B.Tech 6th Semester Exam., 2015

ENVIRONMENTAL ENGINEERING—I

Time: 3 hours

Full Marks: 70

Instructions:

www.ErForum.Net

- (i) The marks are indicated in the right-hand margin.
- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.

Choose the correct option (any seven): 2×7=14

- (a) According to IS 10500 : 1991; the desirable limits for pH in drinking water is
 - (i) 7
 - (ii) 7-8
 - (iii) 7-5-8-5
 - (iv) 6.5 8.5
 - (v) None of the above
- (b) DDT has property of
 - bioaccumulation
 - (ii) biomagnification
 - (iii) endocrine disrupting agent
 - (iv) All of the above

AK15-1120/598

(Turn Over)

- (c) Displacement efficiency of a sedimentation tank may defined as
 - (i) flowing through period/detention period
 - (ii) detention period/flowing through period
 - (iii) 1/detention period
 - (iv) None of the above
- (d) Coincident draft is
 - (i) maximum hourly demand plus maximum daily demand
 - (ii) maximum hourly demand plus fire demand
 - (iii) maximum daily demand plus fire demand
 - (iv) fire demand
- (e) Drinking water supply scheme for Patna Municipal area is based on
 - (i) surface water drawn from Ganga river
 - (ii) surface water drawn from Sone
 - (iii) groundwater
 - (iv) All of the above

Continued)

(f) Adsorption process may be adopted for the removal of

(3)

- (i) hardness
- (ii) turbidity
- (iii) color
- (iv) All of the above
- (g) BOD value of potable water should be
 - i) zero mg/L
 - (ii) 5 mg/L
 - (iii) 20 mg/L
 - (iv) 30 mg/L
- (h) Jaundice is caused by
 - (i) bacterial infection
 - (ii) viral infection
 - (iii) hormonal infection
 - (iv) None of the above
- (i) In drinking water distribution network, which valve is required to be installed at all summits?
 - (i) Side valve
 - (ii) Air valve
 - (iii) Sluice valve
 - (iv) Gate valve

- (j) The method employed for the determination of hardness is
 - (i) SPAND
 - (ii) DPT test
 - (iii) EDTA
 - (iv) MPN

With the help of flow diagram, show the connections of various components involved in supplying drinking water to a city, when the source of water is a river.

(b) A water supply scheme has to be designed for a city having population of 100000. Estimate the important kinds of draft namely average daily draft, maximum daily draft, maximum hourly draft and coincident draft employing 250 lpcd average water consumption.

6+8=14

3. (a) Derive an expression for the settling velocity of a spherical particle in liquid when the Reynolds number is less than 0.5.

www.ErForum.Net AK15-1120/598

(Continued)

(5)

(b) For a continuous flow settling tank of 3 m deep and 60 m long in size, calcualte the flow velocity of water for effective removal of 0.025 mm particle at 25 °C. (sp. gravity of the particle = 2.65, kinematic viscosity of water at 25 °C = 0.01 cm²/sec) 7+7=14

How do you determine the optimal dose of a coagulant in laboratory?

slow sand filter with the help of a neat sketch. 7+7=14

5. Determine the dimensions of a rapid sand filter having capacity to treat 4 mld water per day. Also design a suitable under-drain system and wash water troughs for efficient functioning of the filter unit.

6. (a) A water treatment plant consists of the unit processes coagulation, flocculation, sedimentation, filtration and distinction. The suspended solids concentration of the raw water is 500 mg/L and the plant treats 36400 m³/d. Alum [Al₂(SO₄)₃·14H₂O] is used as a coagulant with a dose rate of 500 mg/L. Compute the sludge solids produced daily if complete reaction of

alum to aluminium hydroxide $[Al(OH)_3]$ occurs and 98% total solids are removed by sedimentation unit. (Molecular weight: Al = 27, S = 32m O = 16, H = 1)

(b) Calculate the hardness in mg/L as CaCO₃ of the following water sample:

Cation	Concentration (mg/L)	Molecular wt.
Na ⁺	15	23
Mg ²⁺	9	24.4
Ca ²⁺	48	40

9+5=14

7. (a) What do you understand by breakpoint chlorination? Describe in brief.

(b) Results of chlorine demand test on raw water are given below:

Sample No.	Chlorine dose (mg/L)	Residual chlorine after
		10 minutes contact
		(mg/L)
1	0.2	0.19
2	0.4	0.36
3	0.6	0.50
4	0.8	0.48
5	1.0	0.20
6	1.2	0.40
7	1.4	0.60
8	1.6	0.80

Determine the break-point chlorine dose and chlorine demand. 6+8=14

14

A town with a population of one lakh is to be supplied with water daily at 200 litres per head. The variation in demand is as follows:

(7)

6 a.m. to 9 a.m.	40% of total
9 a.m. to 12 noon	10% of total
12 noon to 3 p.m.	10% of total
3 p.m. to 6 p.m.	15% of total
6 p.m. to 9 p.m.	25% of total

Determine the capacity of the service reservoir employing (a) mass balance curve and (b) analytical method for 12 hours uniform pumping rate from 6 a.m. to 6 p.m.

9. (a) Water has to be supplied to a town with one lakh population at a rate of 150 lpcd from a river 2000 m away. The difference in elevation between the lowest water level in the sump and reservoir is 36 m, if the demand has to be supplied in 8 hours, determine the size of the mains and the brake horse power of the pumps required. Assume maximum demand as 1.5 times the average demand, f = 0.0075, velocity in pipe 2.4 m/s and efficiency of pump 80%.

(b) Two power generator sets namely A and B have capacity to produce noise 80 dB and 83 dB respectively. Find out the noise level at the place where both the generators running simultaneously.

7+7=14

+ '★ ★

AK15—1120/598 www.ErForum.Net

(Turn Over)

www.ErForum.Net

www.ErForum.Net