www.gateforum.com

Objective Paper-II-2011

- 1. Consider the following statements:
 - (1) A Schmitt trigger circuit can be emitter-coupled bi-stable circuit.
 - (2) Schmitt trigger circuit exhibits hysteresis phenomenon.

(3) The output of a Schmitt trigger will be triangular if the input is square wave. Which of these statements are correct?

- (A) 1, 2 and 3 (B) 1 and 2 only (C) 2 and 3 only (D) 1 and 3 only
- 2. In order to obtain repetitive pulses of unequal mark space durations one can use:
 - (1) A voltage comparator fed with a triangular wave signal and a dc voltage.
 - (2) An astable multi-vibrator
 - (3) A mono-stable multi-vibrator fed with a square wave input.
 - (A) 1 and 3 (B) 1 and 2 only (C) 2 and 3 only (D) 1, 2 and 3
- 3. A small signal voltage amplifier in common emitter configuration was working satisfactorily. Suddenly its emitter-bypass capacitor (C_F) got disconnected. Its:
 - (1) Voltage gain will decrease (2) Voltage gain will increase
 - (3) Bandwidth will decrease (4) Bandwidth will increase
 - (A) 1 and 4 only (B) 2 and 3 only (C) 3 and 4 only (D) 1,2, 3 and 4
- 4. A series resonant circuit has a resistance of 47 ohms, inductance of 2H and capacitance of $2\mu F$ with a supply voltage of 10 volts. The current through the circuit at resonance is:

(A) 0.833 amp (B) 0.212 amp (C) 0.196 amp (D) 0 amp

- 5. Once an SCR is turned on, it remains so until the anode current goes below:
 - (A) Trigger current (B) Break over current
 - (C) Threshold current (D) Holding current
- 6. In a PLL
 - (A) Capture range Lock range \neq Free running frequency
 - (B) Capture range Lock range = Free running frequency
 - (C) Capture range > Lock range
 - (D) Capture range < Lock range
- 7. The main advantage of active filter is that it can be realized without using:(A) Transistor(B) Capacitor(C) Resistor(D) Inductor

For the transistor circuit shown in the figure, when: 8. $+V_{cc}$ ↓I_C -0+ V_{out} V_{in} -0 (1) $V_{in} > 0$, transistor is OFF (2) $V_{in} \leq 0$, transistor is OFF (3) $I_{B} > \frac{I_{C}}{h_{cc}}$, transistor is ON (4) $I_{B} \leq \frac{I_{C}}{h_{FF}}$, transistor is ON (A) 1,2,3 and 4 (B) 1 and 2 only (C) 2 and 3 only (D) 3 and 4 only 9. The logic function $f = \overline{x \cdot y} + \overline{x} \cdot y$ is the same as: (B) $f = \overline{(\overline{x} + \overline{y})(x + y)}$ (A) $f = (x + y) (\overline{x} + \overline{y})$ (C) $f = \overline{(x \times y)} (\overline{x} \times \overline{y})$ (D) None of these If the Boolean expression $\overline{P}Q + QR + PR$ is minimized, the expression becomes: 10.

(A)PQ+QR	(B) PQ + PR
(C)QR + PR	(D) $\overline{P}Q + QR + PR$

11. Match List – I with List – II and select the correct answer using the code given below the lists:

	List I			List II	
Р	AND gate	1	Boolean	complementation	
Q	OR gate	2	Boolean	addition	
R	NOT gate	3	Boolean	multiplication	
(A) F	P-3, Q-1, R-2	(B) P-1,	Q-2, R-3	(C) P-3, Q-2, R-1	(D)P-1, Q-3, R-2

© All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission. Discuss this questions paper at <u>www.gatementor.com</u>.

2

G	GATEFORUM Engineering Success	EC- Objecti	ve Paper-II	IES-2011		www.gateforum.com
12.	Which of t (1) AND (A) 1,2,3, (C) 2,3 ar	the following (2) N 4 and 5 1d 5 only	g are universa AND (3) C	l gates?)R (4) (B) (D)) NOR) 1, 3 and 4 only) 2 and 4 only	(5) NOT
13.	CMOS log (1) Low p (3) Low f (4) Comp (A) 1,2 ar (C) 2,3 ar	ic families a power dissip an out paratively hi nd 4 only nd 4 only	re associated ation gh logic voltac	with: (2) ge swing (B) (D)) High noise imm) 1,2 and 3 only) 1,2, 3 and 4	unity
14.	Match List	t II with List	: I			
		List I		List	II	
	P TTL		1 Lo	w power co	nsumption	
	Q ECL		2 Hi	gh speed		
	R CMC)S	3 Lo	w propagat	ion delay	
	(A) P-1, (<mark>2-3, R-</mark> 2	(B) P-2, Q-3	, R-1 (C)) P-1, Q-2, R-3	(D)P-2, Q-1, R-3
15.	Match List	: II with List List I	IA	List II		
	P DCTL		1 Multip	ole collectors		00000
	Q ECL		2 Curre	nt hogging	ng Su	CCE22
	R I ² L		3 High s	speed		
	(A) P-2, (Q-3, R-1	(B) P-1, Q-3	, R-2 (C)) P-2, Q-1, R-3	(D)P-1, Q-2, R-3
16.	The logic Out = ab (1) The c (2) The c (3) The s (4) The c (A) 1 and	function; + bc + ca c output of a 3 output of a 3 sum output of arry output 2	lefines : B-inputs XOR <u>c</u> B-inputs major of a full adder of a full adder (B) 2 and	gate ity gate r d 3	(C) 3 and 4	(D) 2 and 4
17.	Consider 1	the followin [,]	g gate networl	k:		
	·	, N				
		w1	≫			

4

-f

2

3

х

y z 5

	EC- Objective Paper-II	IES-2011
Engineering Success	Le objective l'aper fi	

www.gateforum.com

Which one of the following gates is redundant?

(A) Gate No.1 (B) Gate No.2 (C) Gate No.3 (B) Gate No.4

18. In standard TTL, the 'totem pole' refers to

- (A) Multi-emitter input stage (B) The phase splitter
- (C) Open collector output stage (D) The output buffer

19. In a JK flip-flop we have $J = \overline{Q}$ and K = 1. Assuming the flip-flop was initially cleared and then clocked for 6 pulses, the sequence at the Q output will be:

21. A 4-bit ripple counter consisting of flip-flops that each have a propagation delay of 12ns from clock to Q output. For the counter to recycle from 1111 to 0000, it takes a total of:

(A) 12ns (B) 24ns (C) 48ns (D) 26ns

22. An eight-bit binary ripple UP counter with a modulus of 256 is holding the count 01111111. What will be the count after 135 clock pulses?

(A) 0000 0101 (B) 1111 1001 (C) 0000 0110 (D) 0000 0111

23. The shift register shown in the figure is initially loaded with the bit pattern 1010. Subsequently the shift register is clocked, and with each clock pulse the pattern gets shifted by one bit position to the right. With each shift, the bit at the serial input is pushed to the left most position (msb). After how many clock pulses will the content of the shift register become 1010 again?

24. What is the name of the circuit shown below?

- 25. Dual-slope integration type Analog-to-Digital converters provide:
 - (1) Higher speeds compared to all other types of A/D converters
 - (2) Very good accuracy without putting extreme requirements on component stability
 - (3) Good rejection of power supply hum
 - (4) Better resolution compared to all other types of A/D converters for the same number of bits
 - (A) 2 and 3 only (B) 3 and 4 only (C) 4 and 1 only (D) 1, 2, 3 and 4
- 26. What is the steady-state value of the unit step response of a closed-loop control system shown in figure?

IES-2011

27. What is the unit impulse response of the system shown in figure for $t \ge 0$?

- 28. What are the gain and phase angle of a system having the transfer function G(s) = (s + 1) at a frequency of 1 rad/sec? (A) 0.41 and 0° (B) 1.41 and 45° (C) 1.41 and -45° (D) 2.41 and 90°
- 29. The block diagram of a closed-loop control system is given in figure. What is the type of this system?

30. Given the differential equation model of a physical system, determine the time constant of the system:

$$40 \frac{dx}{dt} + 2x = f(t)$$

(A) 10 (B) 20 (C) 1/10 (D) 4

- 31. Consider a second order all-pole transfer function model, if the desired settling time (5%) is 0.60 sec and the desired damping ratio 0.707, where should the poles be located in s-plane.
 - (A) $5 \pm j4\sqrt{2}$ (B) $5 \pm j5$ (C) $4 \pm j5\sqrt{2}$ (D) $-4 \pm j7$

32. The characteristic equation of control system is given as:

 $s^4 + 8s^3 + 24s^2 - 32s + K = 0$

What is the value of K for which the system is unstable?(A) 10(B) 20(C) 60(D) 100

- 33. Where are the $K \pm \alpha$ points on the root loci of the characteristic equation of the closed loop control system located at?
 - (A) poles of G(s) H(s)
 - (B) zeroes of G(s) H(s)
 - (C) both zeroes and poles of G(s) H(s)
 - (D) neither at zeroes nor at poles of G(s) H(s)
- 34. The characteristic equation of control system is given as:

$$1 + \frac{K(s+1)}{s(s+4)(s^{2}+2s+2)} = 0$$

For large values of s, the root loci for $K \ge 0$ are asymptotic to asymptotes, where do the asymptotes intersect on the real axis?

- (A) $\frac{5}{3}$ (B) $\frac{2}{3}$ (C) $\frac{5}{3}$ (D) $\frac{4}{3}$ Where are the K = 0 points on the root loci of the characteristic equation of the
- 35. Where are the K 0 points on the root loci of the characteristic equation of the closed loop control system located at?
 - (A) Zeroes of G(s) H(s)
 - (B) Poles of G(s) H(s)
 - (C) Both Zeroes and Poles of G(s) H(s)
 - (D) Neither at zeroes not at poles of G(s) H(s)
- 36. Given the root locus of a system

$$G(s) = \frac{4k}{(s+1)(s+3)}$$

What will be the gain for obtaining the damping ratio 0.707?(A) 1/4(B) 5/4(C) -3/4(D) 11/4

[©] All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission. Discuss this questions paper at <u>www.gatementor.com</u>.

EC- Objective Paper-II **IES-2011**

- (D) Neither phase lead not phase lag compensator
- 42. The circuit diagram of an electrical network is given in figure. What type of compensator is this?

- (A) Phase lag compensator
- (B) Phase lead compensator
- (C) Lag-lead compensator
- (D) Neither phase lag nor phase lead compensator
- 43. What is the transfer function of a phase lag compensator? The values of α and τ are given as $\alpha > 1$ and $\tau > 0$:

(A)
$$\frac{1}{\alpha} \frac{\left(s + \frac{1}{\tau}\right)}{\left(s + \frac{1}{\alpha\tau}\right)}$$
 (B) $\frac{1}{\alpha} \frac{\left(s - \frac{1}{\tau}\right)}{\left(s - \frac{1}{\alpha\tau}\right)}$ (C) $\frac{1}{\alpha} \frac{\left(s + \frac{1}{\tau}\right)}{\left(s - \frac{1}{\alpha\tau}\right)}$ (D) $\frac{1}{\alpha} \frac{\left(s - \frac{1}{\tau}\right)}{\left(s + \frac{1}{\alpha\tau}\right)}$

44. What is the transfer function of a phase lead compensator? The values of β and τ are given as $\beta < 1$ and $\tau > 0$:

$$(A) \quad \frac{\beta(\tau s+1)}{(\beta \tau s+1)} \qquad (B) \quad \frac{\beta(\beta \tau s+1)}{(\tau s+1)} \qquad (C) \quad \frac{\beta(\beta \tau s-1)}{(\tau s+1)} \qquad (D) \quad \frac{\beta(\beta \tau s-1)}{(\tau s-1)}$$

- 45. The circuit diagram of a controller is given in figure. What type of controller is this? R_{2} R_{1} R_{1} R_{2} R_{1} Operational R_{2} C) Proportional R_{2} R_{1} R_{2} R_{2}
- 46. The circuit diagram of a controller is given in figure. What type of controller is this?

47.	 Discrete source S₁ has 4 equiprobable symbols while discrete source S₂ has 16 equiprobable symbols. When the entropy of these two sources is compared, entropy of: (A) S₁ is greater than S₂ (B) S₁ is less than S₂ (C) S₁ is equal than S₂ (D) Depends on rate of symbols/second 						
48.	What bandwidth is needed fo and handles audio signals from	r an FM si m 200 Hz	gnal that has a peak de to 5 kHz?	eviation of ± 3 kHz			
	(A) 6 kHz (B)	16 kHz	(C) 10 kHz	(D) 9.6 kHz			
49. 5 <mark>0.</mark>	The main factor that determin (A) Signal bandwidth (B) Pulse repletion rate (C) Pulse amplitude (D) Number of bits used for q Match List II with List I List I	nes the acc	n For the second structed structure of a reconstructed structure of a reconstructed structure of a reconstructed	d PCM signal is the:			
	P Pilot carrier	inb	Delta modulation	22022			
	Q Tuned circuit	2	Frequency modulation	11633			
	R Slope overload	3	РСМ				
	S A to D converter	4	Single sideband AM				
	(A) P-3, Q-2, R-1, S-4		(B) P-4, Q-2, R-1, S	S-3			
	(C) P-3, Q-1, R-2, S-4		(D) P-4, Q-1, R-2, S	S-3			
51.	Figure shows a block diagram input.	n of a syst	em to recover a sample	d signal shown as			

Blocks A and B can be respectively:

- (A) Zero order hold and low pass filter
- (C) Envelop detector and sampler
- (B) Multiplier and high pass filter
- (D) Tuned circuit and mixer
- 52. Which one of the following scheme is a digital modulation technique?
 - (A) Pulse code modulation
 - (C) Pulse width modulation
- (B) On-off keying
- (D) Delta modulation

53.	Consider the following codes: (1) Hamming code (2) Huffman code (3) Shannon-Fano code (4) Convolutional code Which of these are source codes? (A) 1 and 2 only (B) 2 and 3 only (C) 3 and 4 only (D) 1.2.3 and 4
54.	 PAM signals are constructed by using a low pass filter of pass band slightly greater than base band to avoid aliasing. This avoids distortion: (A) True for flat top pulses (B) True is low pass filter has sharp cut-off (C) Flat top pulses introduce envelope delay (D) Flat top pulses introduce amplitude distortion and delay
55.	Consider the following advantages of optical fiber-cables: (1) Small diameter (2) Immunity to cross talk and electromagnetic interference (3) Laser and LED modulation methods lend themselves ideally to digital operation Which of these advantages are correct? (A) 1 and 2 only (B) 2 and 3 only (C) 3 and 1 only (D) 1,2 and 3
5 <mark>6</mark> .	Polarization mode dispersion (PMD) is mainly observed in: UCCESS (A) Multiple step-index fiber (B) Single mode fiber (c) Multimode graded-index fiber (D) Plastic fiber

57. A high fidelity audio amplifier (MPEG) has frequency response as shown in figure. This response can be improved by which equalizer shown with frequency response E(f) below?

© All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission. Discuss this questions paper at <u>www.gatementor.com</u>.

EC- Objective Paper-II

- 58. Due to the phenomenon of refraction of radio waves in the atmosphere, which of the following effect is observed?
 - (A) Radio horizon distance is more than the optical horizon distance.
 - (B) Radio horizon distance is less than the optical horizon distance.
 - (C) It all depends upon the weather conditions. Any one of the above choice may be true depending upon type of weather.
 - (D) Radio horizon and optical horizon are always same because both radio waves and optical waves are electromagnetic in nature.
- 59. Mien-wave signals propagating along the curvature of earth is known as
 - (A) Farady effect (B) Ionosphere reflection
 - (C) Dueting (D) Tropospheric scatter

60. In ship to ship communication, the problem of fading can be overcome by using

- (A) Frequency diversity
- (C) More directional antenna (D) A
- (B) Space diversity
 - enna (D) A broad band antenna
- 61. Microwave frequencies are used for communication with deep space probes primarily because they do not suffer
 - (A) Refraction by ionosphere (B) Attenuation in space
 - (C) Velocity distortion and phase distortion (D) Fading
- 62. Consider the following statements about the maximum usable frequency (MUF) for radio communication between two specified points using an ionospheric layer:
 - (1) MUF is equal to critical frequency
 - (2) MUF is more than the critical frequency
 - (3) MUF depends upon the height of the ionospheric layer
 - (4) MUF depends upon the distance between the two points
 - Which of these statements are correct?

(A) 1, 2, 3 and 4 (B) 2 and 3 only (C) 3 and 4 only (D) 2 and 4 only

63. In a communication system both transmitting and receiving antennas are vertically polarized. On a clear sunny day the power received at the Receiver is 1mw. On a rainy day due to rain-induced depolarization the plane of polarization of the received wave gets rotated by 60° when it reaches to the receiving antenna. The received power at the receiver shall be

(A) 0.5 mw (B) 0.866 mw (C) 1 mw (D) 0.25 mw

FORUM ng Success EC- Objective Paper-II IES-2011

(B) r[±]3

- 64. For communication from satellite to the earth station, microwave frequencies are used because
 - (A) Loss is minimum
 - (B) Noise added to signal is low in this window
 - (C) These do not get reflected back by ionosphere
 - (D) Many channels can be used
- 65. A Geo-stationary orbit is chosen for communication satellites because
 - (A) It is stationary at one point in space
 - (B) With respect to a spot on earth it looks stationary
 - (C) This orbit provides earth's coverage of more than 50% using a single satellite
 - (D) The length of 4700 km is convenient for launching
- 66. A low earth orbit satellite can provide large signal strength at an earth station because
 - (A) Path loss is low
 - (B) These orbits are immune to noise
 - (C) Large solar power can be generated at these orbits

(B) $r^{\bar{3}}$

- (D) Lower microwaves frequencies in s-band can be used
- 67. If 'r' is the radius of circular orbit then the orbital period of a satellite is directly proportional to:

(A) $r^{\overline{2}}$

- 68. IMPATT diode is disadvantageous because of
 - (A) High noise
 - (B) Too many layers
 - (C) Low efficiency
 - (D) Difficulty in growing intrinsic layer
- 69. A diode with no junction that is widely used with a cavity resonator to form a microwave oscillator is a/an

(B) TRAPATT diode

- (A) IMPATT diode
- (c) TUNNEL diode (D) GUNN diode
- 70. Consider the following time parameters in development of solid state devices:
 - (1) Domain growth time constant
 - (2) Transit time
 - (3) Dielectric relaxation time
 - In the case of Transferred Electron Devices (TED), which of these are used?
 - (A) 1 and 2 only (B) 2 and 3 only
 - (C) 1 and 3 only (D) 1,2 and 3

[©] All rights reserved by GATE Forum Educational Services Pvt. Ltd. No part of this booklet may be reproduced or utilized in any form without the written permission. Discuss this questions paper at <u>www.gatementor.com</u>.

GATEFORUM Engineering Success EC- Objective Paper-II **IES-2011**

www.gateforum.com

 71. Consider the following statement regarding Bunching process in Klystron: (1) Bunching occurs in two cavity Klystron amplifiers (2) Bunching occurs in multi cavity Klystron amplifiers (3) Bunching occurs in reflex Klystron oscillators Which of these statements are correct? 				
	(A) 1 and 2 only		(B) 2 and 3 only	
	(C) 1 and 3 only		(D) 1, 2 and 3	
72.	Consider the followin (1) Gunn diode (2) Schottky diode (3) Crystal diode (4) Tunnel diode Which of these can b (A) 1 and 2 only (C) 3 and 4 only	g diodes e used as detector dio	des? (B) 2 and 3 only (D) 1,2,3 and 4	
73.	Which one of the f	ollowing microwave o	liodes is suitable fo	or very low power
	oscillations application	ns only?		
	(A) Tunnel	(B) IMPATT	(C) VARACTOR	(D) GUNN
74.	A dominant mode of (1) Cut-off frequenc (2) Cut-off waveleng (3) Attenuation	a waveguide is charac y yth ginee	terized by lowest:	ccess
	(A) 1 only	(B) 1 and 3 only	(C) 2 and 3 only	(D) 1,2 and 3
75.	Consider the followin (1) The collinear arm (2) One of the collin (3) One of the collin (4) E and H arms arm Which of these states	g statements in case ons are isolated from ea ear arms is isolated from ear arms is isolated from e isolated from each on ments are correct?	of a magic Tee: ach other om E-arm om H-arm ther	
	(A) 1 and 2	(B) 2 and 3	(C) 3 and 4	(D) 1 and 4
76.	A micro-strip line w Substrate thickness impedance of the lin field?	ith alumina substrate h = 0.5 mm. Wh he, assuming TEM wa	$\epsilon_r = 9$ has a strip at is the approxin ve propagation and	width w = 3 mm. nate characteristic negligible fringing
	(A) 50 Ω	(B)26Ω	(C)21Ω	(D) 10Ω
77.	Strictly speaking, t transmission line is:	he propagating mod	le that is excited	in a micro-strip
	(A) Only TEM mode	(B) Only TE mode	(C) Only TM mode	(D) Non-TEM mode

- 78. Maxwell's equations are obeyed by the E.M. waves when these waves are travelling: (A) Only in free space (B) Only in free space and water but not in a plasma medium (C) Only in free space, water and gases but not in solids (D) In all solids, liquids, gases and any other medium given above 79. Which of the following antenna is used as a standard reference for calculating directive gain? (A) Half wave dipole (B) Infinitesimal dipole (C) Elementary doublet (D) Isotropic antenna 80. Which of the following antennas exhibit circular polarization? (A) Small circular loop (B) Folded dipole (C) Helical (D) Parabolic dish 81. Match List II with List I List I List II P Helical antenna 1 Fan shaped beams Q Sect-oral horn 2 Shaped beams 3 Circular polarization R Phased arrays S Parabolic reflector Pencil beams (A) P-3, Q-1, R-2, S-4 (B) P-4, Q-1, R-2, S-3 (C) P-3, Q-2, R-1, S-4 (D) P-4, Q-2, R-1, S-3
- 82. The following components are used for measuring frequency in a microwave test bench:
 - (1) Microwave source
 - (2) Resonant cavity type frequency meter
 - (3) Power meter
 - (4) Variable attenuator

What is the correct sequence of connection of these bench components for measurement of frequency?

(A) 3, 4, 2 and 1	(B) 1, 2, 4 and 3
(C) 3, 2, 4 and 1	(D) 1, 4, 2 and 3

- 83. Usually, microwave signals are not used for ionospheric propagation. The reason is.
 - (A) Ionospheric layers absorb microwaves tremendously
 - (B) Drastic dispersion takes place for microwave signals in ionosphere
 - (C) Scattering prevents propagation of microwaves through ionosphere
 - (D) Microwaves penetrate through ionosphere layers

84.	In microwave communication systems, sometimes, the same frequency is used by separation of signals through vertical and horizontal polarizations. This technique is generally called (A) Steady frequency multiplexing (B) Variable frequency modulation technique (C) Frequency reconditioning technique (D) Frequency re-uses technique						
85.	In a super heterod from input to the ou	lyne receiver arrange Itput	the following comp	onents sequentially			
	(1) Antenna	(2) Mixer	(3) IF amplifier	(3) Audio amplifier			
	(A) 1,2,3 and 4	(B) 4,2,3 and 1	(C) 1,3,2 and 4	(D) 4,3,2 and 1			
86.	If 73_x (in base x nu possible values of x	imber system) is equa and y are	al to 54 _y (in base y n	umber system), the			
	(A) 8 and 16	(B) 10 and 12	(C) 9 and 13	(D) 8 and 11			
87.	A bus organized pro in each multiplexer	ocessor consists of 15 and in the destination	registers. The numb decoder are respecti	er of selection lines vely:			
	(A) 2 and 4	(B) 4 and 2	(C) 4 and 4	(D) 4 and 8			
8 <mark>8.</mark>	Sorting is useful for						
	(1) Report generation						
	(2) Making searchi	ng easier and efficient	rina Su	ICCESS			
	(3) Responding to gueries easily (4) Minimizing the storage needed						
	(A) 1,2 and 3 only	(B) 1,3 and 4 only	(C) 2,3 and 4 only	(D) 1,2,3 and 4			
89.	Which of the followi	ng is/are NOT the fun	ctions of assembly-la	nguage directions?			
	(1) Define system parameters						
	(2) Assign specific symbolic memory location						
	(3) Control the out	put of the assembly p	rocess				
	(A) 1 and 2 only	(B) 2 and 3 only	(C) 1 and 3 only	(D) 1, 2 and 3			
90.	 Given below are some applications. Choosing from the options, pick the one that allocates a suitable data structure for implementing these applications: (1) Representation of a sparse matrix (2) Fast access to any item from a set of data (3) Convert infix expressions to postfix expression (4) Storing the terms of a long polynomial with arbitrary number of terms (A) Linked list, array listed list and stack (B) Stack, array and stack listed list (C) Array array, tree and stack 						

91.	91. Which one of the following operators of high level language is used to elir the run-time cost of redundant address calculations?					
	(A) Arithmetic	(B) Assignment	(C) Logical	(D) Relational		
92.	How many passes do 'n' items?	oes a Bubble sort algo	orithm require for so	rting a given list of		
	(A) n ²	(B)√n	(C)n+1	(D) n-1		
93.	Which of the followin (1) Instruction encod	g instruction processi ing (2) Operand loa	ng activity of the CPL ding (3) Operand st	J can be pipelined? coring		
	(A) 1 and 2 only	(B) 2 and 3 only	(C) 1 and 3 only	(D) 1, 2 and 3		
94.	Which of the following are the problems with using Millions instructions persond (MIPS) as a measure for comparing computer performance? (1) It does not take into account the capabilities of the instructions. (2) MIPS can vary inversely with performance					
	(3) MIPS varies betw	veen programs on the	e same computer.			
	(A) I and 2 only	(B) 2 and 3 only	(C) I and 3 only	(D) 1,2 and 3		
9 <mark>5.</mark>	The speed gained by an 'n' segment pipeline executing 'm' tasks is :					
	(A) $\frac{(n+m-1)}{mn}$	(B) $\frac{mn}{(n+m-1)}$	(C) $\frac{n+m}{(mn-1)}$	(D) $\frac{n+m}{(mn+1)}$		
96.	In writing the micro-program, there are two situations in which a field of the micro instruction can be kept blank when it:					
	(1) Controls a functional unit					
	(2) Causes state to b	e written				
	(3) Specifies the contract (A) 1 and 2 only	(R) 2 and 2 only	(C) 1 and 2 only	(\mathbf{D}) 1 2 and 2		
				(D) 1, 2 and 5		
97.	Match List II with List	t I				
	List	t I	List II			
	P DMA I/O		1 High speed RAM			
	Q Cache		2 Disk			
	R Interrupt I/O		3 Printer			
	S Condition code	registers	4 ALU			
	(A) P-4, Q-1, R-3, S-	-2	(B) P-2, Q-1, R-3,	S-4		
	(C) P-4, Q-3, R-1, S-	-2	(D) P-2, Q-3, R-1,	S-4		

EC- Objective Paper-II **IES-2011**

98.	If 8085 microprocessor adds 87 H and 79 H. the flags will be				
	(A) $S = 1, Z = 0, AC$	C = 0 and $Cy = 1$	(B) $S = 0, Z = 0,$	AC = 1 and $Cy = 0$	
	(C) S = 1, Z = 1, AC	= 1 and $Cy = 1$	(D) $S = 0, Z = 1,$	AC = 1 and $Cy = 1$	
99.	Which one of the f 8086 in single step	ollowing control bits of mode?	of 8086 flag registe	er is used to put the	
	(A) DF	(B) IF	(C) TF	(D) ZF	
100.	As compared to 16 (1) Speed (3) Data handling	bit microprocessor, 8 (2) Directly addres capability	bit microprocessors sable memory	are limited in:	
	(A) 1 and 2 only	(B) 2 and 3 only	(C) 1 and 3 only	(D) 1, 2 and 3	
	Each of the next labelled as the "A examine these tw items using the co Codes:	t Twenty (20) item Assertion (A) and th vo statements caref odes given below.	s consists of two e other as "Reaso fully and select th	o statements. One on (R)". You are to ae answer to these	
	(A) Both A and R	are individually true	and R is the corr	ect explanation of A	
	(B) Both A and	R are individually	r true but R is	NOT the correct	
	e <mark>xplanatio</mark> n o	fA			
	(C) A is true but I	R is false			
	(D) A is false but		ering Su	JCCESS	
1 <mark>01.</mark>	Assertion (A)	For producing characteristics phased array technology	radiation patterns like beam width, antennas are wide	with predetermined side-lobe levels etc ely used in antenna	
	Reason (R)	: In phased arra pattern is electromagnet elements whi phase conditio	y antenna system th formed by the ic waves radiated fi ch maintain spec ns.	ne resultant radiation superposition of rom various antenna ific, pre-determined	
102.	Assertion (A)	: A memory r interface to the memory.	nodule presents e processor or other	a specific memory r unit that references	
	Reason (R)	: Memory modu address and da	ule contains buffe ata.	r registers for the	
103.	Assertion (A)	: A unique p waveguides is	roperty of TM _{on} rapid decrease	modes in circular in attenuation with	
		increasing freq	uency.		

G	TEFORUM	C- Objective Pa	per-II IES-2011	www.gateforum.com
104.	Assertion (Reason (R)	(A) :) :	A passive satellite only refle Communication satellite is	cts back signals. a repeater between many
			transmitting stations and ma	any receiving stations.
105.	Assertion ((A) :	A de-multiplexer cannot be	used as a decoder.
	Reason (R) <u>:</u>	A de- multiplexer selects whereas a decoder selects a the coded input	s one of many outputs, an output corresponding to
106.	Assertion ((A) :	A look- ahead carry adder is	a fast adder.
	Reason (R)) :	A parallel carry adder gen from the input digits.	erates sum digits directly
107.	Assertion ((A) :	A tunnel diode has an extrem	mely thin depletion layer.
	Reason (R)) :	Tunnelling phenomenon oc doped junction is reverse bia	curs when a very heavily ased.
108. Assertio Reason	Assertion ((A)	The basic group in an FDN 60kHz to 108 kHz in frequer	1 system occupies a band
	Reason (R)		The voice channels in FDM and carrier frequencies $f_c =$	are band limited to 4 kHz $60 + 4 \times n$ kHz are used for
		En	12 channels in the basic gro	up.
109.	Assertion ((A) - : I	The frequency stability of an increases, where θ refers t	h oscillator improves as $\frac{d\theta}{d\omega}$ to the phase angle of the
			loop gain.	
	Reason (R)) :	For sustained oscillation to o the loop shift should be o integer.	occur in an oscillator circuit)° or $2n\pi$ where n is an
110.	Assertion ((A) :	The power handling capac could be very low compare antenna.	ity of a receiver antenna ed to identical transmitting
	Reason (R)) :	A transmitter antenna has The receiver antenna will ha small fraction of the ra transmitter.	to radiate a large power. ave to deal only with a very adiated power from the
111.	Assertion ((A) :	Most high level programm notion of 'type' for expression	ning languages include a on.
	Reason (R)) :	Type provides implicit content it limits the set of operation a semantically valid program	xt for many operations and a that may be performed in n.

G	TEFORUM jineering Success EC- C	bjective Paper-	-II IES-2011	www.gateforum.com
112.	Assertion (A)	: The sta	e activity reading from c and alone register and into	or writing into one of the oregister file is same.
	Reason (R)	: The ov	e register file has addit erhead compared to the s	tional control and access ingle stand alone register.
113.	Assertion (A)	: Pro pro	ocessor level design is he ototype structures.	avily based on the use of
	Reason (R)	: A the	prototype design is selec e given performance speci	ted and modified to meet fications.
114.	Assertion (A)	: The ha	e low-level control of ar rdware level.	n I/O device is easier at
	Reason (R)	: Itr	requires managing a set of	f concurrent events.
115.	Assertion (A)	: Wo ap	orkstations are often plications, especially for ir	used in engineering iteractive design work.
	Reason (R)	: Wo col tha	ork stations with graphic mputational power that i at of personal computers.	cs I/O capability have a s significantly higher than
1 <mark>16.</mark>	Assertion (A)	: At fas	microwave frequencies, st switch.	PIN diode can be used as
	Reason (R)	: PII bia	N diode has very high ased and very low resistan	resistance when reverse ces when forward biased.
1 <mark>17.</mark>	Assertion (A)	En Mic	crowave link repeaters a art.	re typically about 50kms
	Reason (R)	: Cu dis	rvature effect of Earth stance between two microv	makes a limitation for waves repeaters.
118.	Assertion (A)	: A ort	geostationary orbit is sa bit.	me as a geosynchronous
	Reason (R)	: A eq	geostationary orbit doe uatorial plane.	s not necessarily lie in
119.	Assertion (A)	: The	e system function H(s) = - :	$\frac{z^{3} + 2z^{2} + z}{z^{2} + \frac{1}{4}z + \frac{1}{8}}$ is not causal
	Reason (R)	: If de	the numerator of $H(s)$ is nominator, the system ma	s of lower order than the ay be causal
120	Assertion (A)	• Fm	hitter - coupled logic (FCL) provides high speed logic
120.		. ga	tes.	provides myn speed logie
	Reason (R)	: EC as	L prevents adverse effect it does not operate fully s	ts of diffusion capacitance aturated or cut off.