Objective Paper-I-2011

1. For smooth and reliable operation of an amplifier using BJT, it is necessary that the circuit must be properly designed from the point of view of bias stabilization, because:
2. Reverse saturation current $I_{c o}$ increases with rise in temperature.
3. $V_{B E}$ decreases with rise in temperature
4. h_{FE} or β changes with change of temperature and replacement of the transistor
5. h_{FE} or β changes with change in collector supply voltage
(A) 1, 2, and 3 only
(B) 1, 2, and 4 only
(C) 2, 3 and 4 only (D) 1, 2, 3 and 4
6. Intense magnetic field may be produced in a coil by using a:
(A) Normal metal with a large number of turns and sending a large current
(B) Type-I superconductor with a large number of turns and sending a large current
(C) Type-II superconductor with a large number of turns and sending a large current
(D) Type-II superconductor with a large number of turns but limiting the current density below a critical value
7. The unit cell of a certain type of crystal is defined by three vectors a, b and c. The vectors are mutually perpendicular, but $a \neq b \neq c$. The crystal structure is:
(A) Triclinic
(B) Tetragonal
(C) Orthorhombic
(D) Monoclinic
8. Biasing is used in transition amplifiers to:
9. Stabilize the operating point against temperature variations
10. Place the operating point in the linear region of the characteristics.
11. Make α, β and I_{co} of the transistor independent of temperature variations.
12. Reduce distortion and increase dynamic range
(A) 1, 2, 3 and 4
(B) 1, 2 and 4 only
(C) 1, 2 and 3 only
(D) 2, 3 and 4 only
13. The resistivity of a metal is a function of temperature because:
(A) The electron density varies with temperature
(B) The electron gas density varies with temperature
(C) The lattices vibration increases with temperature
(D) Collision of electrons increases as temperature increases
14. An intrinsic semiconductor has the following properties:
15. Its electron concentration equals its hole concentration
16. Its carrier density increases with temperature
17. Its conductivity decreases with temperature
(A) 1, 2 and 3
(B) 2 and 3 only
(C) 1 and 3 only
(D) 1 and 2 only
18. A 'hole' in a semiconductor has:
19. Positive charge equal to the electron charge
20. Positive mass equal to the mass of the electron
21. An effective mass greater than the effective mass of electron
22. Negative mass and positive charge equal to the charge in nucleus
(A) 1, 2, 3 and 4
(B) 1 and 3 only
(C) 2 and 4 only
(D) 3 and 4 only
23. A CE amplifier has an un-bypassed emitter resistance of $0.5 \mathrm{k} \Omega$ and a collector load of $5 \mathrm{k} \Omega$. The β of the transistor is 100 and it is operating at 1 mA . The voltage gain of the stage at mid band will be of the order of:
(A) 200
(B) 100
(C) 10
(D) 50
24. A common emitter transistor amplifier has a collector load of $10 \mathrm{k} \Omega$. If its $\mathrm{h}_{\mathrm{fe}}=100 \mathrm{k} \Omega$ and $\mathrm{h}_{\mathrm{ie}}=2 \mathrm{k} \Omega\left(\mathrm{h}_{\mathrm{re}} \approx \mathrm{h}_{\mathrm{oe}} \approx 0\right)$, the voltage amplification of the amplifier is nearly equal to:
(A) 500
(B) 200
(C) 100
(D) 50
25. The free electrons in a metal follow the kinetic theory of gases and the following statements are made about their properties:
26. The velocity of all the electrons is equal.
27. The electrons have a velocity distribution ranging from zero to infinity
28. The average velocity of electron gas is proportional to \sqrt{T} ($T=$ temperature)
29. The maximum velocity of electrons is proportional to T.

Which of these statements are correct?
(A) 1, 2, 3 and 4
(B) 1 and 3 only
(C) 2 and 3 only
(D) 3 and 4 only
11. Using transistors:

1. Class-A power amplifier has a minimum efficiency of 50%.
2. Class-B push-pull power amplifier gives rise to crossover distortion.
3. Class-AB push-pull power amplifier has higher efficiency than Class-B pushpull amplifier.
4. Class-C power amplifier is generally used with tuned load for RF amplification.
(A) 1, 2, 3 and 4
(B) 2 and 4 only
(C) 3 and 4 only
(D) 1 and 2 only
5. A material shows spontaneous magnetization. This is due to:
6. Weiss molecular field
7. Co-operative effect among dipoles
8. Co-operative effect among domains
9. Absence of applied magnetic field
(A) 1, 2, 3 and 4
(B) 2, 3 and 4 only
(C) 1, 2 and 3 only
(D) 1, 2 and 4 only
10. Materials in which the permanent dipoles interact with each other so heavily that they tend to align parallel to each other are called:
(A) Ferromagnetic
(B) Ferrimagnetic
(C) Paramagnetic
(D) Anti-ferromagnetic
11. A type-I superconductor is:
12. A conductor of infinite conductivity at all temperatures
13. A conductor with very large conductivity below a critical temperature
14. A material showing susceptibility=1 below critical temperature
15. A perfect conductor having conductivity drastically reduced by a critical current
(A) 1, 2 and 3 only
(B) 2, 3 and 4 only
(C) 1, 2 and 4 only
(D) 1, 2, 3 and 4
16. In an RC coupled transistor amplifier:
17. Low frequency response is determined by coupling capacitors
18. High frequency response is determined by junction capacitances
19. Mid-frequency response is determined by both coupling and junction capacitances.
(A) 1 and 2 only
(B) 1 and 3 only
(C) 2 and 3 only
(D) 1, 2 and 3
20. Ti is diffused into a well defined region of LiNbO_{3} crystal. The following effects are expected:
21. An optical waveguide is formed in the region containing Ti.
22. Ti containing region has a larger refractive index than in undoped region
23. Ti containing region has a lower refractive index than in undoped region
(A) 1, 2 and 3
(B) 1 and 3 only
(C) 1 and 2 only
(D) 2 and 3 only
24. The inductance L_{F} and resistance R_{F} in the following circuit is used for:

(A) Low frequency compensation only
(B) High frequency compensation only
(C) Both low frequency and high frequency compensation
(D) Increasing mid frequency gain without affecting the cut-off frequencies
25. In the following circuit, the optimum low frequency compensation is obtained when:

(A) $\mathrm{C}_{1} \mathrm{R}_{1}=\mathrm{R}_{\mathrm{E}} \mathrm{C}_{\mathrm{E}}$
(B) $\mathrm{C}_{1} \mathrm{R}_{1}=\mathrm{C}_{\mathrm{C}} \mathrm{R}_{\mathrm{i}}$
(C) $\mathrm{C}_{1}\left(\mathrm{R}_{\mathrm{c}} \| \mathrm{R}_{1}\right)=\mathrm{C}_{\mathrm{c}} \mathrm{R}_{\mathrm{i}}$
(D) $C_{1}\left(R_{C} \| R_{1}\right)=R_{E} C_{E}$
26. The amplifier circuit shown in the figure is an example of:

(A) Voltage series feedback
(B) Voltage shunt feedback
(C) Current series feedback
(D) Current shunt feedback
27. The peak output of a tuned amplifier is at 6 MHz and has quality factor of 60 . The bandwidth and 3 dB frequencies in MHz shall be:
(A) 100, 6.05 and 5.95
(B) 6, 9 and 3
(C) $0.6,6.6$ and 5.4
(D) $0.1,6.05$ and 5.95
28. On applying an electric field of intensity $10 \mathrm{~V} / \mathrm{cm}$ across a semiconductor at a certain temperature the average drift velocity of free electrons is measured to be $70 \mathrm{~m} / \mathrm{s}$. Then the electron mobility is:
(A) $7 \times 10^{4} \mathrm{~cm}^{2} / \mathrm{Vs}$
(B) $700 \mathrm{~cm}^{2} / \mathrm{Vs}$
(C) $7 \mathrm{~m}^{2} / \mathrm{Vs}$
(D) $700 \mathrm{~cm} / \mathrm{Vs}$
29. Consider the following statements with regard to semiconductors:
30. In n-type material, free electron concentration is nearly equal to density of donor atoms.
31. 1 part in 10^{8} donor type impurity added to Ge improves its conductivity at $30^{\circ} \mathrm{C}$ by a factor of 12 .
32. Phosphorous is an example of n-type impurity
33. Conductivity of Si is more sensitive to temperature than Ge

Which of these statements are correct?
(A) 1, 2 and 3 only
(B) 1, 3 and 4 only
(C) 2 and 4 only
(D) 1, 2, 3 and 4
23. The diffusion constant for holes in silicon is $13 \mathrm{~cm}^{2} / \mathrm{s}$. What is the diffusion current if the gradient of the hole concentration $\frac{d P}{d X}=-2 \times 10^{14}$ holes per $\mathrm{cm}^{3} / \mathrm{cm}$?
(A) -0.416 mA
(B) $-3.2 \times 10^{-5} \mathrm{~A}$
(C) $32 \mu \mathrm{~A}$
(D) 0.416 mA
24. Given that at room temperature, the volt equivalent of temperature $V_{T}=26 \mathrm{mV}$, hole mobility $\mu_{\mathrm{p}}=500 \mathrm{~cm}^{2} / \mathrm{Vs}$ and the life time of holes is 130 ns , in a sample of n-type silicon bar that is exposed to radiation at one end at lowinjection level, what is the diffusion length of holes?
(A) 1300 microns
(B) 100 Armstrong's
(C) 169 microns
(D) 100 microns
25. The function $(A \oplus B)$ is to be realized using only 2-input NAND gates. The minimum number of 2 -input NAND gates required for such a realization is:
(A) 3
(B) 4
(C) 5
(D) 6
26. Consider a semiconductor carrying current and placed in a transverse magnetic field B, as shown below. The measured potential across 1 and 2 surfaces is positive at 2 . What is the type of the material?
(A) Intrinsic Si material
(B) n-type semiconductor material
(C) p-type semiconductor material
(D) No such conclusion can be drawn

27. A 700 mW maximum power dissipation diode at $25^{\circ} \mathrm{C}$ has $5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ de-rating factor. If the forward voltage drop remains constant at 0.7 V , the maximum forward current at $65^{\circ} \mathrm{C}$ is:
(A) 700 mA
(B) 714 mA
(C) 1 A
(D) 1 mA
28. For the circuit shown below, using ideal diode, the values of voltage and current are:

(A) -3 V and 0.6 mA
(B) 3 V and 0.0 mA
(C) 3 V and 0.6 mA
(D) -3 V and 0.0 mA
29. Consider the following statements:

1. The radiation falling on a photodiode is primarily a minority carrier injector.
2. The short-circuit current of a reverse biased photodiode under illumination varies exponentially with light intensity
3. The photovoltaic emf of an open circuited photodiode varies logarithmically with the light-generated short-circuit current
4. The spectral response of a photo-diode does not depend upon the frequency of the incident light
Which of these statements are correct?
(A) 1, 2, 3 and 4
(B) 3 and 4 only
(C) 1 and 2 only
(D) 1 and 3 only
5. Match List I with List II and select the correct answer using the code given below the lists:

List I

P At peak point
Q At valley point
R Reverse bias region
S Beyond valley point
(A) $\mathrm{P}-3, \mathrm{Q}-2, \mathrm{R}-4, \mathrm{~S}-1$
(C) $\mathrm{P}-3, \mathrm{Q}-4, \mathrm{R}-2, \mathrm{~S}-1$
(B) $\mathrm{P}-1, \mathrm{Q}-2, \mathrm{R}-4, \mathrm{~S}-3$
(D) $\mathrm{P}-1, \mathrm{Q}-4, \mathrm{R}-2, \mathrm{~S}-3$

List II

1 Low tunnelling current
2 Zero tunnelling current
3 High diffusion current
4 High tunnelling current
31. A half wave rectifier has an input voltage of 240 V rms. If the step down transformer has a turns ratio of 8:1, what is the peak load voltage? Ignore diode drop.
(A) 27.5 V
(B) 86.5 V
(C) 30 V
(D) 42.5 V
32. Consider the following statements.

1. The efficiency of light emitting diode (LED) decreases with the injected current
2. The efficiency of LED increases with a decrease in temperature
3. The light emitted is concentrated near the junction because most of the carriers are within the diffusion length of the junction
4. Light is emitted in a LED when electrons move from the valence band to the conduction band
Which of the following statements are correct?
(A) 1, 2, 3 and 4
(B) 1 and 2 only
(C) 3 and 4 only
(D) 2 and 3 only
5. The collector and emitter current levels for a transistor with a common base d.c. current gain of 0.99 and base current of $20 \mu \mathrm{~A}$ are respectively:
(A) $2 \mathrm{~mA}, 1.98 \mathrm{~mA}$
(B) $1.98 \mu \mathrm{~A}, 2 \mathrm{~mA}$
(C) $1.98 \mathrm{~mA}, 2 \mathrm{~mA}$
(D) $2 \mathrm{~mA}, 1.98 \mu \mathrm{~A}$
6. The difference between PLA and ROM is:
(A) PLA is sequential, ROM is combinational
(B) PLA is combinational, ROM is sequential
(C) PLA economizes on the number of min-terms to implement Boolean functions
(D) PLA has fixed AND array, ROM has fixed OR array
7. Consider the following statements.
8. In a silicon controlled rectifier (SCR), if the cathode gate is reverse-biased, then the SCR cannot fire at all
9. The turn on time of an SCR increases with temperature
10. After an SCR is turned on, it can be made to turn off again by reverse biasing the gate
11. Gate recovery time is the minimum time that the anode voltage must be maintained below holding voltage V_{H} to turn off the SCR
Which of the following statements are correct?
(A) 1, 2, 3 and 4
(B) 1 and 2 only
(C) 2 and 4 only
(D) 3 and 4 only
12. Which one of the following statements is correct about SCR?
(A) SCR is constructed using an npn and pnp transistor by connecting base of one transistor to collector of the other transistor
(B) To switch off an SCR, gate current must be reduced below certain threshold value.
(C) Higher levels of gate currents in SCR cause it to conduct at lower anode-tocathode voltages
(D) The higher the gate current in SCR, the higher the holding current to switch off
13. The p-type epitaxial layer grown over an n-type substrate for fabricating a bipolar transistor will function as:
(A) The collector of a pnp transistor
(B) The base of an npn transistor
(C) The emitter of a pnp transistor
(D) The collector contact for a pnp transistor
14. The biasing of an IC BJT is done by the following biasing scheme:
(A) Potential divider biasing scheme
(B) Fixed biasing scheme
(C) Current mirror biasing scheme
(D) Collector to base feedback biasing scheme
15. Consider the following statements about CMOS.
16. CMOS logic inverter has maximum signal swing of $O V$ to $V_{D D}$
17. The output signal swing is independent of exact value of aspect ratio and other device parameters
18. It is a fast switching device with wide noise margins
19. It has zero input resistance and infinite output resistance

Which of the following statements are correct?
(A) 1, 2, 3 and 4
(B) 1, 2 and 4
(C) 2, 3 and 4
(D) 1, 2 and 3
40. Match List I with List II

41. Given a unity feedback system with $G(s)=\frac{K}{s(s+6)}$, the value of K for damping ratio of 0.75 is:
(A) 1
(B) 4
(C) 16
(D) 64
42. System is said to be marginally stable, if:
(A) Gain crossover frequency > phase crossover frequency
(B) Gain crossover frequency = phase crossover frequency
(C) Gain crossover frequency < phase crossover frequency
(D) Gain crossover frequency \neq phase crossover frequency
43. System transformation function $\mathrm{H}(\mathrm{z})$ for a discrete time LTI system expressed in state variable form with zero initial condition is:
(A) $c(z I-A)^{-1} b+d$
(B) $\mathrm{c}(\mathrm{zI}-\mathrm{A})^{-1}$
(C) $(\mathrm{zI}-\mathrm{A})^{-1} \mathrm{z}$
(D) $(\mathrm{zI}-\mathrm{A})^{-1}$
44. Unit step response of the system described by difference equation $y(n)+y(n-1)=x(n)$ is:
(A) $\frac{z^{2}}{(z+1)(z-1)}$
(B) $\frac{z}{(z+1)(z-1)}$
(C) $\frac{(z+1)}{(z-1)}$
(D) $\frac{z(z-1)}{(z+1)}$
45. Which of the following relations is not correct?
(A) $\mathrm{f}(\mathrm{t}) \delta(\mathrm{t})=\mathrm{f}(0) \delta(\mathrm{t})$
(B) $\int_{-\infty}^{\infty} f(t) \delta(\tau) d \tau=1$
(C) $\int_{-\infty}^{\infty} \delta(\tau) \mathrm{d} \tau=1$
(D) $\mathrm{f}(\mathrm{t}) \delta(\mathrm{t}-\tau)=\mathrm{f}(\tau) \delta(\mathrm{t}-\tau)$
46. A family of constant N circles has the centre as:
(A) $X=1$ and $Y=2 N$
(B) $X=-\frac{1}{4}$ and $Y=4 N$
(C) $X=\frac{-1}{2}$ and $Y=\frac{1}{4 N}$
(D) $X=\frac{-1}{2}$ and $Y=\frac{1}{2 N}$
47. Consider the circuit shown below: The portion of the circuit left to the terminals $A B$ can be replaced by:

(1)

(3)

(4)

(A) 1 and 2 only
(B) 2 and 3 only
(C) 1, 2 and 3 only
(D) 1, 2, 3 and 4
48. Laplace transform of the function $f(t)$ shown in the figure is:

(A) $\frac{2}{\mathrm{~s}^{2}}\left[1-\mathrm{e}^{-0.55}\right]^{2}$
(B) $\frac{2}{\mathrm{~s}^{2}}\left[1+\mathrm{e}^{-0.5 \mathrm{~s}}\right]^{2}$
(C) $\frac{2}{s^{2}}\left[1-e^{0.5 s}\right]^{2}$
(D) $\frac{2}{\mathrm{~s}^{2}}\left[1+\mathrm{e}^{0.55}\right]^{2}$
49. Time constants of RL and RC circuits are respectively:

Given $R=1 \Omega ; L=1 \mathrm{H}$ and $\mathrm{C}=1 \mathrm{~F}$
(A) 1 sec and 1 sec
(B) 1 sec and 2 sec
(C) 2 sec and 3 sec
(D) 2 sec and 4 sec
50. Which one of the following gives the V-I characteristic of an ideal voltage source?
(A)

(B)

(C)

(D)

51. The circuit shown in the figure is in steady state before the switch is closed at $t=0$. The current $i_{s}\left(0^{+}\right)$through the switch is:

(A) $1 / 3 \mathrm{~A}$
(B) $2 / 3 \mathrm{~A}$
(C) 1 A
(D) 0 A
52. Consider the following statements:

1. Voltage across a capacitor cannot change abruptly
2. Voltage across an inductor cannot change abruptly
3. Current across a capacitor cannot change abruptly
4. Current through an inductor cannot change abruptly

Which of the following statements are correct?
(A) 1 and 2 only
(B) 2 and 3 only
(C) 3 and 4 only
(D) 1 and 4 only
53. Match List I with List II

List I

P Superposition theorem
Q Thevenin's theorem
R Kirchoff's voltage and current laws

S Maximum power transfer 4 theorem

List II
1 Impedance matching in audio circuits
2 Linear bilateral networks
3 Large networks in which currents in few elements to be determined

Currents and voltages in all branches of a network
(B) $\mathrm{P}-2, \mathrm{Q}-4, \mathrm{R}-3, \mathrm{~S}-1$
(D) $\mathrm{P}-2, \mathrm{Q}-3, \mathrm{R}-4, \mathrm{~S}-1$
54. The current through the branch $A B$ in the circuit shown is:

(A) 10A from A to B
(B) 10 A from B to A
(C) 0
(D) 20 A from B to A
55. In the circuit shown, the switch is opened at $t=0$. The circuit is:

(A) Critically damped (B) Under damped
(C) Over damped
(D) Undamped
56. In the circuit shown, the initial current I_{0} through the inductor is given in the figure. The initial value of the voltage across the inductor $\mathrm{V}_{0}\left(0^{+}\right)$is:

(A) 12.5 V
(B) 5 V
(C) 10 V
(D) 0 V
57. For the network shown in figure, Y_{11} and Y_{12} are respectively:
(A) $\frac{3}{50} v$ and $-\frac{1}{30} v$
(B) $\frac{3}{50} v$ and $\frac{1}{30} v$
(C) $-\frac{3}{50} v$ and $-\frac{1}{30} v$
(D) $-\frac{3}{50} v$ and $\frac{1}{30} \mho$

58. A two-port network satisfies the following relations:
$4 \mathrm{I}_{1}+8 \mathrm{I}_{2}=2 \mathrm{~V}_{1} ; 8 \mathrm{I}_{1}+16 \mathrm{I}_{2}=\mathrm{V}_{2}$

1. The network is reciprocal
2. $Z_{11}=4$ and $Z_{12}=8$
3. $Z_{21}=8$ and $Z_{22}=16$

4. $Z_{11}=2$ and $Z_{12}=4$

Which of these relations are correct?
(A) 1, 2, 3 and 4
(B) 2 and 3 only
(C) 3 and 4 only
(D) 1 and 2 only
59. In the circuit shown, 2-port network N has

$Z_{11}=10^{3} \Omega, Z_{12}=10 \Omega, Z_{21}=-10^{6} \Omega$ and $Z_{22}=10^{4} \Omega$. The current gain $\frac{I_{2}}{I_{1}}$ is:
(A) -50
(B) +50
(C) +20
(D) -20
60. In the 2-port network shown in the figure, the value of Y_{12} is:

(A) $-1 / 3 \mathrm{mho}$
(B) $+1 / 3 \mathrm{mho}$
(C) -3 mho
(D) +3 mho
61. For a network transfer function $\mathrm{H}(\mathrm{s})=\frac{\mathrm{P}(\mathrm{s})}{\mathrm{Q}(\mathrm{s})}$, where $\mathrm{P}(\mathrm{s})$ and $\mathrm{Q}(\mathrm{s})$ are polynomials in s,

1. The degree of $P(s)$ and $Q(s)$ are same
2. The degree of $P(s)$ is always greater than the degree of $Q(s)$
3. The degree of $P(s)$ is independent of the degree of $Q(s)$
4. The maximum degree of $\mathrm{P}(\mathrm{s})$ and $\mathrm{Q}(\mathrm{s})$ differ atmost by 1

Which of these statements are correct?
(A) 1, 2, 3 and 4
(B) 1, 2 and 3 only
(C) 1, 2 and 4 only
(D) 2, 3 and 4 only
62. The driving point impedance of the network shown in figure is:

63. The valid pole-zero patterns for an RL driving point impedance function are:

(2)

(3)

(A) 1 and 2 only
(B) 2 and 3 only
(C) 3 and 4 only
(D) 1, 2, 3 and 4
64. The Foster I realization of the driving point impedance function $Z(s)=\frac{3\left(s^{2}+1\right)\left(s^{2}+49\right)}{s\left(s^{2}+9\right)}$ is shown below. The values of L_{0} and C_{0} are respectively:

Engineering Success

(A) 3 H and $49 / 3 \mathrm{~F}$
(B) 3 H and $3 / 39 \mathrm{~F}$
(C) $1 / 3 \mathrm{H}$ and $3 / 49 \mathrm{~F}$
(D) $1 / 3 \mathrm{H}$ and $49 / 3 \mathrm{~F}$
65. Consider the following statements:

1. Poles and zeroes are simple and interlace
2. Residues at poles on the imaginary axis are real
3. $Z_{R C}(0)>Z_{R C}(\infty)$
4. The slopes of the reactance curves are positive

Which of these properties are correct for an RC driving point impedance $Z_{R C}(s)$
(A) 1 and 3 only
(B) 2 and 4 only
(C) 3 and 4 only
(D) 1, 2, 3 and 4
66. Two coils N_{1} and N_{2} turns are wound concentrically on a straight cylindrical core of radius r and permeability μ. The windings have length I_{1} and I_{2} respectively as shown in figure. The mutual inductance will be:

1. Proportional to $\mathrm{N}_{1} \mathrm{~N}_{2}$
2. Proportional to μ
3. Inversely proportional to I_{1}
4. Inversely proportional to r^{2}

Which of these statements are correct?
(A) 1, 2, 3 and 4
(B) 2, 3 and 4 only
(C) 1, 2 and 3 only
(D) 1, 3 and 4 only
67. A varying magnetic flux linking a coil is given by $\Phi=\frac{1}{3} \lambda t^{3}$. If at time $t=3 \mathrm{~s}$, the emf induced is 9 V , then the value of λ is:
(A) Zero
(B) $1 \frac{\mathrm{~Wb}}{\mathrm{~s}^{2}}$
(C) $-1 \frac{\mathrm{~Wb}}{\mathrm{~s}^{2}}$
(D) $9 \frac{\mathrm{~Wb}}{\mathrm{~s}^{2}}$
68. If the potential $V=4 x+2$ volts, then the electric field is:
(A) $6 \mathrm{~V} / \mathrm{m}$
(B) $2 \mathrm{~V} / \mathrm{m}$
(C) $4 \mathrm{~V} / \mathrm{m}$
(D) $4 a_{x} V / m$
69. If the current element represented by $4 \times 10^{3} \mathrm{a}_{\mathrm{y}} \mathrm{Amp}-\mathrm{m}$ is placed in a magnetic field of $H=\frac{\rho a_{\mathrm{x}}}{\mu} A / m$, the force on the current element is:
(A) $-2.0 \mathrm{a}_{\mathrm{z}} \mathrm{mN}$
(B) $2.0 \mathrm{a}_{\mathrm{z}} \mathrm{mN}$
(C) $-2.0 a_{z} \mathrm{~N}$
(D) $2.0 \mathrm{a}_{\mathrm{z}} \mathrm{N}$
70. Match List I with List II:

List I
P MMF
Q Magnetic flux
R Reluctance
S Permeability

List II

1 Conductivity
2 Electric current
3 Emf
4 Resistance
(A) P-3, Q-4, R-2, S-1
(B) $\mathrm{P}-1, \mathrm{Q}-2, \mathrm{R}-4, \mathrm{~S}-3$
(C) $\mathrm{P}-3, \mathrm{Q}-2, \mathrm{R}-4, \mathrm{~S}-1$
(D) $\mathrm{P}-1, \mathrm{Q}-4, \mathrm{R}-2, \mathrm{~S}-3$
71. Given that the electric flux density $\mathrm{D}=\mathrm{z} \rho\left(\cos ^{2} \Phi\right) \mathrm{a}_{\mathrm{z}} \mathrm{C} / \mathrm{m}^{2}$. The charge density at point $\left(1, \frac{\pi}{4}, 3\right)$ is
(A) 3
(B) 1
(C) 0.5
(D) $0.5 \mathrm{a}_{\mathrm{z}}$
72. Two dielectric media with permittivities 3 and $\sqrt{3}$ are separated by a charge free boundary as shown in figure. The electric field intensity in medium 1 at point P_{1} has magnitude E_{1} and makes an angle $\alpha_{1}=60^{\circ}$ with the normal. The direction of the electric field intensity at point $\left(P_{2}, \alpha_{2}\right)$ is:
(A) $\sin ^{-1}\left(\frac{\sqrt{3} E_{1}}{2}\right)$
(B) 45°
(C) $\cos ^{-1}\left(\frac{\sqrt{3} E_{1}}{2}\right)$
(D) 30°

73. For no reflection condition, a vertically polarized wave should be incident at the interface between two dielectrics having $\varepsilon_{1}=4$ and $\varepsilon_{2}=9$, with an incident angle of:
(A) $\tan ^{-1}\left(\frac{9}{4}\right)$
(B) $\tan ^{-1}\left(\frac{3}{2}\right)$
(C) $\tan ^{-1}\left(\frac{2}{3}\right)$
(D) $\tan ^{-1}\left(\frac{4}{9}\right)$
74. Assuming that each loop is stationary and time varying magnetic field \bar{B}, induces current I, which of the configurations in the figure are correct?
(1)

(2)

(3)

(4)

(A) 1, 2, 3 and 4
(B) 1 and 3 only
(C) 2 and 4 only
(D) 3 and 4 only
75. The electric field component of a wave in free space is given by:

$$
\overline{\mathrm{E}}=10 \cos \left(10^{7} \mathrm{t}+\mathrm{kZ}\right) \bar{a}_{\mathrm{a}} \mathrm{~V} / \mathrm{m}
$$

Following is a list of possible inferences:

1. Wave propagates along \bar{a}_{y}
2. Wavelength $\lambda=188.5 \mathrm{~m}$
3. Wave amplitude is $10 \mathrm{~V} / \mathrm{m}$
4. Wave number $=0.33 \mathrm{rad} / \mathrm{m}$
5. Wave attenuates as it travels

Which of these inferences can be drawn from $\overline{\mathrm{E}}$?
(A) 1, 2, 3, 4 and 5
(B) 2 and 3 only
(C) 3 and 4 only
(D) 4 and 5 only
76. An electromagnetic wave of frequency 3 MHz passes from vacuum into a dielectric medium with permittivity $\varepsilon=4.0$. Then:
(A) Wavelength is doubled and the frequency remains unchanged
(B) Wavelength is doubled and the frequency becomes half
(C) Wavelength is halved and the frequency remains unchanged
(D) Both wavelength and frequency remain unchanged
77. A plane wave is generated under water $\left(\varepsilon=81 \varepsilon_{0}\right.$ and $\left.\mu=\mu_{0}\right)$. The wave is parallel polarized. At the interface between water and air, the angle α for which there is no reflection is:
(A) 83.88°
(B) 83.66°
(C) 84.86°
(D) 84.08°

78. The characteristic impedance of TV receiving antenna cable is 300Ω. If the conductors are made of copper separated by air and are 1 mm thick, what is the phase velocity and phase constant when receiving VHF channel $3(63 \mathrm{MHz}$) and VHF 69 (803 MHz)?
(A) $1.32 \mathrm{rad} / \mathrm{m}$ and $17.82 \mathrm{rad} / \mathrm{m}$
(B) $1.52 \mathrm{rad} / \mathrm{m}$ and $16.82 \mathrm{rad} / \mathrm{m}$
(D) $1.32 \mathrm{rad} / \mathrm{m}$ and $16.82 \mathrm{rad} / \mathrm{m}$
79. If maximum and minimum voltages on a transmission line are 4 V and 2 V respectively, then VSWR is:
(A) 0.5
(B) 2
(C) 1
(D) 8
80. An ideal lossless transmission line of $Z_{0}=60 \Omega$ is connected to unknown Z_{L}. If SWR $=4$, then find Z_{L}.
(A) 240Ω
(B) 480Ω
(C) 120Ω
(D) 100Ω
81. Loading a cable is done to:

1. Increase its inductance
2. Increase its leakage resistance
3. Decrease its capacitance
4. Achieve distortion-less condition
(A) 1, 2, 3 and 4
(B) 1 and 2 only
(C) 2 and 3 only
(D) 1 and 4 only
5. Consider the following statements about the Smith chart.
6. A complete revolution $\left(360^{\circ}\right)$ around the Smith chart represents a distance of half wavelength on the line
7. Clockwise movement on the charge is regarded as moving toward the generator
8. Although three scales around the periphery of Smith chart are used, only one scale can be sufficient
9. Smith chart cannot be used as admittance chart

Which of the above statements is correct?
(A) 1, 2, 3 and 4
(B) 1, 2 and 4 only
(C) 2, 3 and 4 only
(D) 1, 2 and 3 only
83. Consider the following statements:

1. The antennas radiate energy
2. An antenna is a transition device, or transducer between a guided wave and a free space wave or vice versa
3. The resonators and transmission lines store energy
4. An antenna converts electromagnetic signal to currents or vice versa

Which of these statements are correct?
(A) 1, 2 and 4 only
(B) 1, 2 and 3 only
(C) 2, 3 and 4 only
(D) 1, 2, 3 and 4
84. An antenna can be modelled as an electric dipole of length 5 m at 3 MHz . Find the reduction resistance of the antenna assuming uniform current over the length.
(A) 2Ω
(B) 1Ω
(C) 4Ω
(D) 0.5Ω
85. Match List I with List II and select the correct answer using the codes given below the list:

List I

P Two isotropes half wavelength apart fed in phase

Q Two isotropes quarter wavelength apart 90° phase shift

R Two isotropes quarter wavelength apart fed in phase

List II

1

2

3

(A) $\mathrm{P}-1, \mathrm{Q}-3, \mathrm{R}-2$
(B) $\mathrm{P}-2, \mathrm{Q}-3, \mathrm{R}-1$
(C) $\mathrm{P}-1, \mathrm{Q}-2, \mathrm{R}-3$
(D) P-2, Q-1, R-3
86. An antenna located on the surface of a flat earth transmits an average power of 200 kW . Assuming that all the power is radiated uniformly over the surface of a hemisphere with the antenna at the center, the time average Poynting vector at 50 km is:
(A) Zero
(B) $\frac{2}{\pi} \overline{a_{r}} \mathrm{~W} / \mathrm{m}^{2}$
(C) $\frac{40}{\pi} \mu \mathrm{~W} / \mathrm{m}^{2}$
(D) $\frac{40}{\pi} \overline{a_{r}} \mu \mathrm{~W} / \mathrm{m}^{2}$
87. Which one of the following meters has maximum loading effect on the circuit under measurement?
(A) $1000 \Omega / \mathrm{V}$
(B) $100 \Omega / \mathrm{V}$
(C) $1 \mathrm{M} \Omega / \mathrm{V}$
(D) $10 \mathrm{M} \Omega / \mathrm{V}$
88. A second order pressure transducer has a natural frequency of $30 \mathrm{rad} / \mathrm{s}$, static sensitivity $\mathrm{K}=1.0 \mu \mathrm{~V} / \mathrm{Pa}$. When a step pressure input of $8 \times 10^{5} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$ is applied, damped frequency of $29.85 \mathrm{rad} / \mathrm{s}$ is observed. The damping ratio of the transducer is:
(A) 0
(B) 0.707
(C) 1.0
(D) 0.1
89. A voltmeter with an internal resistance of $200 \mathrm{k} \Omega$ when connected across an unknown resistance reads 250 V . The milli ammeter with internal resistance $=0$ connected in series with the above combination reads 10 mA . The actual value of the unknown resistance is:
(A) $25 \mathrm{k} \Omega$
(B) $200 \mathrm{k} \Omega$
(C) $25.56 \mathrm{k} \Omega$
(D) $20 \mathrm{k} \Omega$
90. The figure below shows the circuit of a rectifier type voltmeter.

The diode D_{2}

1. Does not allow any current to flow through the meter during negative half cycle
2. Does not allow reverse leakage current to flow through the meter during negative half cycle
3. Short circuits the meter during negative half cycle

Which of these statements are correct?
(A) 1 and 2 only
(B) 2 and 3 only
(C) 1 and 3 only
(D) 1, 2 and 3
91. A good S / H circuit should have:

1. High input impedance
2. High output impedance
3. Low input impedance
4. Low output impedance
(A) 1 and 2 only
(B) 2 and 3 only
(C) 3 and 4 only
(D) 1 and 4 only
5. When a sinusoidal signal of $220 \mathrm{~V}, 50 \mathrm{~Hz}$ produces on CRO a vertical deflection of 2 cm at a particular setting of the vertical gain control, what would be the value of the voltage to be applied to produce a deflection of 3 cm for the same vertical gain?
(A) 330 V
(B) 110 V
(C) 220 V
(D) 55 V
6. A 1000 Hz sinusoidal voltage is connected to both X and Y inputs of a CRO. Which of the following waveforms is seen on CRO?
(A) Sine wave
(B) Circle
(C) Ellipse
(D) Straight line
7. A dual slope A/D converter:
8. Responds very fast
9. Has better accuracy
10. Requires an accurate and stable d.c. source
11. Requires a buffer at the input side
(A) 1 is not correct
(B) 2 and 3 are correct
(C) 3 and 4 are correct
(D) 1, 2, 3 and 4 are correct
12. A digital voltmeter has $4 \frac{1}{2}$ digit display. The 1 V range can read up to:
(A) 1.0000 V
(B) 1.1111 V
(C) 0.9999 V
(D) 1.9999 V
13. Consider the following statements for an N-bit DACs:
14. $R-2 R$ ladder type is based on dual slope integration
15. $R-2 R$ requires resistors of large spread in values
16. $R-2 R$ requires roughly $2 N$ resistors
17. R-2R requires roughly N number of resistors

Which of the following statements are correct?
(A) 3 only
(B) 1 only
(C) 1 and 3
(D) 2 and 4
97. A 10 bit A/D converter is used in a DMM. The maximum peak to ripple voltage allowed in the d.c. supply voltage for a measurement range of 0 to 5 V is:
(A) 100 mV
(B) 25 mV
(C) 5 mV
(D) 50 mV
98. Match List I with List II

List I

P	Hot wire
Q	LVDT
R	Piezoelectric
S	Hall effect

(A) $\mathrm{P}-1, \mathrm{Q}-4, \mathrm{R}-2, \mathrm{~S}-3$
(C) $\mathrm{P}-1, \mathrm{Q}-2, \mathrm{R}-4, \mathrm{~S}-3$

List II

Gas flow
Displacement
Current
Acceleration
(B) $\mathrm{P}-3, \mathrm{Q}-4, \mathrm{R}-2, \mathrm{~S}-1$
(D) $\mathrm{P}-3, \mathrm{Q}-2, \mathrm{R}-4, \mathrm{~S}-1$
99. Match List I with List II

List I

P Chromel-Alumel
Q Iron Constantan
R Platinum Rhodium
S Copper Constantan

1 Long life and low thermal conductivity
2 Inexpensive and mechanically strong 3 Low sensitivity and high stability
4 Suitable for measurement below $0^{\circ} \mathrm{C}$ and high reliability
(A) $\mathrm{P}-1, \mathrm{Q}-2, \mathrm{R}-3, \mathrm{~S}-4$
(B) $\mathrm{P}-4, \mathrm{Q}-2, \mathrm{R}-3, \mathrm{~S}-1$
(C) $\mathrm{P}-1, \mathrm{Q}-3, \mathrm{R}-2, \mathrm{~S}-4$
(D) $\mathrm{P}-4, \mathrm{Q}-3, \mathrm{R}-2, \mathrm{~S}-1$
100. A platinum resistance thermometer has a resistance of 140.5Ω at $100^{\circ} \mathrm{C}$ and 100Ω at $0^{\circ} \mathrm{C}$. When it is in contact with a hot gas, its resistance becomes 305.3Ω. The temperature of the gas (Assuming temperature coefficient of platinum is $0.004 /{ }^{\circ} \mathrm{C}$) is close to:
(A) $300^{\circ} \mathrm{C}$
(B) $400^{\circ} \mathrm{C}$
(C) $500^{\circ} \mathrm{C}$
(D) $600^{\circ} \mathrm{C}$
101. Optical pyrometer is generally used to measure:
(A) Low pressure
(B) Low temperature
(C) High temperature
(D) High pressure
102. Match List I with List II

List I		List II	
P	Ferrite	1	Miessner effect
Q	Superconductor	2	Faraday effect
R	Quartz	3	Hysteresis
S	Iron	4	Piezoelectricity

(A) $\mathrm{P}-3, \mathrm{Q}-1, \mathrm{R}-4, \mathrm{~S}-2$
(B) $\mathrm{P}-2, \mathrm{Q}-1, \mathrm{R}-4, \mathrm{~S}-3$
(C) $\mathrm{P}-3, \mathrm{Q}-4, \mathrm{R}-1, \mathrm{~S}-2$
(D) $\mathrm{P}-2, \mathrm{Q}-4, \mathrm{R}-1, \mathrm{~S}-3$
103. What is the output voltage for the circuit shown below?

(A) -4.8 V
(B) +1.2 V
(C) -2.4 V
(D) +2.4 V
104. Doping intrinsic Silicon with Arsenic as an impurity:
(A) Only increases the conductivity of Silicon by increasing the number of free electrons available
(B) Produces a semiconductor in which the charge carriers are predominantly electrons but holes are also present
(C) Produces a semiconductor in which the charge carriers are predominantly holes but free electrons are also present
(D) Produces a semiconductor in which the charge carriers contain nearly equal number of electrons and holes
105. A dipole with a length of 1.5 m operates at 100 MHz while the other has a length of 15 m and operates at 10 MHz . The dipoles are fed with same current. The power radiated by the two antennas will be:
(A) The longer antenna will radiate 10 times more power than the shorter one
(B) Both antennas radiate same power
(C) Shorter antenna will radiate 10 times more power than the longer antenna
(D) The longer antenna will radiate $\sqrt{10}$ times more power than the shorter one

Following 15 (fifteen) items consist of two statements, one labelled as the Assertion (A) and the other as Reason (R). You are to examine these two statements carefully and select the answers to these items using the codes given below:
(A) Both A and R are individually true and R is the correct explanation of A
(B) Both A and R are individually true but R is not the correct explanation of A
(C) A is true but R is false
(D) A is false but R is true
106. Assertion
: The bias stability of a self bias amplifier circuit can be improved by increasing values of both the base resistor R_{B} and the emitter resistor R_{E}.

EC- Objective Paper-I IES-2011
www.gateforum.com

Reason

107. Assertion

Reason
108. Assertion

Reason
109. Assertion
110. Assertion
111. Assertion

Reason
112. Assertion

Reason
113. Assertion

Reason

114. Assertion
: The base resistor R_{B} provides the required voltage to the base terminal and the emitter resistor R_{E} provides negative feedback to the amplifier
: Thermal runaway occurs in FET circuits but it does not occur in BJT circuit
: FET is a majority carrier device whereas BJT works based on the movement of both the majority and the minority carriers.
: Good conductors do not show superconductivity
: Electron-phonon interaction that leads to formation of Cooper pairs is weak in good conductors
: The typical common base output characteristics of a bipolar junction transistor remains almost parallel to the voltage axis, but shows very little increase in current with increase in the output voltage
: The short circuit common base current gain α of a bipolar transistor increases with increase in the temperature
: The reverse saturation current approximately doubles for every $10^{\circ} \mathrm{C}$ temperature rise for both Si and Ge materials
: At room temperature, the $\mathrm{p}-\mathrm{n}$ junction voltage decreases by about 2.5 mV per ${ }^{\circ} \mathrm{C}$ with rise in temperature
: The resistance of a FET in non conducting region is very high.
: The FET is a semiconductor device
: It is desired that the high frequency transistors should work at low collector currents for better high frequency performance
: The diffusion capacitance is directly proportional to the emitter current
: In a transistor, it is desirable that the carriers contributing to emitter current in the active mode reach the collector terminal
: The conductivity of the base in a transistor is made much smaller than the conductivity of the emitter
: Concentration of acceptor atoms in the region between isolation islands will be much higher $p+$ than in the p type substrate in an integrated circuit

Reason

115. Assertion Reason
116. Assertion

Reason
117. Assertion

Reason
118. Assertion

120. Assertion

Reason
: This is to prevent the depletion region of the reversebiased isolation to substrate junction from extending into p+ type material
: The power factor of an inductor is zero
: The voltage across and current through the inductor are in quadrature
: When a series RLC circuit is in resonance, the current flowing in the circuit is maximum
: The inductive reactance and the capacitive reactance are equal in magnitude at resonance
: Under static conditions, the surface of conductor is an equi-potential surface
: The tangential component of electric field on conductor surface is zero
: For time varying field the relation $\overline{\mathrm{E}}=-\overline{\mathrm{V}} \mathrm{V}$ is inadequate
: Faraday's law states that for time varying field, $\bar{\nabla} \times \overline{\mathrm{E}}=0$
: The ratio of the tangential components of current density at two sides of an interface are equal to the conductivities
: The normal component of current density is continuous
: Effect of frequency on calibration is also due to spurious capacitive currents
: Spurious capacitive current does not occur in thermocouple instruments

