

K: MICROBIOLOGY

Q. 1 - Q. 10 carry one mark each.

Q.1	Q.1 Quinolones inhibit bacterial growth by targeting				
	(A) DNA replication (C) RNA polymerase	(B) mRNA translation(D) active transport of nutrients into the cell			
Q.2	To select for spontaneously arising histidine auxotrophs in a population, you would use a medium containing				
	(A) Histidine and penicillin(C) Histidine and lysozyme	(B) Penicillin but no histidine(D) Lysozyme but no histidine			
Q.3	Which one of the following statements is NOT associated with contributions of Louis Pasteur?				
	 (A) Anthrax is caused by anthrax bacillus (B) Bacteria causing food spoilage come from air (C) The disease causing organism must be isolated in pure culture (D) Bacteria cause the wine disease 				
Q.4	The active transport of solute in the cell is characterized by				
	 (A) its uptake along the concentration gradient utilizing energy (B) requirement of a carrier to support transport along the concentration gradient (C) chemical modification of the solute during its uptake (D) its uptake against the concentration gradient 				
Q.5	Catabolite repression allows cells to save energy by				
	 (A) inactivating catabolic enzymes (B) inhibiting synthesis of total RNA (C) regulating expression of genes required for (D) inhibiting translation of mRNAs encoding 				
Q.6	A newly emerged variant of Influenza viru population by addition of	s can be selectively propagated from the mixed			
	(A) Gangevelovir	(B) Tamiflu			

(A) Gangcyclovir

(C) Interferon gamma

- (D) Neutralizing antibody
- Q.7 The synthesis of an immunoglobulin in either a secretory or membrane bound form is governed by
 - (A) allelic exclusion

(B) class switching

(C) differential RNA processing

- (D) affinity maturation
- Q.8 The cis-trans test can determine whether a gene codes for
 - (A) an activator or a repressor
 - (B) an RNA or a protein
 - (C) a protein with the same or different amino acids
 - (D) a diffusible or non-diffusible product

Q.9	Which of the following are expected to be the abundant inhabitants of a nitrate and sulfate rich soil naturally depleted for oxygen?						
	(A) Pseudomonas and Az (C) Azotobacter and Thio	20 S. October 1 School State of State o		omonas and Desulfovibrio omonas and Nitrobacter			
Q.10	.10 Which one of the following immersion oils would you use to get the best resolution in microscope (with 100X objective)?						
	(A) an oil with refractive (C) an oil with refractive			with refractive index of 1.5 with refractive index of 1.3			
Q. 11	Q. 20 carry two man	rks each.					
Q.11	2.11 Four Hfr strains of <i>E. coli</i> were generated from the same F ⁺ strain. The Hfr strains donated main the following order						
	Strain1: DQWMT; Strain 2: AXPTM; Strain 3: BNCAX; Strain 4: BDQWM						
	The order of the markers in the original F ⁺ strain is						
	(A) DQWMTPXACNB		(B) AXPT	MDQWBNC			
	(C) BNCAXPTMDQW			VMNCAXPT			
Q.12	Which one of the following forms of the same DNA molecule would bind maximum ethidiu bromide?			would bind maximum ethidium			
	(A) Negatively supercoile (C) Linear	ed	(B) Covalently closed relaxed circle(D) Positively supercoiled				
Q.13	An actively growing culture of <i>E. coli</i> divides in about 20 min. Under laboratory conditions, time taken to replicate the entire genome of this bacterium would be about						
	(A) 20 min (B) 40 min	(C) 10 min	(D) 18 min			
Q.14	Which of the statements	about Corynebacteriu	ium diphtheriae biology is NOT CORRECT?				
	(B) Diphtheria toxin prod(C) Diphtheria toxin inhi	duction can be minimi bits protein synthesis	teriae are producers of diphtheria toxin ction can be minimized by high concentration of iron in the medium ts protein synthesis A-B toxin secreted as a polypeptide of 62 kDa				
Q.15	Match the names of investigators in Group 1 with their contributions in Group 2						
	Group 1		Gro	up 2			
	Q. John Needham 2. Disproved spor R. Elie Metchnikoff 3. Proved Spontar S. Lazaro Spallanzani 4. Use of agar as		le of phagocytosis in infection sproved spontaneous generation oved Spontaneous generation e of agar as solidifying agent e of carbolic acid as disinfectant				
	(A) P-5,Q-3,R-4,S-1 (B) P-5,Q-3,R-1,S-2	(C) P-4,Q-3,R-1,S-5	5 (D) P-3,Q-2,R-1,S-4			

2011

- During replication of the E. coli chromosome, Okazaki fragments are produced from Q.16
 - (A) only one of the strands of the circular genome
 - (B) both the strands of the circular genome
 - (C) one of the strands in one generation and the other strand in the next generation
 - (D) both the strands of the circular genome provided that the heavy nitrogen (15N) is present in the medium
- A new isolate of a facultative anaerobe utilizes either oxygen or pyruvate as terminal electron Q.17 acceptor. This bacterium was grown either anaerobically with glucose as sole carbon source; or aerobically with lactose as the sole carbon source. Net increase in ATP production (per mole of the carbon source) during the aerobic growth would be
 - (A) 2-fold
- (B) 4-fold
- (C) 19-fold
- (D) 38-fold
- Based on their properties, match the "Genera" in Group 1 with those in Group 2 Q.18

Group 1	Group 2		
P. Bacillus	1. Sarcina		
Q. Neisseria	2. Azotobacter		
R. Rhizobium	3. Hyphomicrobium		
S. Caulobacter	4. Clostridium		
(A) P-4, Q-1,R-2,S-3	(B) P-4, Q-1,R-3,S-2		
(C) P-2, Q-4,R-1,S-3	(D) P-1, Q-4,R-2,S-3		

- An actively growing culture (20 ml) of E. coli (1 × 10⁵ per ml) was mixed with a total of 100 T4 phage particles, grown further for 40 min and mixed with a few drops of chloroform. Under the conditions used, the generation time of E. coli is 30 min, the infection cycle of phage T4 is 20 min, and the burst size is 100. Assuming that each infection was a successful one, how many plaque forming units would you expect at the end of the experiment?
 - (A) 10^4

(C) P-2, Q-4,R-1,S-3

- (B) 10^3
- $(C) 10^5$
- (D) 10^6
- Match the pair of organisms in Group 1 with their characteristic interactions in Group 2 Q. 20

Group 1		Group 2
P. Photoblepharon palpebratus and Vibr	io fischeri	1. Mutualism
Q. Pseudomonas and Bdellovibrio		Symbiosis
R. Aspergillus and Pseudomonas		Antagonism
S. Thiobacillus ferrooxidans and Beijerin	4. Parasitism	
(A) P-2,Q-4,R-3,S-1	(B) P-2,Q-3,R-4,S-1	
(C) P-4,Q-2,R-3,S-1	(D) P-2,Q-4,R-1,S-3	

END OF SECTION - K