MT: METALLURGICAL ENGINEERING

Duration: Three Hours

Maximum Marks: 150

Read the following instructions carefully

- 1. This question paper contains 16 printed pages including pages for rough work. Please check all pages and report discrepancy, if any.
- 2. Write your registration number, your name and name of the examination centre at the specified locations on the right half of the ORS.
- 3. Using HB pencil, darken the appropriate bubble under each digit of your registration number and the letters corresponding to your paper code.
- 4. All the questions in this question paper are of objective type.
- 5. Questions must be answered on Objective Response Sheet (ORS) by darkening the appropriate bubble (marked A, B, C, D) using HB pencil against the question number on the left hand side of the ORS. Each question has only one correct answer. In case you wish to change an answer, erase the old answer completely. More than one answer bubbled against a question will be treated as a wrong answer.
- 6. Questions 1 through 20 are 1-mark questions and questions 21 through 85 are 2-mark questions.
- 7. Questions 71 through 73 is one set of common data questions, questions 74 and 75 is another pair of common data questions. The question pairs (76, 77), (78, 79), (80, 81), (82, 83) and (84, 85) are questions with linked answers. The answer to the second question of the above pairs will depend on the answer to the first question of the pair. If the first question in the linked pair is wrongly answered or is un-attempted, then the answer to the second question in the pair will not be evaluated.
- 8. Un-attempted questions will carry zero marks.
- 9. NEGATIVE MARKING: For Q.1 to Q.20, 0.25 mark will be deducted for each wrong answer. For Q.21 to Q.75, 0.5 mark will be deducted for each wrong answer. For the pairs of questions with linked answers, there will be negative marks only for wrong answer to the first question, i.e. for Q.76, Q.78, Q.80, Q.82 and Q.84, 0.5 mark will be deducted for each wrong answer. There is no negative marking for Q.77, Q.79, Q.81, Q.83 and Q.85.
- 10. Calculator without data connectivity is allowed in the examination hall.
- 11. Charts, graph sheets and tables are NOT allowed in the examination hall.
- Rough work can be done on the question paper itself. Additional blank pages are given at the end of the question paper for rough work.

Useful Data

Universal gas constant = $8.314 \text{ J mol}^{-1} \text{ K}^{-1}$ Avogadro's Number = 6.023×10^{23} atoms mol⁻¹

Note: All compositions are in wt.% unless otherwise specified.

Q. 1 - Q. 20 carry	one	mark	each.
--------------------	-----	------	-------

Q.1	The yield point phenomenon observed in annealed low carbon steels is due to the presence of						
	(A) silicon	(B) chromium	(C) phosphorous	(D) carbon			
Q.2	In a tensile test of	a ductile material, necking	starts at				
	(A) lower yield str (C) ultimate tensile		(B) upper yield stres (D) just before fract				
Q.3	Fatigue resistance	of a steel is reduced by					
	(A) decarburizatio (C) reducing the g		(B) polishing the sur (D) shot peening	rface			
Q.4	The stress concent	ration factor K_t for a circul	ar hole located at the ce	enter of a plate is			
	(A) 0	(B) 1	(C) 3	(D) tends to ∞			
Q.5	Cassiterite is an in	aportant source for					
	(A) tin	(B) titanium	(C) molybdenum	(D) thorium			
Q.6	High top pressure	in the blast furnace					
	(B) increases the to (C) increases fuel	time of contact between gas ime of contact between gas consumption	and solid				
Q.7	For a closed system of fixed internal energy and volume, at equilibrium						
	(A) Gibb's free en (C) Helmholtz's fr	ergy is minimum ree energy is minimum	(B) entropy is maxim (D) enthalpy is max				
Q.8	Intergranular corrosion of 18-8 stainless steel can NOT be prevented by						
	(B) quenching it fi	arbon content to less than (com high temperature to pro- carbide forming elements carbon content		e precipitation			
Q.9	Riser is NOT requ	ired for the castings of					
	(A) grey cast iron	(B) white cast iron	(C) Al-4% Cu	(D) Al-12% Si			
Q.10	The NDT technique	ie used to detect deep lying	g defects in a large size	l casting is			
	(A) liquid penetrar (C) ultrasonic insp		(B) magnetic particl (D) eddy current ins				

MT

Q.11	The maximur	n numbe	er of ph	nases in a	quaternar	y system at	atmospheric p	pressure are	
	(A) 2		(B)			(C) 4		(D) 5	
Q.12	In Cu-Al pha in Al is less t	se diagrahan 1%.	am, the	solubilit ume-Rot	y of Al in hery rule t	Cu at room hat justifies	temperature this difference	is about 10% and	that of Cu
	(A) size facto (C) structure	r				(B) electro (D) valence	o-negativity cy		
Q.13	Mannesmanr	process	S						
	(A) is a cold (B) is used for (C) uses para (D) is used for	or makin	g thin	walled se					
Q.14	The intensiv	e thermo	odynan	nic variab	les among	the follow	ing are		
	(P) pressure (Q) volume (R) temperat (S) enthalpy	ture							
	(A) P, Q		(B)	P, R		(C) R, S		(D) Q, R	
Q.15	In a binary p	hase dia	agram,	the activi	ity of the s	solute in a tv	wo phase field	at a given tempe	rature
	(A) increase (B) decrease (C) remains (D) is propo	es linear	ly with t	the solut	e content	lute content	me lesses an legite dimente altre legites		
Q.16	In Jominy c	urves of	steel A	A (Fe-0.4)	% C) and	steel B (Fe-	0.4% C -1.0%	Ni),	
	(A) depth of (B) depth of (C) hardnes (D) hardnes	f harden s at the s at the	ing in s quench quench	steel B is led end in led end in	more than steel A is	in steel A more than	in steel B		
Q.17	Determinar	at of $\begin{pmatrix} 3 \\ 1 \\ 4 \end{pmatrix}$	1 2 2 1 2 3	is is					
	(A) -2			3) -1		(C) 1		(D) 2	
Q.18	$\int \frac{dx}{a + bx}$ is	5							
	(A) $\frac{1}{b}\ln(a)$	+bx)+	c (I	3) ln(a +	bx)+c	(C) bln	(a+bx)+c	(D) $\frac{1}{a}\ln(a - \frac{1}{a})$	+bx)+c
Q.19	The value	of dy/dx	for the	followin	g data set	at $x = 3.5$,	computed by	central difference	method, is
	x y	1 0	2	8	15	5 24			

(A) 3.5

3/16

(D) 14

(C) 10.5

(B) 7

Q.20	The velocity at whic it, is known as	The velocity at which particles from a fluidized bed are carried away by the fluid passing through it, is known as				
	(A) elutriation veloci	ty	(B) terminal ve	locity		
	(C) minimum fluidiza	ation velocity	(D) superficial			
				Felf and minimal at larger of the		
0.21	4-075	giringin extests [1]				
Q. 21	to Q.75 carry two	marks each.				
Q.21	Q.21 A metal with an average grain size of 36 μ m has yield strength of 250 MPa and 500 MPa. The friction stress of the metal in MPa is					
	(A) 31.2	(B) 62.5	(C) 125	(D) 250		
Q.22	The stacking sequence	e of close packed pla	nes with a stacking fa	ult is		
	(A) a b c a b c a b c		(B) a b a b a b a	a b a b		
	(C) a b c a c a b c a b		(D) a b c a b a c	b a		
Q.23	The slip directions on	a (1111) plane of a fc	c crystal are			
	(A) [101], [011], [11	0]	(B) [101], [110]	. [10]1		
	(C) [101], [110], [011]	(D) [0Ī1], [01Ī			
Q.24	The correct statements among the following are					
	(A) P, R	(B) P, S	(C) Q, R	(D) Q, S		
Q.25	A steel bar (elastic m of 1 GPa and undergo	odulus = 200 GPa ar es a plastic strain of	nd yield strength = 40 2%. The elastic strain	0 MPa) is loaded to a tensile stress in the bar in percent is		
	(A) 0	(B) 0.2	(C) 0.5	(D) 2.0		
Q.26	The ASTM grain si magnification of 2002	ze number of a m	aterial which shows	64 grains per square inch at a		
	(A) 5	(B) 6	(C) 7	(D) 8		
Q.27	Two samples P and Q strengths of P and Q,	of a brittle material measured normal to t	have crack lengths in he cracks, will be	the ratio 4:1. The ratio of fracture		
	(A) 1:4	(B) 1:2	(C) 2:1	(D) 4:1		
Q.28	The structure-sensitive	e properties are				
	(P) elastic modulus (Q) yield strength (R) melting point (S) fracture strength					
	(A) P, S	(B) Q, S	(C) Q, R	(D) P, R		

Q.29	The time taken for 50% recrystallization of cold worked Al is 100 hours at 500 K and 10 minutes at 600 K. Assuming Arrhenius kinetics, the activation energy for recrystallization in kJ mol ⁻¹ is				
	(A) 50	(B) 80	(C) 160	(D) 320	
Q.30	Match the mechanical	behaviour in G	roup 1 with the terms in G	roup 2	
	Group 1 (P) Low cycle fatigue (Q) Creep (R) Impact toughness (S) Stretcher strain		Group 2 (1) Charpy test (2) Portevin-LeCl (3) Coffin-Manso (4) Larson-Miller (5) Jominy test	n equation	
	(A) P-2, Q-4, R-1, S-5 (C) P-3, Q-4, R-1, S-2		(B) P-2, Q-1, R- (D) P-3, Q-1, R-		
Q.31	Match the processes in	Group 1 with th	he physical principles in G	roup 2	
	Group 1 (P) Flotation (Q) Jigging (R) Tabling (S) Heavy media separate		Group 2 (1) Differential init (2) Differential late (3) Difference in de (4) Modification of	ial acceleration ral movement nsity	
	(A) P-4, Q-1, R-2, S-3 (C) P-2, Q-3, R-4, S-1		(B) P-4, Q-1, R-3 (D) P-1, Q-3, R-4	, S-2	
Q.32	Which of the following is a solution for $\frac{\partial z}{\partial t} = \frac{\partial^2 z}{\partial x^2}$				
	(A) $z(x,t) = [A \sin x]$	$e^{-\lambda^2 t}$	(B) $z(x,t) = [A$		
	(C) $z(x,t) = \frac{A}{t}e^{-x^2/t}$		(D) $z(x,t) = \begin{bmatrix} B & C \\ C & C \end{bmatrix}$	$\cos(\lambda x)]\sqrt{t}$	
Q.33	Match the unit processes in Group 1 with the objectives in Group 2				
	Group 1 (P) Leaching (Q) Cementation (R) Roasting (S) Converting (A) P-2, Q-1, R-3, S-5		Group 2	f metal in aqueous solution lution of metal matte to metal sulphide to oxide metal from slag	
	(C) P-3, Q-4, R-5, S-2		(D) P-4, Q-3, R-2,		
Q.34	Match the following metals in Group 1 with their production methods in Group 2				
	Group 1 (P) Titanium (Q) Nickel (R) Magnesium (S) Zinc		Group 2 (1) Mond's proce (2) Pidgeon's proce (3) Imperial smel (4) Kroll's proces (5) Cyanidation	ocess ting ss	
	(A) P-5, Q-2, R-3, S-4 (C) P-4, Q-1, R-2, S-3		(B) P-3, Q-5, R-4, (D) P-4, Q-1, R-5,		

Q.35	Manganese recovery	in steelmaking is aide	ed by			
	(P) oxidizing slag (Q) reducing slag (R) high temperature (S) low temperature (T) acidic slag	The state of the s				
	(A) P, Q	(B) Q, S	(C) R, T	(D) Q, R		
Q.36	A flotation plant to concentrate. The cor	reats 100 tons of chancentrate has 25% Cu.	alcopyrite containing The percentage Cu in	2% Cu and produces 6 tons of the tailings is		
	(A) 0.35	(B) 0.53	(C) 0.86	(D) 0.93		
Q.37	liquid slag contain	teel initially containing no sulphur. The al sulphur content of st	sulphur distribution	t into equilibrium with 0.1 ton of ratio (%S) _{slag} /[%S] _{metal} is 30 at		
	(A) 0.01	(B) 0.02	(C) 0.03	(D) 0.04		
Q.38	Deoxidation of liquid steel with ferrosilicon produces spherical silica particles. The particles µm diameter take 3000 minutes to float up through a 2 m height of liquid steel. For particles of µm diameter to float up through the same height, the time required in minutes is					
	(A) 30	(B) 300	(C) 960	(D) 3000		
Q.39	Match applications in Group 1 with the commonly used corrosion protection methods in Group 2					
	Group 1 (P) Seagoing vessel (Q) Underground pip (R) Electric traction (S) Electric poles		Group 2 (1) Inorganic c (2) Sacrificial c (3) Aluminium (4) Impressed c (5) Galvanizim	anode a paint current		
	(A) P-2, Q-4, R-5, S- (C) P-1, Q-2, R-5, S-		(B) P-2, Q-3, R-5 (D) P-4, Q-3, R-1			
Q.40	For a regular solution A-B, $\Delta \overline{H}_B$ is 2660.5 J at $x_B = 0.6$. The critical point of the miscibility gap in the system would be at					
	(A) $x_B = 0.5$, T = 100 (C) $x_B = 0.5$, T = 500		(B) $x_B = 0.6$, T = (D) $x_B = 0.6$, T =			
Q.41	For Ni + $0.5O_2 = N$ Ni/NiO in atm is	iO, $\Delta G^0 = -250,000$	+ 100T Joules. At 10	00 K, the p_{0_2} in equilibrium with		
	(A) 2.13 x 10 ⁻¹⁶	(B) 8.54 x 10 ⁻¹⁶	(C) 1.46 x 10 ⁻⁸	(D) 2.92 x 10 ⁻⁸		
Q.42	The planar density for	or (111) plane in a fcc	crystal is			
	(A) 0.68	(B) 0.74	(C) 0.85	(D) 0.91		
Q.43	Iridium has fcc struc The atomic radius of		tomic weight are 22,4	00 kg m ⁻³ and 192.2, respectively.		
	(A) 0.126	(B) 0.136	(C) 0.146	(D) 0.156		

Q.44 Match the names in Group 1 with the invariant reactions in binary phase diagrams in Group 2

Group 1	Group 2		
(P) Eutectic	(1) S1 = S2 + S3		
(Q) Eutectoid	(2) $L = S1 + S2$		
(R) Peritectoid	(3) $L1 = L2 + S$		
(S) Monotectic	(4) S1 + S2 = S3		
(A) P-2, Q-1, R-3, S-4	(B) P-2, Q-1, R-4, S-3		
(C) P-3 O-4 P-2 S 1	(D) D 1 O 2 D 1 C 2		

Q.45 Match the properties in Group 1 with the units in Group 2

Group 1	Group 2
(P) Thermal conductivity	(1) J m ⁻² s ⁻¹ K ⁻¹
(Q) Heat transfer coefficient	(2) J m ⁻¹ s ⁻¹ K ⁻¹
(R) Specific heat	$(3) \text{ m}^2 \text{ s}^{-1}$
(S) Diffusivity	(4) J mol ⁻¹ K ⁻¹
(A) P-1, Q-2, R-4, S-3	(B) P-2, Q-3, R-1, S-4
(C) P-2, Q-1, R-4, S-3	(D) P-2, Q-4, R-3, S-1

Q.46 Match the heat treatment processes of steels in Group 1 with the microstructural features in Group 2

Group 1	Group 2		
(P) Quenching	(1) Bainite		
(Q) Maraging	(2) Martensite		
(R) Tempering	(3) Intermetallic precipitates		
(S) Austempering	(4) Epsilon carbide		
(A) P-2, Q-3, R-1, S-4	(B) P-1, Q-3, R-2, S-4		
(C) P-2, Q-3, R-4, S-1	(D) P-3, Q-2, R-1, S-4		

Q.47 Match the nonferrous alloys in Group 1 with their applications in Group 2

Group 1	Group 2
(P) Ti alloy	(1) Nuclear reactors
(Q) Zr alloy	(2) Bells
(R) Ni alloy	(3) Dental implants
(S) Cu alloy	(4) Gas Turbines
(A) P-3, Q-1, R-4, S-2	(B) P-2, Q-3, R-4, S-1
(C) P-2, Q-1, R-3, S-4	(D) P-3, Q-4, R-1, S-2

Q.48 Match the materials in Group 1 with their functional applications in Group 2

Group 1	Group 2
(P) Nb ₃ Sn	(1) Dielectric
(Q) GaAs	(2) Soft magnet
(R) Fe-4%Si alloy (S) SiO ₂	(3) Superconductor (4) Semiconductor
(A) P-3, Q-1, R-4, S-2	(B) P-1, Q-4, R-2, S-3
(C) P-3, Q-2, R-4, S-1	(D) P-3, Q-4, R-2, S-1

				/		
Q.49	An annealed hy carbon content	poeutectoid steel has 1 of the steel is 0.8%. The	0% of proeutectone carbon content	oid ferrite at ro in the steel in	om temperature.	The eutectoi
	(A) 0.58	(B) 0.68	(C) 0.7	2	(D) 0.78	
Q.50	Assume that th	oint and latent heat of e specific heats of solic ation at 1250 K in kJ n	and liquid are sa	r are 1356 K ame. The free	and 13 kJ mol ⁻¹ , energy change for	respectively r the liquid to
	(A) -4	(B) -3	(C) -2		(D) -1	
Q.51	According to the	ne Clausius-Clapeyron	equation, the mel	ting point of a	luminium	
	(A) increases li (B) decreases li (C) increases ex	nearly with pressure nearly with pressure exponentially with press ry with pressure				
Q.52	Match the cast	irons in Group 1 with t	he distinguishing	microstructura	al features in Gro	up 2
	Group 1 (P) Grey cast ir (Q) Ductile cas (R) Malleable c (S) White cast i	on t iron east iron	Group (1) Ter (2) Pea (3) Gra (4) Mas	2 nper graphite		AMBY AL
	(A) P-3, Q-5, R			, Q-5, R-4, S-2		
	(C) P-2, Q-4, R	-5, S-3	(D) P-3	, Q-5, R-1, S-	4	
Q.53	Match the casting defects in Group 1 with causes given in Group 2					
	Group 1 (P) Hot tear (Q) Misrun (R) Blister (S) Rat tail		(2) High r (3) Improp	cient melt sup esidual stresse per venting. sion of sand		
	(A) P-1, Q-2, R	-3, S-4	(B) P-3	, Q-4, R-1, S-2	2	
	(C) P-4, Q-3, R-	-2, S-1	(D) P-2	, Q-1, R-3, S-4	1	
Q.54	350 mm and c	f a plate is to be reducted of friction is required would be	ed from 60 to 30 is 0.15. Assumin	mm by multing equal draft	pass rolling. The in each pass, the	roll radius is ne minimum
	(A) 2	(B) 4	(C) 5		(D) 6	
Q.55	Match the particle morphologies in Group 1 with the powder production methods in Group 2					
	(Q) Monosized : (R) Fe powder v	powder with rounded m spherical Ta powder with <i>onion peel</i> structur haped W powder 4. S-3	re	Group 2 (1) Carbony (2) Gas ator (3) Oxide r (4) Rotatin Q-4, R-3, S-2	mization eduction g electrode proce	SS
	(C) P-2, Q-4, R-			Q-4, R-3, S-2 Q-1, R-2, S-3		

Q.56	One mole of monoatomic ideal gas is reversibly and isothermally expanded at 1000 K to twice its original volume. The work done by the gas in Joules is					
	(A) 2430	(B) 2503	(C) 5006 (D) 5763			
Q.57	In the Ellingham diagram $C \rightarrow CO$ line intersects $M \rightarrow MO$ line at temperature T1 and $N \rightarrow NO$ line at temperature T2. M and N are metals. T2 is greater than T1. The correct statements among the following are					
	 (P) carbon will reduce both MO and NO at temperatures T > T2 (Q) carbon will reduce both MO and NO at temperatures between T1 and T2 (R) carbon will reduce both MO and NO at temperatures T < T1 (S) carbon will reduce MO but not NO at temperatures between T1 and T2 (T) carbon will reduce NO but not MO at temperatures between T1 and T2 					
	(A) P, S	(B) Q, T	(C) R, S (D) P, T			
Q.58	Match the forms of corrosion in Group 1 with the typical examples in Group 2					
	Group 1 (P) Filliform corre (Q) Crevice corre (R) Galvanic corre (S) Stress corresion (A) P-3, Q-2, R-4 (C) P-3 Q-4, R-2,	osion osion on cracking , S-1	Group 2 (1) Austenitic stainless steel in chloride environment (2) Nut bolt with gasket (3) Painted food cans (4) Steel studs in copper plate (B) P-1, Q-3, R-4, S-2 (D) P-2, Q-3, R-4, S-1			
Q.59	Given the following assertion 'a' and the reason 'r', the correct option is Assertion a: Phosphorous removal in steelmaking is favoured by basic slag Reason r: Basic slag decreases the activity of P ₂ O ₅ in the slag (A) Both a and r are true and r is the correct reason for a (B) Both a and r are false (C) a is true but r is false (D) Both a and r are true but r is not the correct reason for a					
Q.60	Given the following assertion 'a' and the reason 'r', the correct option is Assertion a: In Bayer's process high pressure is used to dissolve alumina from bauxite Reason r: Pressure increases the boiling point of water (A) Both a and r are correct, but r is not the correct reason for a (B) Both a and r are false (C) Both a and r are correct and r is the correct reason for a (D) a is true but r is false					
Q.61	Group 1 (P) Al-4.4%Cu-1. (Q) Fe-18.0%Ni-8 (R) Al-1.0%Mg-0 (S) Ni-15.0%Cr-2	5%Mg-0.6%Mn 3.5%Co-3.5%Mo-0.2% 0.6%Si-0.3%Cu-0.2%C 0.7%Al-1.7%Ti-1.0%Fe	r (3) CuAl ₂			
	(C) P-4, Q-1, R-3,					

Q.62	Identify the attributes associated with dispersion hardened alloys					
	(P) dispersoids do not dissolve in the matrix even at high temperatures (Q) dispersoids are coherent with the matrix (R) dispersoids impart creep resistance to the alloy (S) dispersoids improve the corrosion resistance of the alloy					
	(A) P, S	(B) Q, R	(C) Q, S	(D) P, R		
Q.63	In a gaseous mixture, CO, CO ₂ and O ₂ are in equilibrium at temperature T. For the reaction CO + $0.5O_2 = CO_2$, $\Delta G^0 = -281,400 + 87.6$ T Joules. The correct statements among the following are					
	(P) The reaction will shift to left on increasing T (Q) The reaction will shift to right on increasing T (R) The reaction will shift to left on increasing pressure (S) The reaction will shift to right on increasing pressure					
	(A) P, S	(B) P, Q	(C) Q, R	(D) R, S		
Q.64	The casting processes that require expendable moulds are					
	(P) investment casting (Q) low-pressure casting (R) shell moulding (S) slush casting					
	(A) P, Q	(B) Q, R	(C) R, S	(D) P, R		
Q.65	Transport mechan	nisms that do NOT cont	ribute to densification du	uring sintering are		
	(P) surface diffusion (Q) grain boundary diffusion (R) bulk diffusion (S) evaporation-condensation (T) viscous flow					
	(A) P, Q	(B) Q, S	(C) Q, T	(D) P, S		
Q.66	The order of decreasing weldability among the following steels is					
	(P) Fe-0.6%C (Q) Fe-0.4%C (R) HSLA					
	$(A) R \rightarrow Q \rightarrow P$	(B) $P \rightarrow Q \rightarrow R$	(C) $Q \rightarrow P \rightarrow R$	(D) $Q \rightarrow R \rightarrow P$		
Q.67	Match the welding processes in Group 1 with the sources of heat in Group 2					
	Group 1 (P) Ultrasonic welding (Q) Spot welding (R) SMAW (S) Thermit welding			(1) Thermochemical(2) Electrical resistance(3) Friction		
	(A) P-3, Q-2, R-1 (C) P-1, Q-3, R-4			(B) P-4, Q-3, R-2, S-1 (D) P-3, Q-2, R-4, S-1		
Q.68	A cup is to be made from a 2 mm thick metal sheet by deep-drawing. The height of the cup is 7 mm and the inside diameter is 100 mm. For a drawing ratio of 1.25, the blank diameter in mm is					

(C) 225

(A) 62.5

(B) 125

(D) 250

Q.69	The defects that are NOT observed in extruded products are						
	(P) chevron crackin(Q) fold(R) piping(S) surface crackin(T) alligatoring						
	(A) P, Q	(B) R, T	(C) P, S	(D) Q, T			
Q.70	Oil impregnated br	onze bearings are manuf	actured using	#15 = 100 low mysic to primorting			
	(A) pressure die cas (C) solid-state sinte	sting	(B) centrifugal ca (D) liquid phase				
Comi	non Data Questio	ons					
Comi	non Data for Questi	ons 71,72 and 73:					
The d	iffusivities of carbon	in γ-iron at 1173 and 127	73 K are 5.90 x 10 ⁻¹² a	nd 1 94 x 10 ⁻¹¹ m ² c ⁻¹ respectively.			
Q.71	ffusivities of carbon in γ -iron at 1173 and 1273 K are 5.90 x 10^{-12} and 1.94 x 10^{-11} m ² s ⁻¹ , respectively. The activation energy for diffusion in kJ mol ⁻¹ is						
	(A) 138	(B) 148	(C) 158	(D) 168			
Q.72	The diffusivity of carbon in γ -iron at 1373 K in m ² s ⁻¹ is						
	(A) 3.4 x 10 ⁻¹¹	(B) 4.4 x 10 ⁻¹¹	(C) 5.4 x 10 ⁻¹¹	(D) 6.4 x 10 ⁻¹¹			
Q.73	During the carburization of a steel, a case depth of d has been obtained in 40 hours at 1173 K. For achieving a case depth of $d/2$ at 1273 K, the time required in hours is						
	(A) 1	(B) 2	(C) 3	(D) 4			
Comn	non Data for Questio	ons 74 and 75:					
is sinte	ered to a density of 75	on the at 300 MPa to a graph of the ore of t	een density of 6000 k al density of the alloy	nsity of 4500 kg m ⁻³ . The powder rg m ⁻³ . Subsequently, the compact is 9000 kg m ⁻³ .			
Q.74	If the powder is com	pressed to 10 mm height	t, the initial fill height	in mm is			
	(A) 12	(B) 15	(C) 20	(D) 25			
Q.75	The densification parameter of the sintered compact is						
	(A) 0.50	(B) 0.67	(C) 0.75	(D) 0.83			
inke	l Answer Questio	ns: Q.76 to Q.85 ca	rry two marks ea	ch.			
Staten	ent for Linked Answ	ver Questions 76 and 7	7:				
A poly moduli	ester-matrix composi	te is unidirectionally re fiber are 6.9 and 72.4 C	inforced with 60 vol	% of E-glass fibers. The elastic			
Q.76	The elastic modulus of the composite parallel to the fiber direction in GPa is						
	(A) 15.1	(B) 23.1	(C) 43.4	(D) 46.2			

				A STATE OF THE STA		
Q.77	If a load of 100 kg is applied on the composite in the fiber direction, the load carried by the fibers in kg is					
	(A) 6	(B) 47	(C) 94	(D) 100		
Stater	ment for Linked Answ	er Questions 78 and 79				
1000 kg of zinc concentrate of composition 78% ZnS and 22% inerts is roasted in a multiple hearth furnace. Roasting converts ZnS to ZnO, SO ₂ and SO ₃ . The exit gas contains 6 vol.% SO ₂ and 2 vol.% SO ₃ . Molecular weights: Zn = 65, S = 32, O ₂ = 32 Composition of air (in vol.%) = 21% O ₂ and 79% N ₂ 1 kg mol of gas occupies 22.4 m ³ at 273 K and 1 atm						
Q.78	Volume of the exit gas (at 1 atm pressure and 273 K) in m ³ is					
	(A) 2129	(B) 2252	(C) 2628	(D) 2923		
Q.79	Stoichiometric amoun	nt of air used (at 1 atm pr	essure and 273 K) in m ³	is		
	(A) 1010	(B) 1394	(C) 1520	(D) 2020		
Stater	nent for Linked Answ	er Questions 80 and 81:	TEST MARKET LIS AMI			
Densit	ty of Al = 2700 kg m^{-3} ,	atomic weight of Al = 27	7, density of $Al_2O_3 = 370$	00 kg m ⁻³ .		
Q.80	The Pilling-Bedworth	ratio for the oxidation of	f Al is			
	(A) 0.57	(B) 0.74	(C) 1.38	(D) 3.12		
Q.81	The oxidation law that	at governs the high tempe	rature oxidation of Al is	"Office and		
	(A) parabolic	(B) linear	(C) logarithmic	(D) paralinear		
Stater	nent for Linked Answ	er Questions 82 and 83:	and the comment of the comment			
		a fcc metal obtained of 58.4°. The lattice para		wavelength of 0.154 nm), a 0.316 nm.		
Q.82	The interplanar spacin	ng in nm is				
	(A) 0.158	(B) 0.164	(C) 0.177	(D) 0.185		
Q.83	The Miller indices of	the reflecting plane are				
	(A) (111)	(B) (200)	(C) (220)	(D) (222)		
Staten	nent for Linked Answ	er Questions 84 and 85:				
Mg casting with a volume to surface area ratio (casting modulus) of 0.1 m is made by gravity die casting. Heat transfer coefficient at the metal-mould interface is 1.9 kJ m ⁻² K ⁻¹ s ⁻¹ . The density and melting point of Mg are 1700 kg m ⁻³ and 923 K, respectively. Assume ambient temperature to be 293 K.						
Q.84						
	(A) 300	(B) 352	(C) 472	(D) 532		
Q.85	In a spiral channel of 10 mm diameter and with an entrance flow velocity of 300 mm s ⁻¹ , the fluidity of the melt in mm is					
	(A) 75		(C) 275	(D) 375		

END OF THE QUESTION PAPER