) it prevents the UV rays and micro rays the coming from the space
31. If resonant frequency is f and capacity become 4 times, then resonant frequency will be
(a) $\frac{f}{2}$
(b) $2 f$
(c) f
(d) $\frac{f}{4}$

Powered By IITians

(3)
(a) 0.5 m
(b) 1 m
(c) 1.5 m
(d) 2.2 m
38. The diameter of objective of a telescope is 1 m . Its resolving limit for the light of wavelength $4538 \AA$, will be
(a) $5.54 \times 10^{-7} \mathrm{rad}$
(b) $2.54 \times 10^{-4} \mathrm{rad}$
(c) $6.54 \times 10^{-7} \mathrm{rad}$
(d) None of the above
39. The potential difference between two parallel plates is $10^{4} \mathrm{~V}$. If the plates are separated by 0.5 cm , the force on an electron between the plates is
(a) $32 \times 10^{-13} \mathrm{~N}$
(b) $0.32 \times 10^{-13} \mathrm{~N}$
(c) $0.032 \times 10^{-13} \mathrm{~N}$
(d) $3.2 \times 10^{-13} \mathrm{~N}$
40. A body of mass $m_{1}=4 \mathrm{~kg}$ moves at $5 \hat{\mathrm{i}} \mathrm{m} / \mathrm{s}$ and another body of mass $m_{2}=2 \mathrm{~kg}$ moves at $10 \hat{\mathrm{i}} \mathrm{m} / \mathrm{s}$. The kinetic energy of centre of mass is
(a) $\frac{200}{3} \mathrm{~J}$
(b) $\frac{500}{3} \mathrm{~J}$
(c) $\frac{400}{3} \mathrm{~J}$
(d) $\frac{800}{3} \mathrm{~J}$
41. Two block of masses of 1 kg and 2 kg are connected by a metal wire going over a smooth pulley. The breaking stress of metal is $\frac{40}{3 \pi} \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$. What should be the minimum radius of wire used if it should not break? ($g=10 \mathrm{~m} / \mathrm{s}^{2}$).
(a) 0.5 mm
(b) 1 mm
(c) 1.5 mm
(d) 2 mm
42. In the Young's double slit experiment, intensities of black and bright fringes are 1 and 4 respectively, the ratio of amplitudes of sources will be
(a) $1: 1$
(b) $1: 2$
(c) $3: 1$
(d) $1: 4$
43. If inductance and resistance of chocke coil are X_{L} and R respectively, then
(a) $X_{L}=R$
(b) $X_{L} \gg R$
(c) $X_{L} \ll R$
(d) $X_{L}=\infty$
(a) $\frac{n}{2}, \frac{1}{2}$ and π
(b) λ, T and π
(c) $\frac{\lambda}{2}, \frac{T}{2}$ and $\frac{\pi}{2}$
(d) $\frac{\lambda}{2}, \frac{T}{2}$ and 2π
45. At what speed should a source of sound move so that stationary observer finds the apparent frequency equal to half of the original frequency?
(a) $\frac{v}{2}$
(b) $2 v$
(c) $\frac{v}{4}$
(d) v
46. At inductance 1 H is connected in series with an AC source of 220 V and 50 Hz . The inductive resistance (in ohm) is
(a) 2π
(b) 50π
(c) 100π
(d) 1000π
47. If the pressure of an ideal gas contained in a closed vessel is increased by 0.4%, the increases in temperature is $1^{\circ} \mathrm{C}$. The initial temperature of the gas is
(a) $25^{\circ} \mathrm{C}$
(b) $250^{\circ} \mathrm{C}$
(c) 250 K
(d) $2500^{\circ} \mathrm{C}$
48. If a van der Waal's gas expands freely, then final temperature is
(a) less than the initial temperature
(b) equal to the initial temperature
(c) more than the initial temperature
(d) less or more than the initial temperature depending on the nature of the gas
49. The de-Broglie wavelength of a proton (charge $=1.6 \times 10^{-19} \mathrm{C}$,mass
$=1.6 \times 10^{-27} \mathrm{~kg}$) accelerated through a potential difference of 1 kV is
(a) $600 \AA$
(b) $0.9 \times 10^{-12} \mathrm{~m}$
(c) $7 \AA$
(d) 0.9 nm
50. A radioactive element forms its own isotope after 3 consecutive disintegrations. The particles emitted as
(a) 3β-particles
(b) 2β-particles and 1α-particle
(c) 2β-particles and 1γ-particle
(d) 2α-particles and 1β-particle
51. A step-down transformer reduces the voltage of a transmission line from 2200 V to 220 V . The power delivered by it is 880 W and its efficiency is 88%. The input current is
(a) 4.65 mA
(b) 0.045 A
(c) 0.45 A
(d) 4.65 A
52. If λ_{1} and λ_{2} are the wavelengths of the first members of the Lyman and Paschen series respectively, then $\lambda_{1}: \lambda_{2}$ is
(a) $1: 3$
(b) $1: 30$
(c) $7: 50$
(d) $7: 108$
53. Identify the operation performed by the circuit given below

(a) NOT
(b) AND
(c) OR
(d) NAND
54. In a transistor, the collector current is always less than the emitter current because
(a) collector side is reverse biased and the emitter side is forward biased
(b) a few electrons are lost in the base and only remaining ones reach the collector
(c) collector being reverse biased, attracts less electrons
(d) collector side is forward biased and emitter side is reverse biased
55. A rectangular vessel when full of water, takes 10 min to be emptied through an orifice in its bottom. How much time will it take to be emptied when half filled with water?

Chemistry

1. Benzaldehyde condenses with N, N-dimethyl aniline in the presence of anhydrous ZnCl_{2} to give
(a) azodye
(b) malachite green
(c) buffer yellow
(d) None of these
2. The general formula $\mathrm{C}_{n} \mathrm{H}_{2 n} \mathrm{O}_{2}$ could be for open chain
(a) 9 min
(b) 7 min
(c) 5 min
(d) 3 min
3. The term liquid crystal refers to a state that is intermediate between
(a) crystalline solid and amorphous liquid
(b) crystalline solid and vapour
(c) amorphous liquid and its vapour
(d) a crystal immersed in a liquid
4. A wave travelling in air falls on a glass plate. It is partly reflected and partly refracted. The phase difference between the reflected and refracted waves is
(a) zero
(b) $\frac{\pi}{2}$
(c) π
(d) 2π
5. Two coherent monochromatic light beams of intensities I and $4 I$ are superposed. The maximum and minimum possible resulting intensities are
(a) $5 I$ and 0
(b) $5 I$ and $3 I$
(c) $9 I$ and I
(d) $9 I$ and $3 I$
6. The light of wavelength $5000 \AA$ falls on a photosensitive plate of work function 1.9 eV . The kinetic energy of the emitted photoelectrons is
(a) 0.58 eV
(b) 2.48 eV
(c) 1.24 eV
(d) 1.18 eV
7. A galvanometer can be converted into a voltmeter by connecting
(a) low resistance in parallel
(b) low resistance in series
(c) high resistance in parallel
(d) high resistance in series
(a) diketones
(b) carboxylic acids
(c) diols
(d) dialdehydes
8. Which of the following is used widely in the manufacture of lead storage battery?
(a) Arsenic
(b) Lithium
(c) Bismuth
(d) Antimony
(a) 9.3
(b) 19.3
(c) 38.3
(d) 39.5
9. Saturated solution of KNO_{3} is used to make salt bridge because
(a) velocity of K^{+}is greater than that of NO_{3}^{-}
(b) velocity of NO_{3}^{-}is greater than that of K^{+}
(c) velocity of both K^{+}and NO_{3}^{-}are nearly same
(d) KNO_{3} is soluble in water
10. For which order half-life period is independent of initial concentration?
(a) Zero
(b) First
(c) Second
(d) Third
11. Sodium phenoxide reacts with CO_{2} at 400 K and 4-7 atm pressure to give
(a) cathechol
(b) salicylaldehyde
(c) salicylic acid
(d) sodium salicylate
12. The rate constant for the first order reaction is $60 \mathrm{~s}^{-1}$. How much time will it take to reduce the concentration of the reactant to $\frac{1}{16}$ th value?
(a) $4.6 \times 10^{-2} \mathrm{~s}$
(b) $4.6 \times 10^{4} \mathrm{~s}$
(c) $4.6 \times 10^{2} \mathrm{~s}$
(d) $4.6 \times 10^{-4} \mathrm{~s}$
13. The rate of reaction

$$
\mathrm{CCl}_{3} \mathrm{CHO}+\mathrm{NO} \longrightarrow \mathrm{CHCl}_{3}+\mathrm{NO}+\mathrm{CO}
$$

is equal to rate $=k\left[\mathrm{CCl}_{3} \mathrm{CHO}\right][\mathrm{NO}]$. If concentration is expressed in $\mathrm{mol} \mathrm{L}^{-1}$, the unit of k is
(a) $\mathrm{L} \mathrm{mol}^{-1} \mathrm{~s}^{-1}$
(b) $\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$
(c) $\mathrm{L}^{2} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$
(d) s^{-1}
10. When phenolic ether is heated with HI it yields
(a) aikyl halide + aryl halide + water
(b) alkyl halide + phenol
(c) alcohol + aryl halide
(d) None of the above
11. Which of the following is not correct?
(a) Milk is naturally occurring emulsion
(b) Gold sol is a lyophilic sol
(c) Physical adsorption decreases with rise in temperature
(d) Chemical adsorption is unilayered.
(a) 12×10^{-6}
(b) 26×10^{60}
(c) 34×10^{23}
(d) 48×10^{23}
13. Which of the following statement in relation to the hydrogen atom is correct?
(a) $3 s, 3 p$ and $3 d$ orbitals all have the same energy.
(b) $3 s$ and $3 p$-orbitals are of lower energy than $3 d$-orbital.
(c) 3 -orbital is lower in energy than $3 d$-orbital.
(d) 3 -orbital is lower in energy than 3 p-orbital.
14. Which of the following is not tetrahedral?
(a) BF_{4}^{-}
(b) NH_{4}^{+}
(c) CO_{3}^{2-}
(d) SO_{4}^{2-}
15. Considering x-axis as the internuclear axis, which out of the following will not form a sigma. bond.
(a) $1 s$ and $1 s$
(b) $1 s$ and $2 p_{x}$
(c) $2 p_{y}$ and $2 p_{y}$
(d) $1 s$ and $2 s$
16. The chlorination of methane is an example of
(a) addition
(b) elimination
(c) substitution
(d) chain reaction
17. Reactivity towards nucleophilic addition reaction of (I) HCHO (II) $\mathrm{CH}_{3} \mathrm{CHO}$ (III) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ is
(a) II $>$ III $>$ I
(b) III $>$ II $>$ I
(c) I $>$ II $>$ III
(d) I $>$ II $<$ III
18. Which of the following is active species in sulphonation of benzene?
(a) SO_{3}
(b) SO_{3}^{+}
(c) SO_{3}^{-}
(d) HSO_{4}^{+}
19. Which of the following can't be used in Friedel-Craft's reaction?
(a) FeCl_{3}
(b) FeBr_{2}
(c) AlCl_{3}
(d) NaCl
20. The order of reactivities of methyl halide in the formation of Grignard reagent is
(a) $\mathrm{CH}_{3} \mathrm{Cl}>\mathrm{CH}_{3} \mathrm{Br}>\mathrm{CH}_{3} \mathrm{I}$
(b) $\mathrm{CH}_{3} \mathrm{I}>\mathrm{CH}_{3} \mathrm{Br}>\mathrm{CH}_{3} \mathrm{Cl}$
(c) $\mathrm{CH}_{3} \mathrm{Br}>\mathrm{CH}_{3} \mathrm{I}>\mathrm{CH}_{3} \mathrm{Cl}$
(d) $\mathrm{CH}_{3} \mathrm{Br}>\mathrm{CH}_{3} \mathrm{Cl}>\mathrm{CH}_{3} \mathrm{I}$
21. The product formed when toluene is heated in light with Cl_{2} and in absence of halogen carrier is
(a) chlorobenzene
(b) gammexene
(c) benzotrichloride
(d) DDT
22. If the pressure on a NaCl structure is increased, then its coordination number will
(a) increase
(b) decrease
(c) either (a) or (b)
(d) remain the same
23. If the bond dissociation energies of $X Y, X_{2}$ and Y_{2} (all diatomic molecules) are in the ratio of $1: 1: 0.5$ and ΔH_{f} for the formation of $X Y$ is $-200 \mathrm{~kJ} \mathrm{~mol}^{-1}$, the bond dissociation energy of X_{2} will be
(a) $400 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(b) $300 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(c) $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(d) $800 \mathrm{~kJ} \mathrm{~mol}^{-1}$
24. The enthalpies of all the elements in their standard states are
(a) unity
(b) zero
(c) <0
(d) different for each element
25. A reaction, $A+B \longrightarrow C+D+q$ is found to have a positive entropy change. The reaction will be
(a) possible at high temperature
(b) possible only at low temperature
(c) not possible at any temperature
(d) possible at any temperature
26. Enthalpy of combustion of carbon to CO_{2} is $-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The heat released upon formation of 35.2 g of CO_{2} from carbon and dioxygen gas is (molar mass of $\mathrm{CO}_{2}=44 \mathrm{~g} \mathrm{~mol}^{-1}$)
(a) 3.148 kJ
(b) 31.48 kJ
(c) 314.8 kJ
(d) 3148 kJ
27. Work done during isothermal expansion of one mole of an ideal gas from 10 atm to 1 atm at 300 K is
(a) 4938.8 J
(b) 4138.8 J
(c) 5744.1 J
(d) 6257.2 J
28. Which of the following is not a conjugate acid-base pair?
(a) $\mathrm{HPO}_{3}^{2-}, \mathrm{PO}_{3}^{3-}$
(b) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{HPO}_{4}^{2-}$
(c) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{H}_{3} \mathrm{PO}_{4}$
(d) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{PO}_{3}^{3-}$
29. Which of the following will not function as a buffer solution?
(i) NaCl and NaOH
(ii) NaOH and $\mathrm{NH}_{4} \mathrm{OH}$
(iii) $\mathrm{CH}_{3} \mathrm{COONH}_{4}$ and HCl
(iv) Borax and boric acid -147 Trast Floor, Sec-6, NOIDA PBt. Lidd $2+1$ ions
(a) (i), (ii), (iii)
(b) (ii), (iii), (iv)
(c) (i), (iii), (iv)
(d) (i), (ii), (iii), (iv)
30. A litre of solution is saturated with AgCl . To this solution if 1.0×10^{-4} mole of solid NaCl is added, what will be the $\left[\mathrm{Ag}^{+}\right]$assuming no volume change?
(a) More
(b) Less
(c) Equal
(d) Zero
31. Aqueous solution of soditm cyanide is
(a) acidic
(b) amphoteric
(c) basic
(d) neutral
32. The equilibrium constant for the reaction

$$
\mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})
$$

is $K_{c}=4.9 \times 10^{-2}$. The value of K_{c} for the reaction

$$
2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{SO}_{3}(g)
$$

will be
(a) 416
(b) 2.40×10^{-3}
(c) 9.8×10^{-2}
(d) 4.9×10^{-2}
33. In the reaction,

$$
\mathrm{Ag}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{Ag}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}
$$

$\mathrm{H}_{2} \mathrm{O}_{2}$ acts as
(a) a reducing agent
(b) oxidising agent
(c) bleaching agent
(d) None of these
34. When two ice cubes are pressed over each other they unites to form one cube. Which of the following forces are responsible to hold them together?
(a) Ionic interaction
(b) van der Waal's forces
(c) Covalent interaction
(d) Hydrogen bond formation
35. Red lead is
(a) PbCO_{3}
(b) $\mathrm{Pb}_{3} \mathrm{O}_{4}$
(c) PbO_{2}
(d) PbSO_{4}
36. Which gas is liberated when $\mathrm{Al}_{4} \mathrm{C}_{3}$ is hydrolysed?
(a) CH_{4}
(b) $\mathrm{C}_{2} \mathrm{H}_{2}$
(c) $\mathrm{C}_{2} \mathrm{H}_{6}$
(d) CO_{2}
37. When zeolite which is hydrated sodium aluminium silicate is treated with hard water, the sodium ions are exchanged with
(a) H^{+}ions
-

Powered By IITians

(a) botn Ca^{-}- ana vig^{-}
38. A codon has a sequence of A and specifies a particular B that is to be incorporated in to C What are $\mathrm{A}, \mathrm{B}, \mathrm{C}$?

A
(a) 3 bases
(b) 3 acids
(c) 3 bases
(d) 3 bases
9. Proteins when heated with conc. HNO_{3} give a yellow colour. This is
(a) Hoppe's test
(b) acid base test
(c) Biuret test
(d) xanthoprotic test
40. Codon is present in
(a) t-RNA
(b) m-RNA
(c) fats
(d) r-RNA
41. Amylopectin is a polymer of
(a) α-D glucose
(b) $\alpha-D$ fructose
(c) lactose
(d) amylose
42. Which one of the following statements is wrong?
(a) The repeating monomer units in bakelite are phenol and formaldehyde
(b) Low density polythene is an example of branched chain polymers
(c) Homopolymer contains a single type of monomer.
(d) Vulcanization is the process of heating natural rubber with carbon
43. Parkinson's disease is linked to abnormalities in the levels of dopamine in the body. The structure of dopamine is
(a)

(b)

(c)

(d)

44. Which of the following is a natural dye?
(a) Alizarin
(b) Malachite green
(c) Phenolphthalein
(d) Martius yellow
45. Mn^{2+} can be converted into Mn^{7+} by reacting with
(a) PbO_{2}
(b) SnCl_{2}
(c) SO_{2}
(d) Cl_{2}
46. Which of the following compounds show optical isomerism?
(a) $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
(b) $\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$
(c) $\left[\mathrm{ZnCl}_{4}\right]^{2-}$
(d) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
47. Which of the following represents a chelating ligand?
(a) $\mathrm{H}_{2} \mathrm{O}$
(b) Cl^{-}
(c) OH^{-}
(d) DMG
48. When alkyl halide is heated with dry $\mathrm{Ag}_{2} \mathrm{O}$, it produces
(a) ester
(b) ether
(c) ketone
(d) alcohol
49. The best reagent to convert pent-3-en-2-ol into pent-3-en-2-one is
(a) pyridinium chlorochromate
(b) chromic anhydride in glacial acetic acid
(c) acidic dichromate
(d) acidic permanganate
50. During the process of electrolytic refining of copper, some metals present as impurity settle as "anode mud". These are
(a) Fe and Ni
(b) Ag and Au
(c) Pb and Zn
(d) Se and Ag
51. Which of the following is not a peroxy acid?
(a) Perphosphoric acid
(b) Pernitric acid
(c) Perdisulphuric acid
(d) Perchloric acid
52. Chlorine is liberated when we heat
(a) $\mathrm{KMnO}_{4}+\mathrm{NaCl}$
(b) $\mathrm{Pb}_{2}\left(\mathrm{NO}_{3}\right)_{4}+\mathrm{MnO}_{2}$
(c) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{MnO}_{2}$
(d) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{HCl}$
53. In which case Raoult's law is not applicable?
(a) 1 M NaCl
(b) 1 M urea
(c) 1 M glucose
(d) 1 M sucrose
54. Increasing the temperature of an aqueous solution will cause
(a) decrease in molarity
(b) decrease in molality
(c) decrease in mole fraction
(d) decrease in $\% w / w$
55. To neutralize completely 20 mL of 0.1 M aqueous solution of phosphorus acid $\left(\mathrm{H}_{3} \mathrm{PO}_{3}\right)$, the volume of 0.1 M aqueous KOH solution required is
(a) 20 mL
(b) 30 mL
(c) 40 mL
(d) 50 mL
56. 138 g of ethyl alcohol is mixed with 72 g of water. The ratio of mole fraction of alcohol to water is

Biology

1. Striped muscles are
(a) syncytial
(b) uninucleate
(c) binucleate
(d) anucleate
2. Regarding blood circulation, it may be said that in Pheretima the dorsal vessel is a
(a) collecting vessel in first two segments and distributing vessel in other
(b) distributing vessel in the first five segments and collecting vessel in other
(c) collecting vessel in thirteen segments and distributing vessel in intestinal region
(d) distributing vessel in first thirteen segments and collecting vessel in intestinal region
3. Flatworms excrete through
(a) kidney
(b) nephridia

(c) protonephridia
(d) Malpighian tubules
4. Which of the following structure is related with vision in rabbits?
(a) Hippocampus
(b) Corpus albicans
(c) Corpus callosum
(d) Corpora quadrigemina
5. Which of the following cells are useful for feeding in sponges?
(a) Thesocytes
(b) Collar cells
(c) Pinacocytes
(d) Sclerocytes
6. The methods of dispersal in Amoeba is
(b) sporulation
(a) locomotion
(d) binary fission
(a) Polythene
(b) Bakelite
(c) PHBV

$$
\xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}} B+\mathrm{H}_{2} \mathrm{O}
$$

In the above reactions A and B respectively are
(a) $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(b) $\mathrm{CH}_{3} \mathrm{CHO}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(c) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CHO}$
(d) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$
58. Acetyl bromide reacts with excess of $\mathrm{CH}_{3} \mathrm{MgI}$ followed by treatment with a saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ gives
(a) acetone
(b) acetamide
(c) 2-methyl-2-propanol
(d) acetyl iodide
59. Reaction of aniline with acetyl chloride in the presence of NaOH gives
(a) acetanilide
(b) p-chloroaniline
(c) red dye
(d) aniline hydrochloride
60. Which of the following is a biodegradable polymer?
(d) PVC
(c)
(d) PVC

Powered By IITians

(a) Heart beat
(c) Blood pressure
(c) Skeletal muscle contraction
(d) Total cross sectional area of vessel
8. Telomerase is an enzyme, which is a
(a) repetitive DNA
(b) RNA
(c) simple protein
(d) ribonucleoprotein
9. Synapsis occur between
(a) a male and female gamete
(b) mRNA and ribosomes
(c) spindle fibres and centromere
(d) two homologous chromosomes
10. What is not true for genetic code?
(a) A codon in mRNA is read in a non-contiguous fashion
(b) It is nearly universal
(c) It is degenerate
(d) It is non-ambiguous
11. A sequential expression of set of human gene occurs when steroid molecule binds to the
(a) transfer RNA
(b) Messenger RNA
(c) DNA sequence
(d) ribosome
12. Sickle cell anaemia is
(a) an autosomal linked dominant trait
(b) caused by substitution of valine by glutamic acid in the β-globin chain of haemoglobin
(c) caused by a change in base pair of DNA
(d) characterized by elongated sickle like RBCs with a nucleus
13. A common test to find the genotype of a hybrid is
(a) crossing of one F_{2} progeny with male parent
(b) crossing of one F_{2} progeny with female parent
(c) studying the sexual behaviour of F_{1} progenies
(d) crossing of one F_{1} progeny with recessive parent
14. Phenetic classification is based on
(a) sexual characteristics
(b) the ancestral lineage of existing organisms
(c) observable characteristics of existing organisms
(d) dendogram based on DNA characteristics
(b) Live in same habitat
(c) Interbreeding
(d) Live in different habitat
16. For retting of jute the fermenting microbe used is
(a) methophillic bacteria
(b) butyric acid bacteria
(c) Helicobacter pylori
(d) Streptococcus lactis
17. Which antibiotic inhibits interaction between tRNA and mRNA during bacterial protein synthesis?
(a) Neomycin
(b) Streptomycin
(c) Tetracycline
(d) Erythromycin
18. Earthworms have no skeleton but during burrowing, the anterior end becomes turgid and acts as a hydraulic skeleton. It is due to
(a) coelomic fluid
(b) blood
(c) gut peristalsis
(d) setae
19. Senescence as an active developmental cellular process in the growth and functioning of a flowering plant, is indicated in
(a) leaf abscission
(b) annual plants
(c) floral parts
(d) All of the above
20. Glycolate induces opening of stomata in
(a) presence of oxygen
(b) low CO_{2} concentration
(c) high CO_{2} concentiation
(d) absence of CO_{2}
21. Which one occurs both during cyclic and non-cyclic modes of photophosphorylation?
(a) Involvement of both PS-I and PS-II
(b) Formation of ATP
(c) Release of O_{2}
(d) Formation of NADPH
22. The translocation of organic solutes in sieve tube members is supported by
(a) P-proteins
(b) mass flow involving a carrier and ATP
(c) cytoplasmic streaming
(d) root pressure and transpiration pull

Manipal (Med.) : Solved Paper 2012
23. The overall goal of glycolysis, Krebs' cycle and the electron transport system is the formation of
(a) ATP in small stepwise units
(b) ATP in one large oxidation reaction
(c) sugars
(d) nucleic acids
24. Tendons or ligaments are
(a) connective tissue
(b) vascular tissue
(c) epithelial tissue
(d) skeletal tissue
25. Darwin's finches represent
(a) morphological variation
(b) geographical isolation
(c) climatic variation
(d) reproductive isolation
26. Territoriality occurs as a result of
(a) predation
(b) parasitism
(c) symbiotism
(d) competition
27. The type of joint between humerus and radius bone is called
(a) gliding joint
(b) saddle joint
(c) pivot joint
(d) hinge joint
28. The nucleus is separated from surrounding cytoplasm by a nuclear membrane, which is
(a) single layered with pores
(b) single layered without pores
(c) double layered with pores
(d) double layered without pores
29. In mammals, histamine is secreted by
(a) fibroblasts
(b) histiocytes
(c) lymphocytes
(d) mast cells
30. Species is a
(a) group immediately below a phylum
(b) closely related interbreeding population
(c) taxonomic division of similar genera
(d) closely related non breeding population
31. The use of DDT is banned now-a-days because it is
(a) very costly
(b) not available
(c) inflammable
(d) not degraded easily
32. Which of the following represents Klinefelter's syndrome?
(a) $X X$
(c) $X Y$
(b) XO
(d) Kansweb Educational Services (a) Ast. Asco B-147,1st Floor, Sec-6, NOIDA, US-2873Sfiomycetes
Website:www.askiitians.com Email. info@askiitians.com
(a) Sphagnum
(b) Funaria
(c) Anthoceros
(d) Polytrichum
44. The flowers of Oxalis open during the day and close at night. Such type of movement is
(a) photonasty
(b) nyctinasty
(c) phototropic
(d) seismonastic
45. Silent valley is tropical evergreen forest located in
(a) Kerala
(b) Karnataka
(c) Maharashtra
(d) Odisha
46. Vitamin-C was first vitamin to be produced by fermentation process using
(a) Penicillium
(b) E. coli
(c) Yersenia pestis
(d) Acetobactor
47. The functional unit of DNA molecule that codes for particular gene product is
(a) cistron
(b) exon
(c) intron
(d) gene
48. Total number of biodiversity hot spots in the world are
(a) 24
(b) 12
(c) 34
(d) 52
49. Which of the following is exotic species?
(a) Parthenium
(b) Lantana
(c) Eichhornia
(d) All of these
50. In transgenics, expression of transgene in target tissue is determined by
(a) enhancer
(b) transgene
(c) promotor
(d) reporter gene
51. When CO_{2} concentration in blood increases, breathing becomes
(a) shallower and slow
(b) there is no net effect on breathing
(c) slow and deep
(d) faster and deeper
52. Cancer cells can easily be damaged by radiation than normal cells because they are
(a) starved on mutation
(b) undergoing rapid division
(c) different in structure
(d) non-dividing
matched?
(a) Glossina palpalis

- Sleeping sickness
(b) Culex
- Filariasis
(c) Aedes aegypti - Yellow fever
(d) Anopheles culifacies - Leishmaniasis

54. A free living nitrogen fixing cyanobacterium which can also form symbiotic association with the aquatic fern Azolla is
(a) Tolypothrix
(b) Chlorella
(c) Nostoc
(d) Anabaena
lowing hormones secretion product of human placenta?
(a) Human chorionic gonadotropin
(b) Prolactin
(c) Oestrogen
(d) Progesterone
55. The fangs of python which pulled out can
(a) not come again
(b) come again with half the length
(c) come again with same length
(d) come again with double length
56. The wings of bat, locust and pigeon are the examples of
(a) vestigial organs
(b) analogous organs
(c) homologous organs
(d) exoskeletal structures
57. Heart lacks sinus venosus in
(a) fishes
(b) mammals
(c) amphibians
(d) echinoderms
58. Krebs' cycle takes place in
(a) cytoplasm
(b) chloroplast
(c) nucleus
(d) mitochondria
59. In which of the following plants, leaf apex changes into tendril?
(a) Gloriosa
(b) smilax
(c) Pisum sativum
(d) Australian Acacia
60. The plants having vascular tissue but lacking seeds are placed under
(a) algae
(b) bryophytes
(c) pteridophytes
(d) gymnosperms
61. The rate of transpiration in plants is dependent upon
(a) temperature and soil
(b) light and temperature
(c) wind, temperature and light
(d) light, temperature, atmospheric humidity and wind
62. A plant hormone used for inducing morphogenesis in plant tissue culture is
(a) ethylene
(b) gibberellin
(c) cytokinin
(d) abscisic acid
63. Which of the following minerals helps in N_{2} fixation?
(a) Copper
(b) Zinc
(c) Manganese
(d) Molybdenum
64. What is the similarity between fly, mosquitoes and cockroach?
(a) All have 13 chambered heart
(b) All have 4 pairs of legs
(c) All have closed circulatory system
(d) All belong to class-Insecta
65. Protein present in cartilage is
(a) chondrin
(b) oesein
(c) cartilagin
(d) ossein
66. Insectivorous plants usually survive in
(a) water rich soil
(b) N_{2} deficient soil
(c) N_{2} rich soil
(d) sugar deficient medium
67. Spore of Funaria, on germination gives rise to
(a) protonema
(b) embryo
(c) antheridia
(d) archegonia
68. The function of a vessel is
(a) conduction of food
(b) conduction of water and minerals
(c) conduction of hormones
(d) All of the above
69. Multiplication of DNA is called
(a) translation
(b) replication
(c) duplication
(d) transcription
70. The pigment sensitive for red and far red light is
(a) chlorophyll
(b) phytochrome
(c) cytochrome
(d) carotene
71. Lemon is sour due to the presence of
(a) acetic acid
(b) carbonic acid
(c) citric acid
(d) sulphuric acid
72. The type of vertebrae in the sub order Ophidia is
(a) acoelous
(b) procoelous
(c) heterocoelous
(d) amphicoelous
73. Removal of anthers at the time of plant breeding is called
(a) emasculation
(b) antherris
(c) pollination
(d) fertilization
74. Haemoglobin is a
(a) protein
(b) fibrous protein
(c) globular protein
(d) enzyme
75. LPP-1 is a
(a) bacterium
(b) fungus
(c) bacteriophage
(d) cyanophage
76. Hormogonia are vegetative reproductive structures of
(a) Ulothrix
(b) Oscillatoria
(c) Spirogyra
(d) Chara
77. Evolutionary history of an organisms is known as
(a) Phylogeny
(b) Ancestry
(c) Palaeontology
(d) Ontogeny
78. Sertoli cells are regulated by the pituitary hormone known as
(a) FSH
(b) GH
(c) prolactin
(d) LH
79. In which of the following fruits, the edible part is the aril?
(a) Apple
(b) Pomegranate
(c) Orange
(d) Litchi

Powered By IITians

Directions (0. Nos. 1-5) In the following questions some of the sentences have errors and some have none. Find out which part of the sentence has an error. The letter of that part is your answer. If there is no error, the answer is (d).

1. Last night I dream (a)/I was a Sheikh on the 169 td floor (b)/of Burj Khalifa. (c)/No error. (d)
2. As soon as (a)/the lion saw the deer (b)/he began to run after it. (c)/No error. (d)
3. The police asked us (a)/about our movements (b)/on a night of the crime. (c)/No error. (d)
4. Did he tell you (a)/why he hasn't (b)/come yesterday? (c)/No error (d)
5. It was a pleasant (a)/four hours drive (b)/from Pune to Nakhik. (c)/No error. (d)
Directions (0. Nos. 6-10) In the following questions sentences are given with blanks to be filled in with an appropriate word(s). Four alternatives are suggested for each question. Choose for correct alternative out of the four.
6. He travelled all the world when he was eighty years old.
(a) in
(b) over
(c) with
(d) of
7. Dr. Sharma concluded his speech \qquad on 'Buddha's teachings of the importance of charity.
(a) by
(b) with
(c) at
(d) in
8. Shivaji Maharaj fought every kind of aggression.
(a) against
(b) to
(c) with
(d) at
9. Don't depend others; you must stand on your own feet.
(a) upon
(b) on
(c) to
(d) for
10. Our life promises a lot pleasure and we must learn to enjoy it.
(a) with
(b) for
(c) of
(d) at

Directions (0. Nos. 11-15) In the following questions out of the four alternatives, choose the one which best expresses the meaning of the given word.
11. Benevolent
(a) beneficial
(b) kind
(c) helpful
(d) supportive
12. Ancestors
(a) extinct tribes
(b) relatives
(c) forefathers
(d) old people
13. Embrace
(a) impress
(b) except
(c) embarrass
(d) accept
14. Meek
(a) light hearted
(b) serious
(c) submissive
(d) begins
15. Sufficient
(a) full
(b) complete
(c) enough
(d) less

Direction (0. Nos. 16-20) In the following questions choose the word opposite in meaning to the given word.
16. Gloomy
(a) radiant
(b) fragrant
(c) melodious
(d) illusory
17. Bleasing
(a) dull
(b) curse
(c) hurt
(d) harsh
18. Accomplish
(a) fail
(b) improper
(c) disagreeable
(d) scatter
19. Famous
(a) obscure
(b) eminent
(c) lenient
(d) fabulous
20. Orderly
(a) unclear
(b) valueless
(c) chaotic
(d) incomplete

Directions (0. Nos. 21-25) In the following questions four alternatives are given for the idiom/phrase printed in bold in the sentence. Choose the alternative which best expresses the meaning of the idiom/phrase.
21. Helena was over head and ears in love with Demetrius.
(a) carefully
(b) completely
(c) brilliantly
(d) cautiously
22. Gopi work by fits and starts.
(a) consistently
(b) irregularly
(c) in high spirits
(d) enthusiastically
23. Naresh Goyal had to stand on his feet very early in his life.
(a) to be physically strong
(b) to he independent

1. (b)	2. (b)	3. (d)	4. (b)	5. (c)	6. (b)	7. (d)	8. (a)	9. (a)	10. (b)
11. (b)	12. (d)	13. (a)	14. (c)	15. (c)	16. (c)	17. (c)	18. (a)	19.(d)	. (b)
2H. (c)	22. (a)	23. (d)	24. (b)	25. (d)	26. (c)	27. (c)	28. (d)	29. (a)	30. (b)
31. (c)	32. (a)	33. (a)	34. (d)	35. (b)	36. (a)	37. (d)	38. (d)	39. (d)	40. (b)
41. (a)	42. (d)	43. (d)	44. (a)	45. (a)	46. (b)	47. (d)	48. (b)	49. (b)	50. (b)
51. (d)	52. (d)	53. (a)	54. (a)	55. (c)	56. (a)	57. (d)	58. (c)	59. (a)	60. (c)

Biology

. (a)	2. (d)	3. (c)	4. (d)	5. (b)	6. (c)	7. (d)	8. (d)	9. (d)	10. (a)
11. (c)	12. (b)	13. (d)	4. (c)	15. (c)	16. (b)	17. (c)	18. (a)	19. (d)	20. (b)
21. (b)	22. (b)	23. (a)	24. (a)	25. (b)	26. (d)	27. (d)	28. (c)	29. (d)	30. (b)
31. (d)	32. (d)	33. (b)	34. (c)	35. (d)	36. (d)	37. (b)	38. (b)	39. (b)	40. (b)
41. (b)	42. (b)	43. (a)	44. (a)	45. (a)	46. (d)	47. (a)	48. (c)	49. (d)	50. (d)
51. (52. (b)	53. (d)	54. (d)	55. (b)	56. (c)	57. (b)	58. (b)	59. (d)	60. (a)
61. (c)	62. (d)	63. (c)	64. (d)	65. (d)	66. (a)	67. (b)	68. (a)	69. (b)	70. (b)
71. (b)	72. (c)	73. (b)	74. (a)	75. (c)	76. (d)	77. (b)	78. (a)	79. (a)	80. (d)

1. (a)
2. (d)
3. (c)
4. (d)
5. (b)
6. (c)
7. (d)
8. (d)
9. (d)
10. (a)
11. (c)
12. (b)
13. (a)
14. (a)
15. (b)
16. (d)
17. (d)
18. (c)
19. (d)
20. (b)
21. (d)
22. (d)
23. (a)
24. (a)
25. (a)
26. (d)
27. (a)
28. (c)
29. (d)
30. (d)
31. (d)
32. (b)
33. (c)
(d)
34. (c)
35. (d)
36. (b)
37. (a)
38. (a)
39. (d)

English

1. (a)
2. (d)
3. (c)
4. (b)
5. (b)
6. (b)
7. (a)
8. (a)
9. (b)
10. (c)
11. (b)
12. (c)
13. (d)
14. (c)
15. (c)
16. (a)
17. (b)
18. (a)
19. (a)
20. (c)
21. (b)
22. (d)
23. (b)
24. (c)
25. (a)
26. (c)
27. (c)
28. (c)
29. (a)
30. (d)
31. (d)
32. (d)
33. (b)
34. (b)
35. (d)
36. (b)
37. (a)
38. (b)
39. (a)
40. (b)

Hints \& Solutions

Pliysics

1. Internal energy of a gas

$$
U=\frac{3}{2} n R T
$$

where, R is constant.
Thus, for a given number of moles of the same gas

$$
U \propto T
$$

From the graphs, we conclude that

$$
U_{A}=U_{D}
$$

$$
\begin{aligned}
& U_{B}=U_{C} \\
& U_{B}>U_{A} \\
& U_{C}>U_{D}
\end{aligned}
$$

2. Given, length $l=314 \mathrm{~m}$

Specific resistance $p=2.2 \times 10^{-8} \Omega-\mathrm{m}$
External diameter $D_{1}=1.2 \times 10^{-2} \mathrm{~m}$
Internal diameter $D_{2}=1 \times 10^{-2} \mathrm{~m}$

Manipal (Med.) Solved Paper 2012

As resistance of tube $R=\frac{\rho l}{A}$
or

$$
\begin{aligned}
R & =\frac{\rho l}{\pi\left[D_{1}^{2}-D_{2}^{2}\right]} \quad\left[\because A=\pi r^{2}\right] \\
R & =\frac{4 \times 2.2 \times 10^{-8} \times 314}{\pi\left[(1.2)^{2}-(1.0)^{2}\right] \times 10^{-4}} \\
& =0.2 \Omega
\end{aligned}
$$

or
3.

$$
\begin{aligned}
I_{g} & =\frac{2}{300} \mathrm{~A} \\
& =\frac{2}{300} \times 1000 \mathrm{~mA} \\
& =\frac{20}{3} \mathrm{~mA} \\
I_{g} & =6.67 \mathrm{~mA}
\end{aligned}
$$

As range of ammeter cannot be decreased but can be increased only, therefore, the instrument cannot be converted to measure the range 1 mA .
4.

$$
\begin{aligned}
\tan \delta^{\prime} & =\frac{\tan \delta}{\cos \theta} \\
& =\frac{\tan 45^{\circ}}{\cos 30^{\circ}} \\
\tan \delta^{\prime} & =\frac{1}{\sqrt{3} / 2} \\
& =\frac{2}{\sqrt{3}} \\
\therefore \quad \delta^{\prime} & =\tan ^{-1}\left(\frac{2}{\sqrt{3}}\right)
\end{aligned}
$$

5. In step-down transformer, voltage decreases and corresponding current increases.
6. The ionosphere can reflect electromagnetic waves of frequency less than 40 MHz but do not reflect electromagnetic waves of frequency more than 40 MHz .
7. At room temperature, due to thermal vibrations, the few bonds of intrinsic semiconductor are broken and producing equal number of electrons and holes in the semiconductor.
8. Momentum, $p=m v=\frac{h}{\lambda}$

$$
\begin{array}{ll}
\text { or } & v=\frac{h}{m \lambda} \\
\therefore & v=\frac{6.62 \times 10^{-34}}{9.1 \times 10^{-31} \times 5.2 \times 10^{-7}} \\
\Rightarrow & v=\frac{6.62 \times 10^{4}}{9.1 \times 5.1} \\
\Rightarrow & v=1400 \mathrm{~m} / \mathrm{s}
\end{array}
$$

9. We know that

$$
n=\frac{t}{T}
$$

Given, $t=3000 \mathrm{yr}, T=6000 \mathrm{yr}$

$$
n=\frac{3000}{600}=5
$$

Then, $\quad \frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n}$

$$
\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{5}=\frac{1}{32}
$$

10. Input power $=V=200 \times 10$

$$
=2000 \mathrm{~W}
$$

Output power $=\frac{40}{100} \times 2000=800 \mathrm{~W}$
Power loss in heating the armature

$$
\begin{array}{rlrl}
& & =2000-800 \\
& & =1200 \mathrm{~W} \\
& & I^{2} R & =1200 \\
& & & R=\frac{1200}{I^{2}} \\
& & & =\frac{1200}{10 \times 10}
\end{array}
$$

or

$$
R=12 \Omega
$$

11. Heat produced in a wire is equal to energy stored in capacitor.

$$
\begin{aligned}
H & =\frac{1}{2} C V^{2} \\
& =\frac{1}{2} \times\left(2 \times 10^{-6}\right) \times(200)^{2} \\
& =10^{-6} \times 200 \times 200
\end{aligned}
$$

is

$$
\frac{P}{Q}=\frac{R}{S}
$$

as is obvious from the given values.
No, current flows through galvanometer is zero.
Now, P and R are in series, so
Resistance, $R_{1}=P+R$

$$
=10+15=25 \Omega
$$

Similarly, Q and S are in series, so
Resistance $R_{2}=R+S$

$$
=20+30=50 \Omega
$$

Net resistance of the network as R_{1} and R_{2} are in parallel

$$
i=\frac{V}{R}=\frac{0.6}{50}=0.36 \mathrm{~A}
$$

13. Current in tangent glavanometer

$$
\begin{equation*}
I=\frac{2 r H}{\mu_{0} N} \tan \theta \tag{i}
\end{equation*}
$$

Here, R_{1} and R_{2} are in parallel

$$
\begin{array}{rlrl}
\therefore \quad \begin{aligned}
& R_{\text {net }}= \\
& R_{1}
\end{aligned} \frac{1}{R_{2}} \\
& =\frac{R_{2}+R_{1}}{R_{1} R_{2}}=\frac{8+8}{8 \times 8} \\
R_{\text {net }} & =4 \Omega \\
\text { Hence, } & I & =\frac{V}{R}=\frac{4}{4}=1 \mathrm{~A}
\end{array}
$$

From Eq. (i), we get

$$
\begin{aligned}
& \frac{r \tan \theta}{N}=\frac{\mu_{0} I}{2 H} \\
\therefore \quad & \frac{r_{A} \tan \theta_{A}}{N_{A}}=\frac{I_{B} \tan \theta_{B}}{N_{B}}
\end{aligned}
$$

$$
\therefore \quad N_{B}=12 \text { turns }
$$

14. Drift velocity, $v_{d}=\frac{I}{n e A}$

$$
\begin{aligned}
& \Rightarrow \\
& v_{d}=\frac{5}{\left(5 \times 10^{26}\right) \times\left(1.6 \times 10^{-19}\right) \times\left(4 \times 10^{-6}\right)} \\
& \quad=1.56 \times 10^{-2} \mathrm{~ms}^{-1}
\end{aligned}
$$

15. $x=\frac{(2 n+1) \lambda D}{2 a}$

For red light $x=\frac{(4+1) D}{2 a} \times 6500$
For unknown wavelength of light,

$$
x=\frac{(6+1) D}{2 a} \times \lambda
$$

Accordingly,

$$
\begin{aligned}
\therefore & 5 \times 6500 & =7 \times \lambda \\
\Rightarrow & \lambda & =\frac{5}{7} \times 6500 \\
& & =4642.8 \AA
\end{aligned}
$$

16. Volume of 8 drops $=$ Volume of big drop

$$
\begin{array}{ll}
\therefore & \left(\frac{4}{3} \pi r^{3}\right) \times 8=\frac{4}{3} \pi R^{3} \\
\Rightarrow & 2 r=R \tag{i}
\end{array}
$$

According to charge conservation

$$
\begin{equation*}
8 q=Q \tag{ii}
\end{equation*}
$$

We have

$$
\begin{array}{ll}
& V \propto \frac{1}{r} \\
\text { or } & \frac{V_{1}}{V_{2}}=\frac{r_{2}}{n} \\
\Rightarrow & \frac{20}{V_{2}}=\frac{2 r}{r} \\
\Rightarrow & V_{2}=10 \mathrm{~V}
\end{array}
$$

17. The rise or fall of liquids in vertical capillary tubes is called capillarity. Water in plant fibres rises due to same phenomenon.

Manipal (Med.) * Solved Paper 2012 | 19
18. Equation of an adiabatic process is

$$
\begin{gather*}
p V^{\gamma}=\text { constant } \tag{i}\\
p^{3}=\frac{k}{V^{4}} \\
p^{3} V^{4}=k \\
p V^{4 / 3}=k
\end{gather*}
$$

Given,
(constant)

Comparing Eqs. (i) and (ii), we get

$$
\gamma=\frac{4}{3}=1.33
$$

19. Radius of nucleus $R=R_{0} A^{1 / 3}$
where, $R_{0}=1.2 \times 10^{-15} \mathrm{~m}$
Volume of nucleus $(V)=\frac{4}{3} \pi R^{3}$

$$
\begin{aligned}
& =\frac{4}{3} \pi\left[R_{0} A^{1 / 3}\right]^{3} \\
& =\frac{4}{3} \pi R_{0}^{3} A
\end{aligned}
$$

$V \propto A$
20. $\eta=\frac{\text { Net work done per cycle }}{\text { Total amount of heat absorbed per cycle }}$

$$
\begin{array}{ll}
\text { or } & \eta=\frac{W}{Q_{1}} \\
\therefore & \eta=\frac{Q_{1}-Q_{2}}{Q_{1}} \\
\text { or } & \eta=1-\frac{Q_{2}}{Q_{1}} \\
\text { as } & \frac{Q_{2}}{Q_{1}}=\frac{T_{2}}{T_{1}} \\
\therefore & \eta=1-\frac{T}{T_{1}}
\end{array}
$$

where, T_{2} is temperature of sink and T_{1} is the temperature of the sources.
Here,

$$
\begin{aligned}
\eta & =50 \% \\
T_{2} & =50^{\circ} \mathrm{C}=273+50 \\
& =323 \mathrm{~K}
\end{aligned}
$$

Putting these values in Eq. (i), we get

$$
\begin{aligned}
\frac{50}{100} & =1-\frac{323}{T_{1}} \\
T & =646 \mathrm{~K}=373^{\circ} \mathrm{C}
\end{aligned}
$$

21. The total mass of the initial particles

$$
\begin{aligned}
m_{i} & =1.007825+7.016004 \\
& =8.023829 \mathrm{u}
\end{aligned}
$$

and the total mass of final particles

$$
\begin{aligned}
m_{f} & =2 \times 4.002603 \\
& =8.005206 \mathrm{u}
\end{aligned}
$$

Difference between initial and final mass of particles

$$
\begin{aligned}
\Delta m & =m_{i}-m_{f} \\
& =8.023829-8.005206 \\
& =0.018623 \mathrm{u}
\end{aligned}
$$

The Q-value is given by

$$
\begin{aligned}
Q & =(\Delta m) c^{2} \\
& =0.018623 \times 931.5 \\
& =17.35 \mathrm{MeV}
\end{aligned}
$$

22. Work $W=m g h+\Delta p V$

$$
\begin{aligned}
& =V \rho g h+\Delta p V \\
& =4 \times 10^{3} \times 10 \times 20+\left(2 \times 10^{5}\right) \times 4 \\
& =16 \times 10^{5} \mathrm{~J}
\end{aligned}
$$

23. Required ionisation energy $E=\frac{h c}{\lambda}$

$$
\begin{aligned}
& =\frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{1.54 \times 10^{-10}} \\
& =12.9 \times 10^{-16} \mathrm{~J}
\end{aligned}
$$

24. Under uniform magnetic field, force eyb acts on proton and provides the necessary centripetal force $\frac{m v^{2}}{a}$

$$
\begin{aligned}
\frac{m v^{2}}{a} & =e v B \\
v & =\frac{a e B}{m}
\end{aligned}
$$

Now, angular momentum

$$
\begin{aligned}
J & =r \times p \\
& =a \times m v \\
J & =a \times m\left(\frac{a e B}{m}\right) \\
J & =a^{2} e B
\end{aligned}
$$

26. When light is incident on a diffraction grating, then zero order principal maximum will have only white colour.
27. $\frac{\lambda_{\text {Lymen }}}{\lambda_{\text {Balmer }}}=\frac{\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)}{\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right)}=\frac{5}{27}$

$$
\begin{aligned}
& \quad\left[\because \frac{1}{\lambda}=R\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)\right] \\
& \lambda_{\text {Lymen }}=\frac{5}{27} \times \lambda_{\text {Balmer }} \\
& \\
& =\frac{5}{27} \times 6563 \\
& \quad=1215.4 \AA
\end{aligned}
$$

28. $X_{L}=\omega L=2 \pi f L$
$X_{L} \propto f$
If frequency is double, then reactance will be double.
29. From first law of thermodynamids

$$
d Q=d U+d W
$$

For adiabatic process $d Q=0$

$$
\begin{aligned}
\therefore \quad d U+d W & =0 \\
d U & =-50 \mathrm{~J}
\end{aligned}
$$

Therefore, the internal energy of system will decrease.
30. The ozone layer is important because it prevents the UV rays and micro rays coming from the space.
31. Frequency, $f=\frac{1}{2 \pi \sqrt{L C}}$

When capacitance $=4 C$, then

$$
f^{\prime}=\frac{1}{2 \pi \sqrt{4 L C}}=\frac{f}{2}
$$

32. Air flow from smaller bubble to bigger as the pressure in smaller bubble is higher.
33. The hardness of X-rays depends upon the its wavelength. Which depend upon potential difference between target and cathode.

$$
E_{1}=-\frac{G M m}{R}
$$

When the satellite is intended to move in a circular orbit of radius $7 R$, then energy of artificial satellite

$$
E_{2}=-\frac{1}{2} \frac{G M m}{7 R}
$$

The minimum energy required

$$
\begin{aligned}
E & =E_{1}-E_{2} \\
& =-\frac{G M m}{R}+\frac{1}{2}\left(\frac{G M m}{7 R}\right) \\
& =\frac{-14 G M m+G M m}{14 R} \\
& =-\frac{13 G M m}{14 R}
\end{aligned}
$$

35. The equation of displacement

$$
x_{1}=4 \sin \left(10 t+\frac{\pi}{6}\right)
$$

The energy of this equation

$$
\begin{aligned}
E_{1} & =\frac{1}{2} m \omega_{1}^{2} \alpha_{1}^{2} \\
& =\frac{1}{2} m \times 10 \times 10 \times 4 \times 4
\end{aligned}
$$

The second equation of displacement

$$
x_{2}=5 \cos (\omega t)
$$

The energy of this equation

$$
\begin{aligned}
E_{2} & =\frac{1}{2} m \omega_{2}^{2} a_{2}^{2} \\
& =\frac{1}{2} m \omega_{2}^{2} \times 5 \times 5
\end{aligned}
$$

According to question

$$
\begin{aligned}
& \because \quad E_{1}=E_{2} \\
& \therefore \frac{1}{2} m \omega_{2}^{2} \times 5 \times 5=\frac{1}{2} m \times 10 \times 10 \times 4 \times 4 \\
& \omega_{2}^{2}=\frac{10 \times 10 \times 4 \times 4}{5 \times 5} \\
& \omega_{2}^{2}=2 \times 2 \times 4 \times 4 \\
& \text { or } \\
& \omega_{2}=\sqrt{2 \times 2 \times 4 \times 4} \\
& =2 \times 4=8 \text { unit }
\end{aligned}
$$

36. The excess pressure of soap bubble

$$
\begin{aligned}
& \frac{p=\frac{4 T}{R}}{\text { or }} \quad \\
& \quad h \rho g=\frac{4 T}{R} \quad(\because p=h \rho g) \\
& \therefore \quad T=\frac{R h \rho g}{4} \\
&= \frac{1 \times 10^{-2} \times 2 \times 10^{-3} \times 0.8 \times 10^{3} \times 9.8}{4} \\
&= 0.0392 \mathrm{~N} / \mathrm{m}
\end{aligned}
$$

37. The equation of continuity

$$
\begin{aligned}
A_{1} v_{1} & =A_{2} v_{2} \\
A \times 4 & =\frac{2}{3} A \times v_{2} \\
v_{2} & =6 \mathrm{~ms}^{-1}
\end{aligned}
$$

From Bernoulli's theorem,

$$
\begin{aligned}
& p+\rho g h_{1}+\frac{1}{2} \rho v_{1}^{2}=p+\rho g h_{2}+\frac{1}{2} \rho v_{2}^{2} \\
& \text { or } g\left(h_{1}-h_{2}\right)=\frac{1}{2}\left(v_{2}^{2}-v_{1}^{2}\right) \\
& g \times h=\frac{1}{2}\left[(6)^{2}-(4)^{2}\right]\left[\because h_{1}-h_{2}=h\right] \\
& 10 \times h=\frac{1}{2}[36-16] \\
& \text { or } \\
& h=\frac{20}{20} \\
& =1 \mathrm{~m}
\end{aligned}
$$

38. Resolving limit

$$
\begin{aligned}
d \theta & =\frac{1.22 \lambda}{a} \\
& =\frac{1.22 \times 4538 \times 10^{-10}}{1} \\
& =5.54 \times 10^{-7} \mathrm{rad}
\end{aligned}
$$

39. The force $F=\frac{e V}{d}$

$$
\begin{aligned}
& =\frac{1.6 \times 10^{-19} \times 10^{4}}{0.5 \times 10^{-2}} \\
& =3.2 \times 10^{-13} \mathrm{~N}
\end{aligned}
$$

40. $v_{\mathrm{CM}}=\frac{m_{1} \frac{d r_{1}}{d t}+m_{2} \frac{d r_{2}}{d t}}{m_{1}+m_{2}}$

$$
=\frac{4 \times 5 \hat{\mathbf{i}}+2 \times 10 \hat{\mathbf{i}}}{4+2}
$$

$$
v_{\mathrm{CM}}=\frac{40 \hat{\mathbf{i}}}{6}=\frac{20}{3} \hat{\mathbf{i}}
$$

The kinetic energy

$$
\begin{aligned}
K & =\frac{1}{2} m v^{2} \\
& =\frac{1}{2} \times(4+2) \times \frac{20 \times 20}{3 \times 3} \\
& =\frac{1}{2} \times 6 \times \frac{20 \times 20}{3 \times 3} \\
K & =\frac{400}{3} \mathrm{~J}
\end{aligned}
$$

41. Breaking stress $=\frac{F}{A}$

$$
=\frac{40}{3 \pi} \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}
$$

According to question

$$
\begin{aligned}
\frac{40}{3 \pi} \times 10^{6} & =\frac{3 \times 10}{\pi r^{2}} \\
r^{2} & =\frac{9}{4 \times 10^{6}} \\
r & =1.5 \times 10^{-3} \mathrm{~m} \\
& =1.5 \mathrm{~mm}
\end{aligned}
$$

42. $E=k a^{2}$

$$
\begin{array}{ll}
\Rightarrow & E \propto a^{2} \\
\text { or } & \frac{a_{1}^{2}}{a_{2}^{2}}=\frac{E_{1}}{E_{2}}
\end{array}
$$

$$
=\frac{1}{4}
$$

or

$$
\frac{a_{1}}{a_{2}}=\frac{1}{2}
$$

43. Inductance and resistance of choke coil are high and low respectively.
Therefore, $\quad X_{L} \gg R$

-

and $\frac{T}{2}$ respectively.
45. Here, frequency $n^{\prime}=\frac{n}{2}$

We have, $\quad \frac{n}{2}=n\left(\frac{v}{v+v_{s}}\right)$
or $\quad \frac{v+v_{s}}{v}=2$
or

$$
v_{s}=v
$$

46. Inductive reactance $X_{L}=\omega L$

$$
\begin{aligned}
& =2 \pi \nu L \\
& =2 \pi \times 50 \times 1 \\
& =100 \pi
\end{aligned}
$$

47. We have, $p \propto T$

$$
\begin{aligned}
\frac{p}{p+\left(\frac{0.4}{100}\right) p} & =\frac{T}{T+1} \\
T & =250^{\circ} \mathrm{C}
\end{aligned}
$$

48. On free expansion of van der Waal's gases, final temperature will be less than initial temperature.
49. According to de-Broglie hypothesis

$$
\begin{aligned}
& \lambda=\frac{h}{p} \\
&=\frac{h}{\sqrt{2 m E}}=\frac{h}{\sqrt{2 m q V}} \\
& \therefore \quad \lambda= \frac{6.6 \times 10^{-34}}{\sqrt{2 \times\left(1.6 \times 10^{-27}\right)\left(1.6 \times 10^{-19}\right) \times 1000}} \\
&= \frac{6.6 \times 10^{-34}}{7.16 \times 10^{-22}} \\
&= 0.9 \times 10^{-12} \mathrm{~m}
\end{aligned}
$$

50. To form its own isotope atomic number (Z) should remain same.
So, the emission of one α-particle and two β-particles will maintain the Z same.
where, α-particle $={ }_{2} \mathrm{He}^{4} ; \beta$-particle $={ }_{-1} \beta^{0}$

$$
\begin{aligned}
& \eta \\
\Rightarrow \quad \frac{88}{100} & =\frac{880}{P_{i}} \\
\Rightarrow \quad P_{i} & =1000 \mathrm{~W} \\
\Rightarrow \quad \text { Input current, } I_{p} & =\frac{P_{i}}{V_{i}} \\
& \\
& =\frac{1000}{2200} \\
& =0.45 \mathrm{~A}
\end{aligned}
$$

52. For first line of Lyman series,
$n_{1}=1$ and $n_{2}=2$

$$
\begin{aligned}
& \therefore \quad \frac{1}{\lambda_{1}}=R\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right) \\
& =R\left(1-\frac{1}{4}\right) \\
& =\frac{3 R}{4}
\end{aligned}
$$

For first line of Paschen series

$$
\begin{aligned}
& n_{1}=3 \text { and } n_{2}=4 \\
& \begin{aligned}
\frac{1}{\lambda_{2}} & =R\left(\frac{1}{3^{2}}-\frac{1}{4^{2}}\right) \\
& =R\left(\frac{1}{9}-\frac{1}{16}\right) \\
& =\frac{7 R}{144} \\
\therefore \quad & \frac{\lambda_{1}}{\lambda_{2}}
\end{aligned}=\frac{7 R}{144} \times \frac{4}{3 R} \\
& \\
&
\end{aligned}
$$

53. The output of the circuit is,

$$
\begin{aligned}
y & =\overline{\bar{A}}+\overline{\bar{B}} \\
& =\overline{\bar{A}} \cdot \overline{\bar{B}} \\
& =A \cdot B \quad(\because \overline{\bar{A}}=A \text { and } \overline{\bar{B}}=B)
\end{aligned}
$$

which is the output of an AND gate.
54. Due to forward bias at the emitter-base junction, the majority charge carrier electrons of emitter get repelled from the negative terminal and move towards base. Some of these electrons
combine with the majority charge carrier holes present in the base and most of the electrons reach the collector, crossing the collector-base junction. This implies that collector current is always less than the emitter current due to the reason (b).
55. If A_{0} is the area of orifice at the bottom below the free surface and A that of vessel, time t taken to be empited the tank,

$$
\begin{aligned}
& t=\frac{A}{A_{0}} \sqrt{\frac{2 H}{g}} \\
& \therefore \quad \frac{t_{1}}{t_{2}}=\sqrt{\frac{H_{1}}{H_{2}}} \\
& \Rightarrow \quad \frac{t}{t_{2}}=\sqrt{\frac{H_{1}}{H_{1} / 2}} \\
& \Rightarrow \quad \frac{t}{t_{2}}=\sqrt{2} \\
& \therefore \quad t_{2}=\frac{t}{\sqrt{2}} \\
& =\frac{10}{\sqrt{2}}=5 \sqrt{2} \\
& \approx 7 \mathrm{~min}
\end{aligned}
$$

57. The incident wave and reflected wave are always in phase whereas incident wave and refracted wave has phase different of π.

Chemistry

1.

2. $\mathrm{C}_{n} \mathrm{H}_{2 n} \mathrm{O}_{2}$ is the general formula for open chain carboxylic acid and ester. e.g., if $n=3 \Rightarrow \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$
π. Therefore, phase difference between reflected wave and refracted phase is again π.
58. Maximum intensity, $I_{\max }=\left(\sqrt{I_{1}}+\sqrt{I_{2}}\right)^{2}$

$$
\begin{aligned}
& =(\sqrt{I}+\sqrt{4 I})^{2} \\
& =9 I
\end{aligned}
$$

Minimum intensity $I_{\min }=\left(\sqrt{I_{1}}-\sqrt{I_{2}}\right)^{2}$

$$
\begin{aligned}
& =(\sqrt{I}-\sqrt{41})^{2} \\
& =I
\end{aligned}
$$

59. The energy of photon $E=\frac{h c}{\lambda}$

$$
\begin{aligned}
& =\frac{12375}{2} \mathrm{eV} \\
E & =\frac{12375}{5000} \\
& =2.48 \mathrm{eV}
\end{aligned}
$$

The kinetic energy of equation of photoelectric

$$
\begin{aligned}
E_{k} & =E-W \\
& =0.58 \mathrm{eV}
\end{aligned}
$$

60. To convert a moving coil galvanometer into a voltmeter a high resistance is connected in series with it.

$$
\begin{aligned}
& \text { Acid }-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH} \\
& \text { Ester }-\mathrm{CH}_{3} \mathrm{COOCH}_{3}
\end{aligned}
$$

3. Antimony is used in making lead storage batteries because lead containing antimony is harder and more resistant to the action of acids than ordinary lead.
4. $W_{\text {metal }}=\frac{E i t}{96500}$

$$
=\frac{E \times 3 \times 50 \times 60}{96500}
$$

$$
E=\frac{96500 \times w}{3 \times 50 \times 60}
$$

$$
E=\frac{96500 \times 1.8}{3 \times 50 \times 60}=19.3
$$

initial concentration.

$$
t_{1 / 2}=\frac{0.693}{k}
$$

7.

This reaction is known as Kolbe's reaction.
8. $t=\frac{2.303}{k} \log \frac{[A]_{0}}{[A]}$

$$
\begin{aligned}
\text { If }[A]_{0}=1 \text { then }[A] & =\frac{1}{16} \\
t & =\frac{2.303}{60} \log 16 \\
& =4.6 \times 10^{-2} \mathrm{~s}
\end{aligned}
$$

9. Rate $=\frac{d x}{d t}=k\left[\mathrm{CCl}_{3} \mathrm{CHO}\right][\mathrm{NO}]$

$$
\begin{aligned}
k & =\frac{d x}{d t \times\left[\mathrm{CCl}_{3} \mathrm{CHO}\right][\mathrm{NO}]} \\
& =\frac{\mathrm{mol} \mathrm{~L}^{-1}}{\mathrm{~s}^{-1} \times \mathrm{mol} \mathrm{~L}^{-1} \times \mathrm{mol} \mathrm{~L}^{-1}} \\
& =\mathrm{L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}
\end{aligned}
$$

10. Alkyl halide and phenol is obtained.

11. Gold sol is a lyophobic sol.
12. Sodium ferrocyanide, $\mathrm{Na}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ contains four sodium atoms.

Number of Na atoms $=$ Number of moles \times number of atoms per molecule \times Avogadro number
13. Hydrogen atom is in $1 s^{1}$ and the $3 s, 3 p$ and $3 d$-orbitals will have the same energy w.r.t. $1 s$ orbital.
14. In CO_{3}^{2-} ion, the C -atom undergoes $s p^{2}$ hybridisation. It has triangular planar structure while $\mathrm{BF}_{4}^{-}, \mathrm{NH}_{4}^{+}$and SO_{4}^{2-} have tetrahedral structure.
15. $2 p_{y}$ and $2 p_{y}$ will not form a σ-bond because on taking x-axis as internuclear axis $2 p_{y}$ and $2 p_{y}$ orbitals overlap sideway (lateral overlapping) resulting in the formation of a π-bond.
16. Halogenation of alkanes in the presence of sunlight or heat is an example of free radical substitution.
17. Aldehydes and ketones readily undergo nucleophilic addition reaction. The reactivity decreases as the $+I$ effect of alkyl group increases.

18. Sulphonation of benzene is carried out by SO_{3} (electrophile).
19. $\mathrm{FeCl}_{3}, \mathrm{FeBr}_{2}$ and AlCl_{3} are used in Friedel-Craft's reaction because they act as Lewis acid since they are electron deficient in nature. However cations such as $\mathrm{Na}^{+}, \mathrm{K}^{+}$have a very little tendency to accept electrons due to inert gas configuration. Therefore, can't be used in Friedel-Craft reaction.
20. Order of electronegativities of halogens are $\mathrm{F}>\mathrm{Cl}>\mathrm{Br}>\mathrm{I}$.

Hence, the order of reactivities of methyl halide in the formation of Grignard reagent is

$$
\mathrm{CH}_{3} \mathrm{I}>\mathrm{CH}_{3} \mathrm{Br}>\mathrm{CH}_{3} \mathrm{Cl}
$$

Manipal (Med.) Solved Paper 2012

Heat released in the formation of

$$
44 \mathrm{~g} \mathrm{CO}_{2}=393.5 \mathrm{~kJ}
$$

\therefore Heat released in the formation of

$$
35.2 \mathrm{~g} \mathrm{CO}_{2}=\frac{393.5 \mathrm{~kJ} \times 35.2 \mathrm{~g}}{44 \mathrm{~g}}
$$

$$
=314.8 \mathrm{~kJ}
$$

27. $W=2.303 n R T \log \frac{p_{1}}{p_{2}}$

$$
=2.303 \times 1 \times 8.314 \times 300 \times \log 10
$$

$$
=5744.1 \mathrm{~J}
$$

28. $\mathrm{Acid}_{1}+\mathrm{BaSe}_{2} \rightleftharpoons \mathrm{Acid}_{2}+\mathrm{Base}_{1}$
$\mathrm{HPO}_{3}^{2-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{PO}_{3}^{3-}$
$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{HPO}_{4}^{2-}$
$\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
29. Because buffer solutions are mixture of weak acid or weak base and their salts.
30.

$\quad \mathrm{AgCl} \longrightarrow \mathrm{Ag}_{X}^{+}+\mathrm{Cl}_{X}^{-}$
After NaCl is added $-X \quad X+1 \times 10^{-4}$ That's why Ag^{+}will be less.
31. Basic, because it is a salt of strong base and weak acid.
32. Equilibrium constant for the reaction,

$$
\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})
$$

$$
K_{c}=\frac{1}{4.9 \times 10^{-2}}
$$

and for $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$

$$
\begin{aligned}
K_{c} & =\left(\frac{1}{4.9 \times 10^{-2}}\right)^{2} \\
& =\frac{10^{4}}{(4.9)^{2}}=416.49
\end{aligned}
$$

(Reduction, oxidising agent)

35. $\mathrm{Pb}_{3} \mathrm{O}_{4}$ is red lead (sindur).
36. $\mathrm{Al}_{4} \mathrm{C}_{3}$ on treating with water gives methane $\left(\mathrm{CH}_{4}\right)$ gas.
37. Zeolite when treated with hard water exchange Ca^{2+} and Mg^{2+} ions (present in hard water) with Na^{+}ions.
38. A codon is a specific sequence of 3 adjacent bases on a strand of DNA or RNA that provides genetic code information for a particular amino acid.
39. Proteins which consists of α-amino acid containing benzene ring e.g., tyrosine give xanthoprotic test.
40. Codon is present in mRNA. It is responsible for translation.
41. Amylopectin is a polymer of $\alpha-D$ glucose. It consists of branched chains of α-D glucose involving about 1000 or more units per molecule.
42. Vulcanization is the process of heating natural rubber with sulphur in order to develop some specific qualities such as abrasion resistance, heat resistance and elasticity.
43. Dopamine is produced in several areas of brain. If the amount of dopamine increases in the brain, the patient may be affected with Parkinson's disease.
44. Alizarin is a natural dye.
45. Strong oxidising agents such as PbO_{2} oxidise Mn^{2+} to MnO_{4}^{-}or Mn^{+7}.
46. $\left[\mathrm{Cr}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$ shows optical isomerism because its mirror image is not superimposable.
47. $D M G$ is a polydentate ligand which binds the central atom nickel forming a ring like structure.

49.

Only suitable reagent is chromic anhydride in glacial acetic acid. Other will also affect $>\mathrm{C}=\mathrm{C}<$ bond.
50. During electrolysis, noble metals like Ag, Au and Pt are not affected and separate as anode mud from impure anode.
51. Perchloric acid is not a peroxy acid while other given acids are examples of peroxy acids.
52. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+14 \mathrm{HCl} \longrightarrow 2 \mathrm{KCl}+2 \mathrm{CrCl}_{3}$

$$
+7 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{Cl}_{2}
$$

53. Raoult's law is not applicable if the total number of particles of solute changes in the solution due to association or dissociation.
54. An increase in temperature increases the volume of the solution and thus, decreases its molarity.
55. $\mathrm{H}_{3} \mathrm{PO}_{3}$ is a dibasic acid.

$$
\begin{gathered}
N_{1} V_{1} \text { (acid) }=N_{2} V_{2} \text { (base) } \\
0.1 \times 2 \times 20=0.1 \times 1 \times V_{2} \\
V_{2}=\frac{0.1 \times 2 \times 20}{0.1 \times 1} \\
=40 \mathrm{~mL}
\end{gathered}
$$

56. Number of moles of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=\frac{138}{46}=3$

Number of moles of $\mathrm{H}_{2} \mathrm{O}=\frac{72}{18}=4$

Mole fraction, $x_{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}=\frac{3}{3+4}$

$$
=\frac{3}{7}
$$

Mole fraction, $x_{\mathrm{H}_{2} \mathrm{O}}=\frac{4}{3+7}=\frac{4}{7}$

$$
\frac{x_{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}}{x_{\mathrm{H}_{2} \mathrm{O}}}=\frac{3 / 7}{4 / 7}=\frac{3}{4}
$$

57.

$$
+\mathrm{H}_{2} \mathrm{O}
$$

Biology

1. The term 'syncytial tissue' refers to animal tissues formed by fusion of cells, commonly during embryogenesis, to form multinucleate masses of protoplasm. In striated muscle, such syncytium is present in the form of cylinder.
2. Dorsal blood vessel of earthworm is the largest blood vessel. It occurs mid dorsally above the alimentary canal and runs from one end of the body to other. It collects blood from various parts behind the $13^{\text {th }}$ segment, however in the first thirteen segments, it behaves a distributing chamnel.
3. Protonephridia are probably the earliest type of nephridia and are found in flatworms also. These consist of a network of fine tubles which run along the length of the animal at each side and open to the surface by minute nephridipores.
4. Corpora quadrigemina, are two pairs of spherical optic lobes, representing the dorsal

Manipal (Med.) Solved Paper $2012 \ 27$

59. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}+\mathrm{CH}_{3} \mathrm{COCl} \xrightarrow[-\mathrm{HCl}]{\mathrm{NaOH}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHCOCH}_{3}$ $+\mathrm{HCl}$
60. PHBV is a biodegradable polymer.
part of midbrain. In rabbit, it is associated with vision.
5. The choanocyte (also called collar cells) line the caviry of water canal of sponges. These are ovoid cells with one end embedded in the mesophyll and the other exposed. The exposed end bears a flagellum, surrounded by a collar, which is made up of adjacent microvilli. The microvill are connected to each other by delicate micro-fibrils, forming the fine filtration device for straining food particles from the water.
6. During unfavourable conditions, Amoeba starts forming the cysts, this process is known as encystment During encystment, a number of organelles such as cillia and flagella are reabsorbed and the Golgi apparatus secretes the cyst wall material, which is carried to the surface of Amoeba in vesicles. Cyst of Amoeba blown far and wide along the wind where Amoeba hatch out of these in favourable conditions.
8. Telomerase is an enzyme composed of both RNA and protein, and as such may be an evolutionary link between systems using ribozymes and those using purely protein enzymes.
9. In zygotene of prophase-I, homologous chromosome pair up. This is called synapsis during which one chromosome of the pair comes from male parent and the other from female parent.
10. The general features of genetic code are
(i) The genetic code is written in linear form, using the ribonucleotide bases that compose mRNA molecule as letters.
(ii) Each word of codon consists of three letters, i.e., the codon is triplet.
(iii) The genetic code inside the cell medium is said to be non-ambiguous.
(iv) The code is degenerate, i.e., a given amino acid can be specified by more than one codons.
(v) The codon contains start and stop signals.
(vi) The code is said to be commaless (continuous).
(vii) The code is non-overlapping.
11. Sequencial expression of gene occurs when steroid binds to DNA. It acts as an inducar. HBE element is present known as hormone binding element.
12. Sickle-cell anaemia is caused by a change in a single base pair of DNA (stubstitution of valine by glutamic acid in the β-globin chain of haemoglobin). It is a genetic disease reported from negroes. The individuals of sickle-cell anaemia are immune to malaria.
13. Test cross, i.e., crossing of F_{1} progeny to the recessive parent is used to find genotype of the progeny.
14. Phenetics is also known as numerical taxonomy. It dictates taxonomic affinities entirely on the basis of measurable similarities and differences.
offspring.
16. Retting is a controlled microbial decomposition of pectin without simultaneous lecomposition of fibres. Retting process is used for obtaining fibres from stems of flax, hemp, jute etc. For this purpose, stems of fibre yielding plants are immersed in water for long period where decomposition sets in. Retting is facilitated by anaerobic butyric acid bacteria such as Clostridium botulinum, Clostridium tetani and Clostridium perfringens. These bacteria primarily decompose the plant pectin thus, freeing the fibres. If process of retting continues for a long time then cellulose fermenting bacteria develop and destroy the fibres.
17. Tetracycline interferes with the attachment of t RNA carrying the amino acid to the m RNA-ribosome complex preventing the addition of amino acids to the growing polypeptide chain. Streptomycin interferes with the initial steps of protein synthesis by changing the shape of 30 S proton of 70 S prokaryotic ribosome.
Erythromycin reacts with 50 S portion of the 70 S prokaryotic ribosome.
18. The body cavity (coelom) of earthworm is filled with an alkaline, colourless or milky coelomic fluid containing water, salts some proteins and four types of coelomic corpuscles, i.e., phagocytes, mucocytes, circular nucleated cells and chloragogen cells. During burrowing, the coelomic fluid becomes turgid and acts as hydraulic skeleton.
19. Senescence can be defined as "the sum of deteriorative processes, which naturally terminate the functional life of an organisms". Senescence is not confined only to whole plant, it may be limited to a particular plant organ such as !eaf and flower or cells such as pholem and xylem. Abscission is natural shedding of leaves, foliage branches, fruits, floral parts etc. According to Leopold (1967) abscission is a senesence phenomenon.
20. Light causes photosynthesis which leads to reduction in CO_{2} concentration \rightarrow synthesis of glycolate \rightarrow oxidation of glycolate \rightarrow ATP synthesis \rightarrow activation of K^{+}pump \rightarrow movement of K^{+}in guard cells \rightarrow movement of water into guard cells \rightarrow swelling of guard cells \rightarrow opening of stomata.
21. Cyclic photophosphorylation is that type of light energised ATP synthesis in which electron expelled by excited photocentre is returned to it after passing over a chain of electron carriers. Non-cyclic photophosphorylation is that type of light energised ATP synthesis in which electron expelled by excited photocentre does not return to them. It involves two Photochenical Systems (PS-I and PS-II) and produces assimilatory power (ATP and NADPH.)
22. According to mass flow hypothesis, the transport of organic solutes takes place from source to sink, this transport also depends on metabolic energy,
23. Glycolysis, Krebs' cycle and electron transport system are meant for ATP synthesis in different steps. ATP is the energy currency of cell.
24. Tendons are white fibrous comnective tissues, made up of collagen protein and connect bones with skeletal muscles.
Ligament is a modified elastic connective tissue, which is made up of elastic yellow fibres. Ligaments form connection between bone to bone.
25. There are thirteen types of finches described by Darwin. They are geographically isolated and found in Galapagos Island of South Pacific.
26. The social interaction of competitors result in the establishment of territory or territoriality by the successful competition. The territory distribution depends on feeding, mating, caring of young ones also.
27. The joint between humerus and radius bone is hinge joint. The movement in this joint is unidirectional. This joint is also called as gingulum.
28. The nuclear membrane of the nucleus which separates nucleus and cytoplasm is double membrane and porous.
29. Mast cells are special cells found is connective tissue. They secrete three substances heparin-anticogulant, histamine-vasodilator and serotonin-vasoconstrictor.
30. According to the biological concept of sepcies, a species is a group of organisms which can interbreed freely in nature and produce fertile offsprings which rarely breed with organisms of other species in a natural environment.
31. DDT (Dichloro Diphenyl Trichloroethane) either does not degrade or degrade extremely slowly in the natural environment. DDT is still detected after 24 years. It's half life period is up to 10 years. So, the use of DDT is banned now-a-days.
32. Dr. HF Klinefelter in 1942 described Klinefelter's syndrome. It occurs in men due to an extra ' X ' chromosome thus, having genetic constitution ' XXY '. This is trisomy but of sex chromosome or allosome. It usually results from non-disjunction and is expressed by small penis, absence of body hairs, gynaecomastia etc.
33. Down's syndrome (mongolian idiocy) is a congenital disorder caused by trisomy of chromosome 21, often by non-disjunction. It is characterised by mental retardation, simian palm, as mongoloid facial features.
Turner's syndrome is due to monosomy of sex chromosome, i.e., XO. It was described by Turner 1938.

Colour blindness is a recessive sex linked (X) trait in which affected individual can not distinguish red colour from green colour.

Klinefelter's syndrome is due to an extra X-chromosome to man (male), i.e., trisomy of sex chromosome.
34. When a cell becomes turgid, the increase in turgor pressure resists the entry of water into the cell.

$$
\begin{aligned}
& \psi \text { cell - TP cell }=- \text { OP cell } \\
& \psi \text { cell - TP cell - OP cell } \\
& \text { At equilibrium } \\
& \psi \text { cell }=\text { TP cell - OP cell }=\text { zero. }
\end{aligned}
$$

 embryony.
36. Acid rain is caused by large scale emission of nitrogen oxides $\left(\mathrm{NO}_{x}\right)$, sulphur oxides (SO_{x}), volatile organic carbons and HCl from thermal power plants, industries and automobiles. Oxides of nitrogen and sulphur combine with water and oxygen and form nitric acid and sulphuric acid, respectively.

$$
\begin{gathered}
2 \mathrm{NO}+\frac{3}{2} \mathrm{O}_{2} \longrightarrow \mathrm{~N}_{2} \mathrm{O}_{5} \\
\mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \begin{array}{c}
2 \mathrm{HNO}_{3} \\
\text { (Nitric acid) }
\end{array} \\
2 \mathrm{SO}_{2}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{SO}_{3} \\
2 \mathrm{SO}_{3}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \begin{array}{c}
2 \mathrm{H}_{2} \mathrm{SO}_{4} \\
\text { (Sulphuric acid) }
\end{array}
\end{gathered}
$$

37. Long day plants flower in photoperiod more than critical day length, e.g., Hyocyamus niger, radish, Beta vulgaris, Spinacea (spinach) lattuce, etc.
38. Lifespan of Ascaris in the host is 9 to 12 months.
39. False fruits are developed when some other floral parts participate in the formation of fruits, e.g., in apple, thalamus is modified to form a fruit. Mango is drupe.
40. FAD acts as an e^{-}acceptor in between succinic and fumaric acid.
41. Cone cells contain the light sensitive pigment iodopsin. It is found in retina of all diurnal vertebrates. Cones are specialised to transmit information about colour and responsible for visual activity of eye.
42. Sexual dimorphism is absent in Deuteromycetes.
43. Sphagnum is known as peat mass. The partially decomposed Sphagnum accumulates to form compressed mass called peat.
44. Photonasty is the response produced by plants in response to availability of light.
volamsl ruvert vetgha.
45. Acetobactor are of commercial importance. They are used in the production of vineger by converting ethanol in wine to acetic acid.
46. The term cistron is used to describe the locus responsible for generating a protein. It can also be defined as the segment of DNA that contains all information for production of single polypeptide.
47. A biodiversity hot spot is biogeographic region with a significant reservoir of biodiversity that is threatened with destruction, high levels of species richness and high degree of endemism. Initially, 25 biodiversity hotspots were identified but subsequently nine more have been added to the list, bringing the total number of biodiversity hotspots in the world to 34.
48. All of these are exotic species.
49. Reporter genes are used to determine whether a particular DNA construct has been successfully introduced into a cell.
50. When CO_{2} concentration is blood increases, breathing becomes faster and deeper. The effect of increased CO_{2} is to decrease the affinity of haemoglobin for O_{2}.
51. Cancer is caused by loss of control over cells reproduction capacity so easily damaged by radiation.
52. Leishamaniasis or kala azar is caused by Leishmania donovani. It spreads by sand fly. It is also known as dum-dum fever.
53. Anabaena is a free living N_{2} fixing cyanobacterium which can form symbiotic association with the quatic fern Azolla.
54. Prolactin is secreted by anterior pituitary gland. It stimulates mammary gland development during pregnancy and lactation after child birth.
55. Fangs of python are maxillary teeth located on maxilla. If the fangs are once taken out, they can come out again with the same length.
56. The organs which have different embryonic origin but perform same function are called as analogous organs, e.g., wings of bat and insects.

The organs which have same embryonic origin but adapted to perform different functions are known as homologous organs, e.g., wing of bat and forelimb of humans.
58. Sinus venosus refers to the chamber of heart present between veins and right atria. In mammals, it has disappeared as it has been absorbed in right atrium.
59. In aerobic respiration, the pyruvic acid which is produced as a result of glycolysis is further oxidized into CO_{2} and water after passing through a series of reactions. This series of reactions takes place in the matrix of mitochondria and is known as Krebs' cycle, after the name of it's discoverer.
60. In wild pea (Lathyrus aphaca), whole leaf is transformed into tendril. In Pisum sativum, terminal leaflet, while in Gloriosa, leaf apex is transformed into tendril.
61. Pteridophyta is a group of non-seed forming, vascular cryptogams, i.e., these contain vascular tissues for the conduction of minerals and water but do not produce seeds.

The main plant body of these plants is diploid called sporophyte which produces spores after meiosis. These spores on germination give rise to gametophytic plant which produces gametes. Fusion between male and female gametes produces a diploid zygote which produces diploid sporophytic stage.
62. Transpiration is a physical as well as physiological process in which water is evaporated in the form of vapour from aerial parts of plants, particularly with the help of structures known as stomata. Stomata usually open during day time (i.e., light). Increase in temperature increases the rate of transpiration. High atmospheric humidity reduces the process of transpiration and moving air (wind) increases the rate of transpiration.
63. Cytokinin is also known as cell division hormone as it brings about the process of cell division in plants. The ratio of cytokinin to auxin control the process of cell differentation.
A higher cytokinin to auxin ratio brings about the shoot formation while a higher auxin to cytokinin ratio brings about root development. When both of these are present in relatively equal quantities although the cells divide but fail to differentiate.
64. The enzyme complex nitrogenase has two components, (a) a large $\mathrm{Mo}-\mathrm{Fe}$ protein consisting of four subunits (enzyme nitrogenase) (b) a smaller Fe protein consisting of two subunits (nitrogenase reductase).
65. Cockroach, housefly, mosquitoes etc., all belong to class Insecta of the phylum- Arthropoda. These contain three pairs of legs (total six) for locomotion.
66. Cartilage is the most important vertebrate connective tissue. The cells of cartilage, called chondrocytes are surrounded by an amorphous matrix which is known as chondrin. Chondrin contains glycoproteins, basophilic chondroitin and fine collegen fibres.
67. Insectivorous plants can survive in N_{2} deficient soil as they trap N_{2} from the insects.
68. Spore of Funaria on germination, gives rise to protonema.
69. Vessels present in xylem are responsible for conduction of water and minerals from soil to the top of the plant.
70. Multiplication of DNA is called replication. Replication means formation of equal and opposite form or carbon copy. Duplication is formation of exactly same type. Transcription is writing the message of DNA in the form of mRNA and translation means decoding the message of m RNA into proteins.
71. Phytochrome is the pigment of activity of red and far red light. The activity results in photoperiodism.
72. Citric acid present in lemon is responsible for its sourness.
ces Pvt. Ltd
two sub-orders-Sauria (lizards), Ophidia (snakes).
74. Emasculation means removal of anthers or stamens or killing of pollen grains of a flower without affecting in any way, the female reproductive organs. It is done to prevent the self-fertilization pollination means falling of pollen grain on the stigma of flower. Fertilization means fusion of male gamete and female gamete and anthesis means flowering (opening of floral buds).
75. Haemoglobin is a globular protein. It is carrier of oxygen in blood.
76. LPP-1 is the first cyanophage, discovered by Safferman and Morris. It Infects Lynbya, Phromidium and Plectonema (blue-green algae).
77. Oscillatoria is a myxophycean alga which reproduces by means of hormogonia. Hormogonia are broken filaments which give rise to new filaments under favourable conditions.
origin and diversification. It is usually represented as diagrammatic phylogenetic tree, i.e., dendrogram.

Palaentology is the study of fossils, ontogeny is the whole course of an individual's development and life history.
79. Sertoli cells are the cells that line the seminiferous tubules in the testis. These cells protect the spermatids and convey nutrients to both the developing and mature spermatozoa. Sertoli cells are regulated by FSH as FSH receptors are confined to Sertoli cells.
80. Aril is the edible part in the fruit of litchi. The aril is an accessory seed covering often formed from the outgrowth at base of the ovule.
Fleshy thalamus is the edible part of apple (Pyrus malus).
Juicy testa is the edible part of pomegranate (Punica granatum).
Endocarpic juicy hairs are the edible part of orange (Citrus sp).

