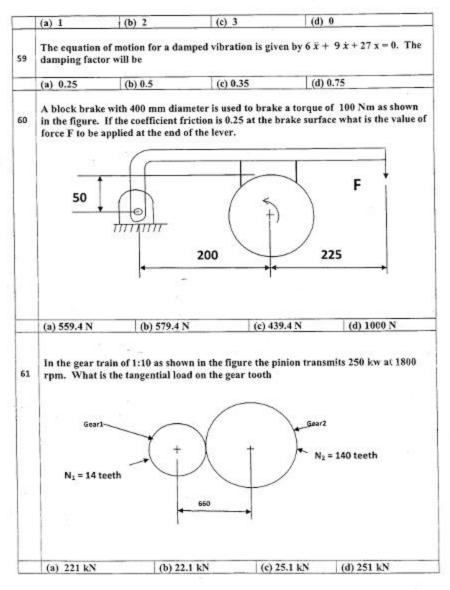

	(a) Resultant force is zero	 (b) resultant couple is zero (d) resultant force and the resultant couple, both are equal to zero. 					
	(c) resultant force is numerically equal to resultant couple						
13	A torsion bar with a spring constant 'k' is cut into 'n' equal lengths. The spring constant for each portion would be						
-	(a) nk	(b) k ⁿ (d) k ^{1/n}					
	(c) k/n	(d) k ^{1/n}					
	system will be equal to (a) 1/2δ	a made half, then logarithmic decrement of the new (b) δ					
	(c) 28	(d) ¼ δ					
<u> </u>	(a) larger than friction angle	-					
	(c) equal to friction angle	(b) smaller than friction angle (d) such as to give maximum efficiency in lifting					
46	(c) equal to friction angle For a particular load distribution a bending moment at any section 'x'						
46	(c) equal to friction angle For a particular load distribution a bending moment at any section 'x'	(d) such as to give maximum efficiency in lifting and support condition in a beam of length 'L', $(O < x < L)$ is given by $M(x) = Ax-Bx^2$, where A					
	(c) equal to friction angle For a particular load distribution a bending moment at any section 'x' and B are constants. The shear for	(d) such as to give maximum efficiency in lifting and support condition in a beam of length 'L', $(O < x < L)$ is given by $M(x) = Ax \cdot Bx^2$, where A rec in the beam will be zero at 'x' equal to (c) $2A/B$ (d) A^2/B					
	(c) equal to friction angle For a particular load distribution a bending moment at any section 'x' and B are constants. The shear for (a) A/2B (b) A/B	(d) such as to give maximum efficiency in lifting and support condition in a beam of length 'L', $(O < x < L)$ is given by $M(x) = Ax - Bx^2$, where A rec in the beam will be zero at 'x' equal to (c) $2A/B$ (d) A^2/B					
47	(c) equal to friction angle For a particular load distribution a bending moment at any section 'x' and B are constants. The shear for (a) A/2B (b) A/B If A is $\begin{bmatrix} 8 & 5 \\ 7 & 6 \end{bmatrix}$ then $\begin{vmatrix} A^{121} - A^{120} \end{vmatrix}$ (a) 0 (b) 1	(d) such as to give maximum efficiency in lifting and support condition in a beam of length 'L', $(O < x < L)$ is given by $M(x) = Ax - Bx^2$, where A rec in the beam will be zero at 'x' equal to (c) $2A/B$ (d) A^2/B is					
47	(c) equal to friction angle For a particular load distribution a bending moment at any section 'x' and B are constants. The shear for (a) A/2B (b) A/B If A is $\begin{bmatrix} 8 & 5 \\ 7 & 6 \end{bmatrix}$ then $\begin{vmatrix} A^{121} - A^{120} \end{vmatrix}$ (a) 0 (b) 1	(d) such as to give maximum efficiency in lifting und support condition in a beam of length 'L', (O < x <l) by="" given="" is="" m(x)="Ax-Bx<sup">2, where A rcc in the beam will be zero at 'x' equal to (c) 2A/B (d) A²/B is (c) 120 (d) 121 then product of A and its transpose is (b) Zero Matrix</l)>					
46	(c) equal to friction angle For a particular load distribution a bending moment at any section 'x' and B are constants. The shear for (a) A/2B (b) A/B If A is $\begin{bmatrix} 8 & 5 \\ 7 & 6 \end{bmatrix}$ then $\begin{vmatrix} A^{121} - A^{120} \end{vmatrix}$ (a) 0 (b) 1 If A is Square Matrix of order 3, to	(d) such as to give maximum efficiency in lifting and support condition in a beam of length 'L', (O < x <l) by="" given="" is="" m(x)="Ax-Bx<sup">2, where A cc in the beam will be zero at 'x' equal to (c) 2A/B (d) A²/B is (c) 120 (d) 121 then product of A and its transpose is</l)>					


10

(b) Skew Symmetric (a) Orthogonal Matrix (c) Symmetric (d) Idempotent 50 Vector a= 3i + 2j - 6k, vector b= 4i - 3j + k, angle between above vectors is (d) 60° (a) 90° (b) 0° (c) 45° 51 If the probability for A to fail an examination is 0.2 and that for B is 0.3, then probability that either A of B fail is (c) 0.44 (d) 0.1 (a) 0.5 (b) 0.06 Area bounded by the parabola $2y=x^2$ and the line x = y-4 is equal to 52 (d) 36 (a) 4.5 (b) 9 (c) 18 53 Chance that a leap year selected at random will contain 53 Sundays is (b) 7/2 (c) 7/3 (d) 2/7 (a) 3/7 $\lim_{x \to 0} \frac{x^2 + x - \sin x}{x^2}$ 54 (a) 0 (b) :0 (c) 1 (d) None of these Two objects P & Q are traveling horizontally with velocity of 8 m/sec & 6 m/sec from left to right. They are separated by a distance of 15 m. The mass of the objects are 3 55 kg and 5 kg. If the coefficient of restitution is 0.7 what is the velocity (m/s) of P and O after impact and when (seconds) and where (metres) will they impact with respect to initial positioning of Q. The corresponding answers are respectively a) 7.6, 5.4, 2.1, 15 b) 8, 6, 2.5, 7.5 c) 7.6, 6.2, 7.5, 45 d) None of these The cross section of a compound bar 1 m long is as shown in figure. If the 56 temperature is raised by 80° C determine the stresses (in N/mm²) in each metal coppe 10 steel 5 copper 60

11

12

1911 . 42

_	(a) Modulus of	Flacticity	(b) I and Ar	(b) I and Applied				
-	(c) Strain Rate		ty (b) Load Applied (d) None of these					
53	Which of the following processes induce more stress in the metal ?							
	(a) Hot rolling	g (b) Fo	orging	(c) Swaging			(d) Turning	
54	The essential i	ngredient	of any harden	ed steel is				
i i i	(a) Austenite	(b) Pe	arlite	(c) Martens	ite		(d) Cementite	
65	Following is a	process us	sed to form po	wder metal to sh	ape			
	(a) Sintering	(b) Explo	sive Compact	ing (c) Isostatic	Molding	(d) /	All of these	
				at by wire-cut ED?				
56	diameter. A un cutting operation removal rate(in	iform sparl on. If the fe 1 mm ³ /min)	c gap of 0.5 mm ed rate of the w will be	at by wire-cut ED? a on both sides of t vire into the sheet i	he wire is m is 20 mm/mi	aintai	ned during materia!	
	diameter. A un cutting operation removal rate(in (a) 150	iform spark on. If the fe 1 mm ³ /min) (b	k gap of 0.5 mm ed rate of the w will be) 200	on both sides of t	he wire is m is 20 mm/mi (c) 300	aintai n, the	ned during materia! (d) 400	
66	diameter. A un cutting operation removal rate(in (a) 150	iform sparf on. If the fe mm ³ /min) (b) tools are (b) chem	k gap of 0.5 mm ed rate of the w will be) 200	on both sides of t vire into the sheet i	he wire is m is 20 mm/mi (c) 300 of ferrous n (d) H	aintai n, the netals igh T uctivi	ned during materia! (d) 400	
	diameter. A un cutting operati- removal rate(in (a) 150 Diamond cuttin (a) high tooi hardness	iform spark on. If the fe mm ² /min) (b) ng tools are (b) chem of tool m iron cution of a	k gap of 0.5 mm ed rate of the w will be b) 200 not recommen- ical affinity aterial with	ton both sides of t vire into the sheet i ded for machining (c) Poor tool	he wire is m is 20 mm/mi (c) 300 of ferrous n (d) H cond mate	aintai n, the netals igh T uctivi rial	ned during materia! (d) 400 due to hermal ty of work	
67	diameter. A un cutting operation removal rate(in (a) 150 Diamond cuttin (a) high tooi hardness During the exe	iform spark on. If the fe mm ³ /min) (b) tools are (b) chem of tool m iron cution of a l be erpolation	k gap of 0.5 mm ed rate of the w will be)) 200 not recommen- ical affinity aterial with CNC part prog	t on both sides of t vire into the sheet i ded for machining (c) Poor tool toughness ram block N020 G Interpolation -	he wire is m is 20 mm/mi (c) 300 of ferrous n (d) H cond mate	aintai n, the netals igh T uctivi rial 25.0 R	ned during materia! (d) 400 due to hermal ty of work	
67	diameter. A un cutting operation removal rate(in (a) 150 Diamond cuttin (a) high tool hardness During the exectool motion will (a) circular Int	iform spark on. If the fe mm ³ /min) (b) tools are (b) chem of tool m iron cution of a l be erpolation se	k gap of 0.5 mm ed rate of the w will be b) 200 not recommen- ical affinity aterial with CNC part prog (b) Circular Counter cloo	t on both sides of t vire into the sheet i ded for machining (c) Poor tool toughness ram block N020 G Interpolation -	he wire is m is 20 mm/mi (c) 300 of ferrous n (d) H condi mate :02 X45.0 Y2 (c) Linea	aintai n, the netals igh T uctivi rial 25.0 R	ned during materia! (d) 400 due to hermal ty of work 5.0 the type of (d) Rapid	

Set A

(c) Two Times (d) Eight times (a) half (b) sixteen times 71 An oxidising process used for aluminium and magnesium articles is called (d) Sheradising (c) Parkerising (a) galvanising (b) Anodising 72. One of the characteristics of Polymer is (d) Low (b) High Mechanical (c)High Elongation (a) high Temperature Hardness Stability Strength Usually Materials with the following crystal structure fail in ductile mode 73 (d) None of these (b) BCC (c) HCP (a) FCC 74 Work hardening strengthens an alloy by (b) increasing the dislocation density (a) Removing Internal defects in the crystal structure (d) Increasing the lattice resistance (c) Decreasing the grain size of the alloy to dislocation motion An Aluminium object is made of a solid cone of height 'h' and base diameter D attached to a 75 solid cylinder of diameter D and height 'h/2' as shown in figure. It is kept inclined touching to a vertical wall at point 'A' and hinged at point B on the floor. The object stays in this inclined position without going to vertical position (axis perpendicular to the floor), only if 0 is less than Wall h/2 Δ ØD Hinge, B Tan¹² (10 D/9h) a) b) π/2 - Sin⁻¹ (10 D/h) π/2 - Tan⁻¹ (10 D/9h) d) Tan⁻¹ (20 D/9h) c)

15

A hollow MS pipe is kept on a smooth straight edge with the pipe mid point sitting on it. A load 'W' Newtons is applied at the ends which is keeping the pipe balanced in the horizontal 76 condition, what is the safe maximum load 'W' that can be applied without yielding the tube. Consider the self weight of the tube as 'p' N/m. Diameter of the pipe is 'd', Youngs modulus of pipe is E, Allowable yield stress is o 2m 2m **MS** Pipe w w b) (σπd⁴ - 32 p)/(32 E) a) $(\sigma \pi d^4 - 64 p)/(64 E)$ c) $(\sigma \pi d^3 + 64 p)/64$ d) $(\sigma \pi d^3 - 64 p)/64$ 77 A car crashes against a wall. The initial velocity at collision is 15m/sec and the velocity after collision is 2.6m/sec in the opposite direction. The mass of the car is 1500kg, what is the average force exerted on the automobile bumper if collision lasts for 0.15 seconds. b) 2.1 x 105 N c) 2.76 x 105 N d) None of these a) 1.76 x 105 N 78 Differential equation for the variation of amount of salt 'x' in a tank is given by : (dx/dt) + (x/20) = 10, where x is in kg and t is in minutes. Assuming that at time zero there is no salt in the tank, find the time at which the amount of salt increases to 100kg a) 100 in 2 b) 50 ln 2 c) 20 in 2 d) 10 ln 2 A 5 mm diameter aluminium alloy test bar is subjected to a load of 500 N. if the diameter of the 79 bar at this load is 4 mm, the true strain is c) 0.25 (d) 0.45 a) 0.56 (b) 0.22 80 A material is dimensionally stable at room temperature if its glass transition temperature (T_e) is (b) Just Above room (c) Equal to room (d) Well above room a) Below room temperature temperature temperature temperature

16

		coding technique used to transmit the signal in logy over fiber optic medium is	giga ethernet
		Differential manchester encoding	
		Non Return to zero	
		4B/5É encoding	
		8B/10B encoding	
		of the following is an unsupervised neural netwo	rk
2		RBS	ur.
		•	
		Hopfield Back propagation	
	c d	Kohonen	
,		piler terminology, reduction in strength means	
}		Replacing run time computation by compile time com	nutation
	a b	Removing loop invariant computation	iputation
		Removing common subexpressions	
	с d	Replacing a costly operation by a relatively cheaper	000
,		blowing table shows the processes in the read	
i	the n	equired for each process for completing its job.	ly queue and
	unie i	Process Time (ms)	
		P_1 10	
		P_2 5	
		$P_3 = 20$	
		P_4 8	
		P ₅ 15	
	15 1011	nd robin scheduling with 5ms is used what is	the averane
		g time of the processes in the queue?	
	a	27 ms	
	b	26.2 ms	
		27.5 ms	
		27.2 ms	and the second
		[BX], AL type of data addressing is called	이 아이 나라지?
r	a	Register addressing	
5	a	Register addressing	
5		Immediate addressing	
5	b	Immediate addressing	
5	b c	Register indirect addressing	
-	b c d	Register indirect addressing Register relative	
5	b c d Evalu	Register indirect addressing Register relative ate (X xor Y) xor Y	. :
-	b c d Evalu a	Register indirect addressing Register relative ate (X xor Y) xor Y All 1's	. : •
-	b c d Evalu	Register indirect addressing Register relative ate (X xor Y) xor Y	

7

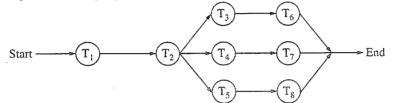
Which of the following is true about the z-buffer algorithm?

- a It is a depth sort algorithm
- **b** No limitation on total number of objects in the scene
- **c** Comparison of objects is done
- d z-buffer is initialized to background colour at start of algorithm

INDIAN SPACE REASERCH ORGANISATION

Page 1 of 14

What is the decimal value of the floating-point number C1D00000 (hexadecimal notation)? (Assume 32-bit, single precision floating point IEEE representation)


1

a 28

8

9

- b -15
- **c** -26
- **d** -28
- What is the raw throughput of USB 2.0 technology?
 - a 480 Mbps
 - **b** 400 Mbps
 - c 200 Mbps
 - d 12 Mbps
- 10 Below is the precedence graph for a set of tasks to be executed on a parallel processing system S.

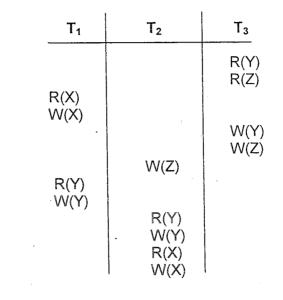
What is the efficiency of this precedence graph on S if each of the tasks $T1, \ldots, T8$ takes the same time and the system S has five processors?

- <u>a</u> 25%
- b 40%
- **c** 50%
- **d** 90%

11 How many distinct binary search trees can be created out of 4 distinct keys?

- **a** 5
- **b** 14
- **c** 24
- **d** 35
- 12 The network protocol which is used to get MAC address of a node by providing IP address is
 - a SMTP
 - b ARP
 - c RIP
 - d BOOTP
- 13 Which of the following statements about peephole optimizations is False?
 - **a** It is applied to a small part of the code
 - b It can be used to optimize intermediate code
 - **c** To get the best out of this, it has to be applied repeatedly
 - **d** It can be applied to a portion of the code that is not contiguous

INDIAN SPACE REASERCH ORGANISATION


Page 2 of 14

14 Which one of the following in place sorting algorithms needs the minimum number of swaps?

- a Quick-sort
- b Insertion sort
- c Selection sort
- d Heap sort

Transaction

15 What is the equivalent serial schedule for the following transactions?

- a $T_1 T_2 T_3$
- **b** $T_3 T_1 T_2$
- c $T_2 T_1 T_3$
- **d** $T_1 T_3 T_2$

16 Consider a direct mapped cache with 64 blocks and a block size of 16 bytes. To what block number does the byte address 1206 map to?

- a Does not map
- **b** 6
- **c** 11
- **d** 54

17 A context model of a software system can be shown by drawing a

- a LEVEL-0 DFD
- **b** LEVEL-1 DFD
- c LEVEL-2 DFD
- d LEVEL-3 DFD

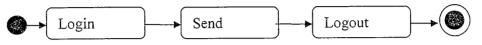
18 An example of poly-alphabetic substitution is

- a P-box
- b S-box
- c Caesar cipher
- d Vigenere cipher

INDIAN SPACE REASERCH ORGANISATION

Page 3 of 14

19	If node A has three siblings and B is parent of A, what is the degree of A?
	a O
	b 3
	c 4
	d 5
20	The IEEE standard for WiMax technology is
	a IEEE 802.16
	b IEEE 802.36
	c IEEE 812.16
	d IEEE 806.16
21	Which type of DBMS provides support for maintaining several
	versions of the same entity?
	a Relational Data Base Management Systems
	b Hierarchical
	c Object Oriented Data Base Management Systems
	d Network
22	A system is having 8 M bytes of video memory for bit-mapped
lla lla	graphics with 64-bit colour. What is the maximum resolution it can
	support?
	a 800 x 600
	· · · · · · · · · · · · · · · · · · ·
	b 1024 x 768
	c 1280 x 1024
	d 1920 x 1440
23	What is the meaning of RD signal in Intel 8151A?
	a Read (when it is low)
	b Read (when it is high)
1	c Write (when it is low)
	d Read and Write (when it is high)
24	If the page size in a 32-bit machine is 4K bytes then the size of page
	table is
	a 1 M bytes
	b 2 M bytes
	c 4 M bytes
	d 4 K bytes
25	A processor takes 12 cycles to complete an instruction I. The
	corresponding pipelined processor uses 6 stages with the execution
	times of 3,2,5,4,6 and 2 cycles respectively. What is the asymptotic
	speedup assuming that a very large number speedup assuming that
	a very large number of instructions are to be executed?
	a 1.83
	b 2
	c 3
	d 6
	u v


а

٢

26 The in-order traversal of a tree resulted in FBGADCE. Then the pre-order traversal of that tree would result in

- a FGBDECA
- **b** ABFGCDE
- c BFGCDEA
- d AFGBDEC
- 27 Which one of the following is 'true'
 - $\mathsf{R} \cap \mathsf{S} = (\mathsf{R} \cup \mathsf{S}) [(\mathsf{R} \mathsf{S}) \cup (\mathsf{S} \mathsf{R})]$
 - **b** $R \cup S = (R \cap S) [(R-S) \cup (S-R)]$
 - c $R \cap S = (R \cup S) [(R-S) \cap (S-R)]$
 - $\mathbf{d} \qquad \mathsf{R} \cap \mathsf{S} = (\mathsf{R} \cup \mathsf{S}) \cup (\mathsf{R} \mathsf{S})$

28

The above figure represents which one of the following UML diagram for a single send session of an online chat system.

- a Package Diagram
- b Activity Diagram
- c Class Diagram
- d Sequence Diagram
- 29 Which 'Normal Form' is based on the concept of 'full functional dependency' is
 - a First Normal Form
 - b Second Normal Form
 - **c** Third Normal Form
 - d Fourth Normal Form

1 30 In Boolean algebra, rule (X+Y)(X+Z) =

- a Y+XZ
- b X + YZ
- c XY+Z
- d XZ + Y
- 31 How many 3-to-8 line decoders with a chip having enable pin are needed to construct a 6-to-64 line decoder without using any other logic gates?
 - **a** 7
 - **b** 8
 - **c** 9
 - **d** 10
- 32 In which layer of network architecture, the secured socket layer (SSL) is used?
 - a physical layer
 - b session layer
 - c application layer
 - d presentation layer

INDIAN SPACE REASERCH ORGANISATION

Page 5 of 14

- d 19200 Kilobytes / sec
- 39 Two control signals in microprocessor which are related to Direct Memory Access (DMA) are
 - a INTR & INTA
 - **b** RD & WR
 - **c** S0 & S1
 - d HOLD & HLDA

INDIAN SPACE REASERCH ORGANISATION

36

37

38

ſ

33

34

40 Consider the following pseudocode.

x := 1; i := 1; while (x ≤ 500) begin x := 2^x; i := i + 1; end;

What is the value of i at the end of the pseudocode?

a 4

b 5

c 6

d 7

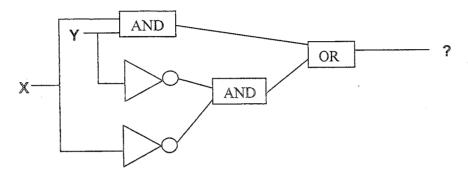
41 If a microcomputer operates at 5 MHz with an 8-bit bus and a newer version operates at 20 MHz with a 32-bit bus, the maximum speed-up possible approximately will be

- a 2
- b 4
- c 8
- d 16

42 The search concept used in associative memory is

- a Parallel search
- b Sequential search
- c Binary search
- d Selection search
- 43 Which variable does not drive a terminal string in the grammar
 - S > AB
 - A -> a
 - B -> b
 - B -> C
 - **a** A
 - b B
 - **c** C
 - d S
- 44 In Java, after executing the following code what are the values of x, y and z?

int x,y = 10, z = 12;


x = y++ + z++;

- **a** x = 22, y=10, z=12
- **b** x = 24, y=10, z=12
- **c** x = 24, y=11, z=13
- **d** x = 22, y=11, z=13

INDIAN SPACE REASERCH ORGANISATION Page 7	of 14
---	-------

- 172.16.0.255 а
- 172.16.255.255 b
- С 255.255.255.255
- 172.255.255.255 d
- Which RAID level gives block level striping with double distributed 46 parity
 - а RAID 10
 - RAID 2 b
 - RAID 6 С
 - RAID 5 d

The output expression of the following gate network is 47

- $X.Y + \overline{X}.\overline{Y}$ а
- X.Y+ X.Y b
- X.Y С
- X+Y d

48

49

- The Hamming distance between the octets of 0xAA and 0x55 is
 - а 7 b
 - 5
 - 8 С

6 d

- Consider a 32-bit machine where four-level paging scheme is used. If the hit ratio to TLB is 98%, and it takes 20 nanoseconds to search the TLB and 100 nanoseconds to access the main memory what is effective memory access time in nanoseconds?
 - 126 а
 - b 128
 - 122 С
 - d 120

а

b

С

d

- **Class Structure** а
 - Information Hierarchy b
 - Data Flow С

6.9 e-9

6.9 e-6 69 e-9

4 e-9

- State Transition d
- 52 Given

50

51

Χ:	0	10	16
Y :	6	16	28

The interpolated value at X = 4 using piecewise linear interpolation is 11

- а
- b 4
- 22 С d 10

In functional dependency, Armstrong's inference rules refers to 53

- Reflexive, Augmentation and Decomposition а
- Transitive, Augmentation and Reflexive b
- Augmentation, Transitive, Reflexive and Decomposition C
- Reflexive, Transitive and Decomposition d

Number of chips (128 x 8 RAM) needed to provide a memory 54 capacity of 2048 bytes

- 2 а
- 4 b
- 8 С
- 16 d
- There are three processes in the ready queue. When the currently running process requests for I/O how many process switches take
 - place? 1
 - а 2 b

 - 3 С d 4

55

- Let T(n) be defined by T (1)= 10 and T(n + 1) = 2n + T(n) for all 56 integers $n \ge 1$. Which of the following represents the order of growth of T(n) as a function of n?
 - O (*n*) а
 - b $O(n \log n)$
 - $O(n^2)$ С
 - $O(n^3)$ d

INDIAN SPACE REASERCH ORGANISATION

Page 9 of 14

- a cron
- b nice
- c date and time
- d schedule
- 58 In DMA transfer scheme, the transfer scheme other than burst mode is
 - a cycle technique
 - b stealing technique
 - **c** cycle stealing technique
 - d cycle bypass technique
 - nth derivative of xⁿ is
 - a nxⁿ⁻¹

59

- **b** n^n . n!
- c nxⁿ!
- d n!
- 60 A total of 9 units of a resource type are available, and given the safe state shown below, which of the following sequence will be a safe state?

Process	Used	Max
P ₁	2	7
P ₂	1	6
P ₃	2	5
P4	1	4

- **a** $< P_4, P_1, P_3, P_2 >$
- **b** $< P_4, P_2, P_1, P_3 >$
- $c < P_4, P_2, P_3, P_1 >$

d $< P_3, P_1, P_2, P_4 >$

61 Three coins are tossed simultaneously. The probability that they will fall two heads and one tail is

- **a** 5/8
- **b** 1/8
- **c** 2/3
- **d** 3/8

62 The average depth of a binary search tree is

- **a** $O(n^{0.5})$
- **b** O(n)
- $c O(\log n)$
- **d** $O(n \log n)$

1

63

What is the output of the following C code?

```
#include <stdio.h>
#include <conio.h>
```

void main() {

int index;

}

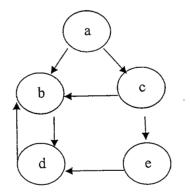
a 1245

}

- b 12345
- c 12245
- d 12354

64

When n-type semiconductor is heated ?


a number of electrons increases while that of holes decreases

b number of holes increases while that of electrons decreases


c number of electrons and holes remain same

d number of electron and holes increases equally.

65 The Cyclomatic Complexity metric V(G) of the following control flow graph is

a 3
b 4
c 5
d 6

- Which of the following algorithm design techniques is used in 66 merge sort? Greedy method а b Backtracking Dynamic programming С Divide and Conquer d The arithmetic mean of attendance of 49 students of class A is 40% 67 and that of 53 students of class B is 35%. Then the % of arithmetic mean of attendance of class A and B is 27.2% а 50.25% b 51.13% С 37.4% d Which of the following sentences can be generated by 68 S -> aS | bA A -> d | cA а bccdd b abbcca abcabc С d abcd Lightweight Directory Access Protocol is used for 69 Routing the packets a Authentication b obtaining IP address С domain name resolving d Number of comparisons required for an unsuccessful search of an 70 element in a sequential search organized, fixed length, symbol table of length L is а L b L/2(L+1)/2 С d 2L
 - 71 One SAN switch has 24 ports. All 24 port supports 8 Gbps Fiber Channel technology. What is the aggregate bandwidth of that SAN switch ?
 - a 96 Gbps
 - **b** 192 Mbps
 - c 512 Gbps
 - d 192 Gbps

72 Find the output of the following Java code line

- System.out.println(math.floor(-7.4))
- **a -**7
- **b** -8
- **c** -7.4
- **d** -7.0

INDIAN SPACE REASERCH ORGANISATION

হস্য

isrc

73	Belady's anomaly means
	Page fault rate is constant even on increasing the number of allocated frames
	Pages fault rate may increase on increasing the number of
	b allocated frames
	c Pages fault rate may increase on decreasing the number of allocated frames
	d Pages fault rate may decrease on increasing the number of allocated frames
74 ·	In an RS flip-flop, if the S line (Set line) is set high (1) and the R line
	(Reset line) is set low (0), then the state of the flip flop is
	a Set to 1
	b Set to 0
	c No change in state
	d Forbidden
75	In HTML, which of the following can be considered a container?
	a <select></select>
	b <value></value>
	c <input/>
3 0	d < BODY>
76	What is the matrix that represents rotation of an object by θ^0 about
	the origin in 2D? cos θ -sin θ
	a sin θ cos θ
	$\sin \theta$ $\cos \theta$
	b $\cos \theta \sin \theta$
	$\cos \theta - \sin \theta$
	c cos θ sin θ
	$\sin \theta - \cos \theta$
	d $\cos \theta \sin \theta$
77	In a system having a single processor, a new process arrives at the
11	rate of six processes per minute and each such process requires
	seven seconds of service time. What is the CPU utilization?
	a 70%
	b 30%
	c 60%
	d 64%
78	A symbol table of length 152 is possessing 25 entries at any instant. What is occupation density?
	a 0.164 b 127
	c 8.06
	d 6.08
	u 0.00
_	

INDIAN SPACE REASERCH ORGANISATION

SET-A

Page 13 of 14

79 A problem whose language is recursion is called ?

- a Unified problem
- **b** Boolean function
- c Recufsive problem
- d Decidable

80 Logic family popular for low power dissipation

- a CMOS
- b ECL
- c TTL
- d DTL

--চলহা জিয়ত

INDIAN SPACE REASERCH ORGANISATION

Page 14 of 14

,

١

1		(1:8, -5:5, -10:5) be a three dimensional array. How many
		ents are there in the array A?
	a	1200
	b	1408 '
	C	33
	d	1050
2		number of rotations required to insert a sequence of elements 8,7,10 into an empty AVL tree is?
	a .	0
	b	1
	C C	2
	d	3
		ortunistic reasoning is addressed by which of the following
3		ledge representation
	а	Script
	b	Blackboard
	С	Production Rules
	d	Fuzzy Logic
	The f	ollowing steps in a linked list
		p = getnode()
4		info(p) = 10
•		next (p) = list
		list = p
		t in which type of operation?
	a	pop operation in stack
	b	removal of a node
	C	inserting a node
	d	modifying an existing node
5		reduce parsing belongs to a class of
	a b	bottom up parsing
	b	top down parsing
	c d	recursive parsing predictive parsing
		h of the following productions eliminate left recursion in the
		uctions given below:
6	piou	$S \rightarrow Aa \mid b$
		$A \rightarrow Ac \mid Sd \mid \epsilon$
	а	$S \rightarrow Aa \mid b$, $A \rightarrow bdA'$, $A' \rightarrow A'c \mid A'ba \mid A \mid \epsilon$
	b	$S \rightarrow Aa \mid b$, $A \rightarrow A' \mid bdA'$ $A' \rightarrow cA' \mid adA' \mid \epsilon$
	C	$S \rightarrow Aa \mid b$, $A \rightarrow A'c \mid A'd$ $A' \rightarrow bdA' \mid cA \mid \epsilon$
•	d	$S \rightarrow Aa \mid b$, $A \rightarrow cA' \mid adA' \mid bdA'$ $A' \rightarrow A \mid \epsilon$

היאה

	Consi	der the following psuedocode:			
		x : integer := 1			
		y : integer := 2			
		1			
		procedure add			
		$\mathbf{x} := \mathbf{x} + \mathbf{y}$			
		· ·			
		procedure second (P: procedure)			
		x : integer := 2			
_		P()			
7		V			
		procedure first			
		y : integer := 3			
		second(add)			
1		first()			
		write_integer (x)			
	What	does it print if the language uses dynamic scoping with deep			
	bindi				
	а	2			
	b	3			
	С	4			
	d	5			
•	Whic	h logic gate is used to detect overflow in 2's complement			
8	1	netic?			
	a	OR gate			
	b	AND gate			
	С	NAND gate			
	d	XOR gate			
	In an	array of 2N elements that is both 2-ordered and 3-ordered,			
9		is the maximum number of positions that an element can be			
	•	its position if the array were 1-ordered?			
	а	1			
	b	2			
	С	N/2			
	d	2N-1			
	If the	frame buffer has 8 bits per pixel and 8 bits are allocated for			
10	each of the R, G, B components, what would be the size of the				
	looku	ıp table?			
	а	24 bytes			
	b	1024 bytes			
	С	768 bytes			
	d	256 bytes			

--इसरी isro

INDIAN SPACE REASERCH ORGANISATION

11	1	two BCD numbers 0x14 and 0x08 are added what is the binary sentation of the resultant number?
,,,,,,,,-	a	0x22
	b	0x1c 1
	С	0x16
	d	results in overflow
12	Whick time of	n of the following sorting algorithms has the minimum running complexity in the best and average case?
	а	Insertion sort, Quick sort
	b	Quick sort, Quick sort
	С	Quick sort, Insertion sort
	d	Insertion sort, Insertion sort
13	The n	umber 1102 in base 3 is equivalent to 123 in which base
	a	4
	b	5
i	C C	6
	d	8
14	modu trans	cessor is fetching instructions at the rate of 1 MIPS. A DMA le is used to transfer characters to RAM from a device mitting at 9600 bps. How much time will the processor be ed down due to DMA activity?
14	modu trans	lle is used to transfer characters to RAM from a device mitting at 9600 bps. How much time will the processor be
14	modu trans slowe	lle is used to transfer characters to RAM from a device mitting at 9600 bps. How much time will the processor be ed down due to DMA activity?
14	modu trans slowe a	lle is used to transfer characters to RAM from a device mitting at 9600 bps. How much time will the processor be ed down due to DMA activity? 9.6 ms
14	modu trans slowe a b	Ile is used to transfer characters to RAM from a device mitting at 9600 bps. How much time will the processor be ed down due to DMA activity? 9.6 ms 4.8 ms
14	modu trans slowe a b c d A pip	alle is used to transfer characters to RAM from a device mitting at 9600 bps. How much time will the processor be ed down due to DMA activity? 9.6 ms 4.8 ms 2.4 ms 1.2 ms beline P operating at 400 MHz has a speedup factor of 6 and ating at 70% efficiency. How many stages are there in the
	modu trans slowe a b c d A pip opera	alle is used to transfer characters to RAM from a device mitting at 9600 bps. How much time will the processor be ed down due to DMA activity? 9.6 ms 4.8 ms 2.4 ms 1.2 ms beline P operating at 400 MHz has a speedup factor of 6 and ating at 70% efficiency. How many stages are there in the
	modu trans slowe a b c d d A pip opera pipel	 ale is used to transfer characters to RAM from a device mitting at 9600 bps. How much time will the processor be ad down due to DMA activity? 9.6 ms 9.6 ms 4.8 ms 2.4 ms 1.2 ms beline P operating at 400 MHz has a speedup factor of 6 and ating at 70% efficiency. How many stages are there in the ine?
	modu trans slowe a b c d d A pip opera pipel a	 alle is used to transfer characters to RAM from a device mitting at 9600 bps. How much time will the processor be ed down due to DMA activity? 9.6 ms 9.6 ms 4.8 ms 2.4 ms 1.2 ms beline P operating at 400 MHz has a speedup factor of 6 and ating at 70% efficiency. How many stages are there in the ine? 5
	modu trans slowe a b c d A pip opera pipel a b c d	 ale is used to transfer characters to RAM from a device mitting at 9600 bps. How much time will the processor be ad down due to DMA activity? 9.6 ms 9.6 ms 4.8 ms 2.4 ms 1.2 ms beline P operating at 400 MHz has a speedup factor of 6 and ating at 70% efficiency. How many stages are there in the ine? 5 6 8 9
	modu trans slowe a b c d A pip opera pipel a b c d How	Ile is used to transfer characters to RAM from a device mitting at 9600 bps. How much time will the processor be ed down due to DMA activity? 9.6 ms 4.8 ms 2.4 ms 1.2 ms beline P operating at 400 MHz has a speedup factor of 6 and ating at 70% efficiency. How many stages are there in the ine? 5 6 8 9 much speed do we gain by using the cache, when cache is
15	modu trans slowe a b c d A pip opera pipel a b c d How	 ale is used to transfer characters to RAM from a device mitting at 9600 bps. How much time will the processor be ad down due to DMA activity? 9.6 ms 9.6 ms 4.8 ms 2.4 ms 1.2 ms beline P operating at 400 MHz has a speedup factor of 6 and ating at 70% efficiency. How many stages are there in the ine? 5 6 8 9
15	modu trans slowe a b c d A pip opera pipel a b c d How used	 Ile is used to transfer characters to RAM from a device mitting at 9600 bps. How much time will the processor be ad down due to DMA activity? 9.6 ms 4.8 ms 2.4 ms 1.2 ms beline P operating at 400 MHz has a speedup factor of 6 and ating at 70% efficiency. How many stages are there in the ine? 5 6 8 9 much speed do we gain by using the cache, when cache is 80% of the time? Assume cache is faster than main memory.
15	modu trans slowe a b c d A pip opera pipel a b c d How used a	 Ile is used to transfer characters to RAM from a device mitting at 9600 bps. How much time will the processor be ed down due to DMA activity? 9.6 ms 9.6 ms 4.8 ms 2.4 ms 1.2 ms beline P operating at 400 MHz has a speedup factor of 6 and ating at 70% efficiency. How many stages are there in the ine? 5 6 8 9 much speed do we gain by using the cache, when cache is 80% of the time? Assume cache is faster than main memory. 5.27

	·						
47	Two eight bit bytes 1100 0011 and 0100 1100 are added. What are the						
17		s of the overflow, carry and zero flags respectively, if the					
		netic unit of the CPU uses 2's complement form?					
	a	0, 1, 1 ^r					
	b	1, 1, 0					
	C .	1, 0, 1					
	d	0, 1, 0					
18	How many check bits are required for 16 bit data word to detect 2 bit						
		s and single bit correction using hamming code?					
	a	5					
	b	6					
	С	7					
	d	8					
19	What	is the maximum number of characters (7 bits + parity) that can					
		ansmitted in a second on a 19.2 kbps line. This asynchronous					
	trans	mission requires 1 start bit and 1 stop bit.					
	а	192.					
	b	240					
	С	1920					
	d	1966					
20	IEEE	1394 is related to					
	a	RS-232					
	b	USB					
	С	Firewire					
	d	PCI					
		t will be the cipher text produced by the following cipher					
21		tion for the plain text ISRO with key k =7. [Consider 'A' = 0, 'B' =					
_	1,	'Z' = 25]					
		$C_k(M) = (kM + 13) \mod 26$					
	a L	RJCH					
	b	QIBG					
	c d	GQPM XPIN					
		set of boolean operators that is sufficient to represent all					
22		ean expressions is said to be complete. Which of the following					
		t complete?					
	a	{NOT, OR}					
	b	{NOR}					
	С	{AND, OR}					
	d	{AND, NOT}					

	Whic	h of the following is the highest isolation level in transaction
23	mana	gement?
	а	Serializable
	b	Repeated Read
	С	Committed Read
	d	Uncommitted Read
	Cons	ider the following relational schema: Suppliers (sid:integer, sname:string, saddress:string)
		Parts (<u>pid:integer</u> , pname:string, pcolor:string)
		Catalog (<u>sid:integer, pid:integer</u> , pcost:real)
24	What	is the result of the following query?
	1 .	ECT Catalog.pid from Suppliers, Catalog
	WHE	RE Suppliers.sid = Catalog.pid)
		MINUS
		ECT Catalog.pid from Suppliers, Catalog
		RE Suppliers.sname <> 'sachin' and Suppliers.sid = Catalog.sid)
	a	pid of Parts supplied by all except sachin
	b	pid of Parts supplied only by sachin
	c	pid of Parts available in catalog supplied by sachin
0.8	d	pid of Parts available in catalogs supplied by all except scahin
25		ider the following dependencies and the BOOK table in a
	relati	onal database design. Determine the normal form of the given on.
		$ISBN \rightarrow Title$
		$ISBN \to Publisher$
		Publisher → Address
	а	First Normal Form
	b	Second Normal Form
	С	Third Normal Form
	d	BCNF
26	Calc	ulate the order of leaf(p _{leaf}) and non leaf(p) nodes of a B ⁺ tree
	base	d on the information given below
		Search key field = 12 bytes
	1	Record pointer = 10 bytes
		Block pointer = 8 bytes
	E	Block size = 1 KB
	a	$p_{\text{leaf}} = 51 \& p = 46$
	b	$p_{leaf} = 47 \& p = 52$
	<u> </u>	$p_{leaf} = 46 \& p = 51$
	d	$p_{leaf} = 52 \& p = 47$

न्त्रहों।

INDIAN SPACE REASERCH ORGANISATION

Page 5 of 15

27	The p	hysical location of a record determined by a formula that		
	transforms a file key into a record location is			
	a	Hashed file		
	b	B-Treé file		
	C	Indexed file		
	d	Sequential file		
	The n	nost simplified form of the boolean function		
28		x (A,B,C,D) = Σ (7,8,9,10,11,12,13,14,15)		
	(expr	essed in sum of minterms) is?		
	а	A + A'BCD		
	b	AB + CD		
	С	A + BCD		
	d	ABC + D		
	How	many programmable fuses are required in a PLA which takes		
29	16 in	puts and gives 8 outputs? It has to use 8 OR gates and 32 AND		
	gates			
	a	1032		
	b	776		
	С	1284		
	d	1536		
	E	hree stage counter, using RS flip flops what will be the value of		
30		ounter after giving 9 pulses to its input? Assume that the value		
		unter before giving any pulses is 1.		
	a			
	b	2		
	c d	9 10		
~ *	In which of the following shading models of polygons, the			
31				
31	inter	polation of intensity values is done along the scan line?		
31	inter a	polation of intensity values is done along the scan line? Gourard shading		
31	inter a b	polation of intensity values is done along the scan line? Gourard shading Phong shading		
31	inter a	polation of intensity values is done along the scan line? Gourard shading Phong shading Constant shading		
	inter a b c d	polation of intensity values is done along the scan line? Gourard shading Phong shading Constant shading Flat shading		
31	inter a b c d	polation of intensity values is done along the scan line? Gourard shading Phong shading Constant shading		
	inter a b c d Whic	polation of intensity values is done along the scan line? Gourard shading Phong shading Constant shading Flat shading ch of the following number of nodes can form a full binary tree?		
	inter a b c d Whic a	polation of intensity values is done along the scan line? Gourard shading Phong shading Constant shading Flat shading th of the following number of nodes can form a full binary tree? 8		

١

ם**רבו איי**

Page 6 of 15

SET-A

33	What	is the matrix transformation which takes the independent
		rs $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 5 \end{bmatrix}$ and transforms them to $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$
	·····	ctively?
	а	$ \left(\begin{array}{cc} 1 & -1 \\ 1 & 0 \end{array}\right) $
	b	$ \left(\begin{array}{cc} 0 & 0\\ 0.5 & 0.5 \end{array}\right) $
	С	$ \left(\begin{array}{cc} -1 & 0\\ 1 & 1 \end{array}\right) $
	d	$ \left(\begin{array}{rrr} -1 & 1\\ 1 & 0 \end{array}\right) $
34	In 808	36, the jump condition for the instruction JNBE is?
	а	CF = 0 or ZF = 0
	b	ZF = 0 and SF = 1
	С	CF = 0 and $ZF = 0$
	d	CF = 0
	1	many number of times the instruction sequence below will loop e coming out of the loop?
35		MOV AL, 00H A1: INC AL JNZ A1
	а	1
	b	255
	С	256
	d	Will not come out of the loop
36	In 80	85 microprocessor, the ISR for handling trap interrupt is at
30	whic	h location?
	а	3CH
	b	34H .
	c	74H
	d	24H

-~**^-**वनहां/ फ़िस्ड

INDIAN SPACE REASERCH ORGANISATION

Page 7 of 15

37	Thoy	oltage ranges for a logic high and a logic low in RS-232 C			
57	standard is				
	a	Low is 0.0V to 1.8V, High is 2.0V to 5.0V			
	b	Low is -15.0V to -3.0V, High is 3.0V to 15.0V			
		Low is 3.0V to 15.0V, High is -3.0V to -15.0V			
		Low is 2.0V to 5.0V, High is 0.0V to 1.8V			
38		Ethernet, which field is actually added at the physical layer			
30		s not part of the frame			
	anuis	preamble			
	b	CRC			
		address			
	c d	location			
39					
- 39		net layer-2 switch is a network element type which gives different collision domain and same broadcast domain			
	a				
	b	different collision domain and different broadcast domain			
	C	same collision domain and same broadcast domain			
	d	same collision domain and different broadcast domain			
40	If the	frame to be transmitted is 1101011011 and the CRC polynomial f_{1} is the second for personal for the second			
40		used for generating checksum is $x^4 + x + 1$, then what is the mitted frame?			
	a	11010110111011			
	b	11010110111101			
	C	11010110111110			
	d	11010110111001			
		t will be the efficiency of a Stop and Wait protocol, if the			
41	30ns	mission time for a frame is 20ns and the propagation time is			
		20%			
	a b	25%			
		40%			
	c d	66%			
42		does not support which of the following addressing modes?			
42		unicast addressing			
	a b				
	о С	multicast addressing broadcast addressing			
	d d	anycast addressing			
		t is IP class and number of sub-networks if the subnet mask is			
43		224.0.0?			
	а	class A, 3			
h	b	class A, 8			
	C	class B, 3			
	d	class B, 32			
L					

קינו ואיס

	Whic	h algorithm is used to shape the bursty traffic into a fixed rate
44		by averaging the data rate?
	a	solid bucket algorithm
	b	spanning tree algorithm
	С	hocken helm algorithm
	d	leaky bucket algorithm
45	A pac	ket filtering firewall can
	a	deny certain users from accessing a service
	b	block worms and viruses from entering the network
	С	disallow some files from being accessed through FTP
	d	block some hosts from accessing the network
46	Whic	h of the following encryption algorithms is based on the Fiestal
40	struti	ure?
	а	Advanced Encryption Standard
	b	RSA public key cryptographic algorithm
	С	Data Encryption Standard
	d	RC4
47	The p	protocol data unit for the transport layer in the internet stack is
	а	segment
	b	message
	С	datagram
	d	frame
48		Suass-Seidal iterative method can be used to solve which of
	the fo	bllowing sets?
	a	Linear algebraic equations
	b	Linear and non-linear algebraic equations
	С	Linear differential equations
	d	Linear and non-linear differential equations
49		is the least value of the function $f(x) = 2x^2 - 8x - 3$ in the
		/al [0 , 5] ?
	a	-15
	b	7
	c	-11
	d	-3

इसरो डिंग्ल

.

Consider the following set of processes, with arrival times and the required CPU-burst times given in milliseconds.

	-		U		
		Process	Arrival Time	Burst Time	
		P1	0	4	
50		P2	2	2	
		P3	3	1	
				L	
	What i	s the sequence	in which the pro	cesses are comp	oleted?
	Assum	ne round robin	scheduling with a	time quantum o	of 2
		conds.			
		P1, P2, P3			
	_	P2, P1, P3			
		P3, P2, P1			
		P2, P3, P1			
51			the speed of da	ata transfer is	mentioned in
<u> </u>	multip	les of?			
	a	150 KB/s			
		1.38 MB/s		····-	
		300 KB/s			
		2.40 MB/s			
			riable logical rec		
52			while the physical		
		25 and 5	n and minimum fr	agmentation see	en in bytes?
	a b	15 and 5			
	D C	15 and 0	· · · · · · · · · · · · · · · · · · ·		
	d	10 and 5			
			gorithm determin	oc on order for t	he execution
53			esses. Given 'n' p		
	one p	rocessor, how	many possible dif	ferent schedule	s are there?
	a	n	indify pooolsio un		
	b	n ²			
	C	n!	<u> </u>		
	d	2 ⁿ	Network		
54	Which	n of the followir	ng are the likely ca	auses of thrashi	ng?
	a	Page size was			×
	b		nany users connec	ted to the system	
	С		used policy is used		
	d		policy is used for		
	·				

						· · · · ·		
	Consider a logical address space of 8 pages of 1024 words each,							
55	mapped onto a physical memory of 32 frames. How many bits are there in the physical address and logical address respectively?							
			address a	ind logical	address res	spectively?		
	a	5, 3		······································				
	b	10, 10						
	C	15, 13						
	d	15, 15						
56	In a 64-bit machine, with 2 GB RAM, and 8 KB page size, how						any	
		entries will be there in the page table if it is inverted?						
	a	2 ¹⁸						
	b	2 ²⁰						
	C	2 ³³						
	d	2 ⁵¹	· · · · · · · · · · · · · · · · · · ·					
57	Whic	h of the follow		necessary	condition f	or deadlock	(?	
	a	Mutual exclus	ion					
	b	Reentrancy						
	С	Hold and wait						
	d	No pre-emption						
	Consider the following process and resource requirement of each process.							
	proce		J				cach	
	proce	ess.			ſ		cacin	
	proce		Тур	e 1	Тур	e 2	cach	
58	proce	ess.		e 1 Max	ſ	oe 2 Max	cacin	
58	proce	ess. Process	Typ Used	e 1 Max 2	Typ Used	be 2 Max 3	cacin	
58	proce	Process	Typ Used 1	e 1 Max	Typ Used 1	oe 2 Max	cacin	
58	Pred	Process P1 P2 P3 ict the state of nces of resour	Typ Used 1 2 this system rce type 1 a	e 1 Max 2 3 4 m, assumir nd 4 instan	Typ Used 1 1 1 1 sg that there ces of reso	e 2 Max 3 2 4 e are a tota urce type 2	l of 5	
58	Pred	Process P1 P2 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3	Typ Used 1 2 this system rce type 1 a	e 1 Max 2 3 4 m, assumir nd 4 instan	Typ Used 1 1 1 1 sg that there ces of reso	e 2 Max 3 2 4 e are a tota urce type 2	l of 5	
58	Pred	Process P1 P2 P3 ict the state of nces of resour	Typ Used 1 2 this system rce type 1 a	e 1 Max 2 3 4 m, assumir nd 4 instan	Typ Used 1 1 1 1 sg that there ces of reso	e 2 Max 3 2 4 e are a tota urce type 2	l of 5	
58	Pred insta a b c	Process P1 P2 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3	Typ Used 1 2 this system rce type 1 a e or unsafe	e 1 Max 2 3 4 m, assumir nd 4 instan	Typ Used 1 1 1 1 sg that there ces of reso	e 2 Max 3 2 4 e are a tota urce type 2	l of 5	
58	Pred insta a b c d	Process P1 P2 P3 P3 P3 P3 P3 P3 P3 P3 P3 Can go to saf Safe state Unsafe state Deadlock state	Typ Used 1 2 this system rce type 1 a e or unsafe	e 1 Max 2 3 4 m, assumir nd 4 instan state based	Typ Used 1 1 1 1 1 1 1 1 1 1 ces of reso on sequence	e 2 Max 3 2 4 e are a tota urce type 2 e	l of 5	
	Pred insta a b c d A sta	Process P1 P2 P3 P3 P3 P3 P3 P3 P3 P3 Can go to saf Safe state Unsafe state Deadlock state Tvation free jo	Typ Used 1 2 this system rce type 1 a e or unsafe te b schedulir	ne 1 Max 2 3 4 m, assumir nd 4 instan state based	Typ Used 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 0	ne 2 Max 3 2 4 e are a tota urce type 2 re hat no job	l of 5	
58	Pred insta a b c d A sta indef	Process P1 P2 P3 P3 P3 P3 P3 P3 P3 P2 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3	Typ Used 1 2 this system cce type 1 a e or unsafe b schedulir or a service	ne 1 Max 2 3 4 m, assumir nd 4 instan state based	Typ Used 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 0	ne 2 Max 3 2 4 e are a tota urce type 2 re hat no job	l of 5	
	Pred insta a b c d A sta indef sche	Process P1 P2 P3 P3 P3 P3 P3 P2 P3 P3 P3 Can go to saf Safe state Unsafe state Deadlock state Deadlock state Deadlock state Deadlock state Can go to saf	Typ Used 1 2 this system rce type 1 a e or unsafe b schedulin or a service s is starvati	ne 1 Max 2 3 4 m, assumir nd 4 instan state based	Typ Used 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 0	ne 2 Max 3 2 4 e are a tota urce type 2 re hat no job	l of 5	
	Pred insta a b c d A sta indef sche a	Process P1 P2 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3	Typ Used 1 2 this system rce type 1 a e or unsafe b schedulir or a service s is starvati	ne 1 Max 2 3 4 m, assumir nd 4 instan state based	Typ Used 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 0	ne 2 Max 3 2 4 e are a tota urce type 2 re hat no job	l of 5	
	Pred insta a b c d A sta indef sche	Process P1 P2 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3	Typ Used 1 2 this system cce type 1 a e or unsafe b schedulir or a service s is starvati g First	ne 1 Max 2 3 4 m, assumir nd 4 instan state based	Typ Used 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 0	ne 2 Max 3 2 4 e are a tota urce type 2 re hat no job	l of 5	
	Pred insta a b c d A sta indef sche a	Process P1 P2 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3 P3	Typ Used 1 2 this system cce type 1 a e or unsafe b schedulir or a service s is starvati g First	ne 1 Max 2 3 4 m, assumir nd 4 instan state based	Typ Used 1 1 1 1 1 1 1 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 1 0	ne 2 Max 3 2 4 e are a tota urce type 2 re hat no job	l of 5	

-- אייי

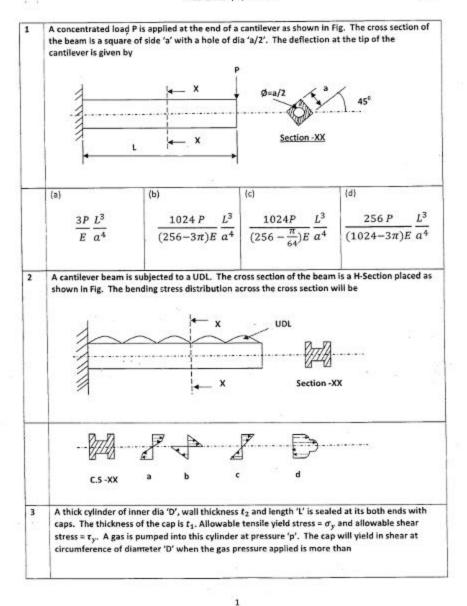
	The s	tate of a process after it encounters an I/O instruction is
	а	ready
	b	blocked
	С	idle 1
	d	running
61	Embe	dded pointer provides
	а	a secondary access path
	b	a physical record key
	С	an inverted index
	d	a prime key
62	when strict	ticular parallel program computation requires 100 seconds executed on a single CPU. If 20% of this computation is ly sequential, then theoretically the best possible elapsed for this program running on 2 CPUs and 4 CPUs respectively
	а	55 and 45 seconds
	b	80 and 20 seconds
	С	75 and 25 seconds
`	d	60 and 40 seconds
	1 00113	ider the following C code.
	#inclu	
v	#inclu #inclu void n	de <stdio.h> de <math.h> nain() double pi = 3.1415926535;</math.h></stdio.h>
63	#inclu #inclu void n	de $<$ stdio.h> de $<$ math.h> nain() double pi = 3.1415926535; int a = 1;
63	#inclu #inclu void n	de $<$ stdio.h> de $<$ math.h> nain() double pi = 3.1415926535;
63	<pre>#inclu #inclu void n { }</pre>	<pre>de <stdio.h> de <math.h> hain() double pi = 3.1415926535; int a = 1; int i; for(i=0; i < 3; i++)</math.h></stdio.h></pre>
63	<pre>#inclu #inclu void n { } What</pre>	<pre>de <stdio.h> de <math.h> hain() double pi = 3.1415926535; int a = 1; int i; for(i=0; i < 3; i++)</math.h></stdio.h></pre>
63	<pre>#inclu #inclu void n {</pre>	<pre>de <stdio.h> de <math.h> hain() double pi = 3.1415926535; int a = 1; int i; for(i=0; i < 3; i++)</math.h></stdio.h></pre>
63	<pre>#inclu #inclu void n { } What</pre>	<pre>de <stdio.h> de <math.h> hain() double pi = 3.1415926535; int a = 1; int i; for(i=0; i < 3; i++)</math.h></stdio.h></pre>

INDIAN SPACE REASERCH ORGANISATION

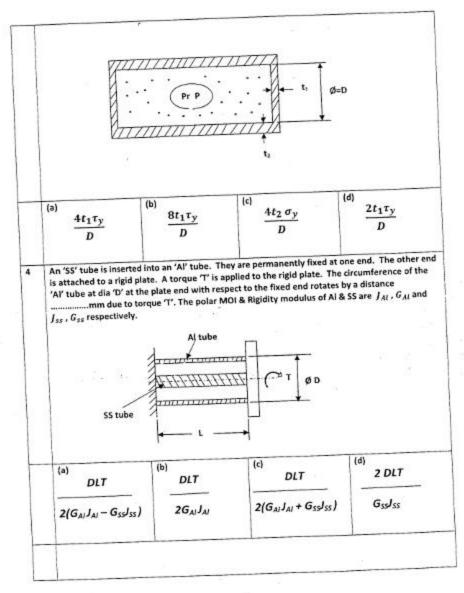
Page 12 of 15

হমগা isro

	1921 4					
	what	is the output of the following Java program?				
	Class	Test				
		r con				
		blic static void main (String [] args)				
	{					
		int $x = 0$;				
		int $y = 0$;				
64		for (int $z = 0$; $z < 5$; $z++$)				
		if((++x > 2) (++y > 2))				
		x++;				
		}				
		System.out.println(x + " " + y);				
	}	System.out.printin(x + y),				
	},					
	а	82				
	b	85				
	С	83				
	d	53				
	Cons	ider the list of page references in the time line as below:				
65		9 6 2 3 4 4 4 3 4 4 2 5 8 6 8 5 5 3 2 3 3 9 6 2 7				
	What	is the working set at the penultimate page reference if Δ is 5?				
	a	{8,5,3,2,9,6}				
ļ	b	{4,3,6,2,5}				
	C	{3,9,6,2,7}				
	d	{3,9,6,2}				
66	what	is the cyclomatic complexity of a module which has seventeen				
	a	s and thirteen nodes?				
	b	5				
	C C	6				
	d	7				
67		h of the following types of coupling has the weakest coupling?				
	a	Pathological coupling				
	b	Control coupling				
	С	Data coupling				
	d	Message coupling				

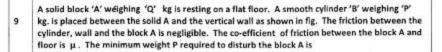

--लिस्ह जिस्ह

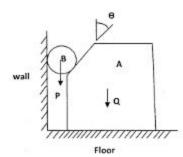
68	techn	n of the following testing methods uses fault simulation ique?
	a	unit testing
	b	beta testing
	С.	stress testing
	d	mutation testing
69	If a pr of the progr	ogram P calls two subprograms P1 and P2 and P1 can fail 50% time and P2 can fail 40% of the time, what is the failure rate of
	a	50%
	b	60%
	C C	70%
	d	10%
	-	h of the following strategy is employed for overcoming the
70		ty inversion problem?
	a	Temporarily raise the priority of lower priority level process
	b	Have a fixed priority level scheme
	C N	Implement kernel pre-emption scheme
	d	Allow lower priority process to complete its job
		(E) denote the probability of the occurrence of event E.
71	If P(A	A) = 0.5 and P(B) = 1, then the values of P(A/B) and P(B/A) ectively are
	a	0.5, 0.25
	b	0.25, 0.5
	C D	0.5, 1
	d	1. 0.5
		many diagonals can be drawn by joining the angular points of
72		tagon?
	anoc	14
	b	20
	C D	21
	d	28
		t are the final states of the DFA generated from the following
	NFA	
		i
73		
73	S	
73		$\begin{array}{c} 0 \\ \hline \\ q_0 \\ \hline \\ q_0 \\ \hline \\ q_1 \\ \hline \\ \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline$
73	S	$\begin{array}{c} 0 \\ \hline \\ q_0 \\ \hline \\ q_0 \\ \hline \\ q_1 \\ \hline \\ \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline$
73	S	q_0 ϵ q_1 ϵ q_2


Page 14 of 15 INDIAN SPACE REASERCH ORGANISATION इसरी डिनव

74	The n	umber of elements in the power set of the set {{A,B},C} is
	а	7
	b	8
	С	3 1
	d	4
75	What	is the right way to declare a copy constructor of a class if the
75	name	of the class is MyClass?
	а	MyClass (constant MyClass *arg)
	b	MyClass (constant MyClass &arg)
	С	MyClass (MyClass arg)
	d	MyClass (MyClass *arg)
76	The n	umber of edges in a 'n' vertex complete graph is ?
	a	n * (n-1) / 2
	b	n ²
	C	<u>n * (n+1) / 2</u>
	d	n * (n+1)
77	The b	inary equivalent of the decimal number 42.75 is
	a	101010.110
	b	100110.101
	C	101010.101
	d	100110.110
78		h of the following is not provided as a service in cloud puting?
	а	Infrastructure as a service
	b	Architecture as a service
	С	Software as a service
	d	Platform as a service
79		built-in base class in Java, which is used to handle all
	exce	ptions is
	a	Raise
	b	Exception
	C .	Error
	d	Throwable
80		aphics, the number of vanishing points depends on
	a	the number of axes cut by the projection plane
	b	the centre of projection
	C	the number of axes which are parallel to the projection plane
	d	the perspective projections of any set of parallel lines that are not parallel to the projection plane

-) 7

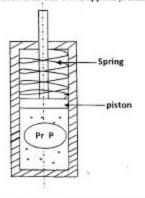

,



2

A rod of 20 dia is fixed to the ceiling of a roof on one end. A rotor of 50 kg mass is attached to the free end with bearings. The CG of the rotor is 10 mm away from the shaft axis. The rotor is 5 rotating at 600 rpm. The max tensile stress (in N/ Sq.mm) in the rod is nearly equal to 1111/11/111 Ø20 500 rotor 50 bearing (d) 400 n 200 π (c) 300 n (a) n/2 (b) 6 An automotive engine having a mass of 135 kg is supported on 4 springs with linear characteristics. Each of the 2 front springs have stiffness of 3 MN/m while the stiffness of each of 2 rear springs is 4.5 MN/m. The engine speed (rpm) at which resonance is likely to occur is (d) 10³/(3) (a) 10³/(6n) (b) 1/(6π) (c) 10⁴/(π) A weighing m/c consists of a 2 kg pan resting on a spring having linear characteristics. In this condition of resting on the spring, the length of spring is 200mm. When a 20 kg mass is placed 7 on the pan, the length of the spring becomes 100mm. The undeformed length L in mm and the spring stiffness K in N/m are a) L = 220 & K=1862 (b) L = 200, K = 1960 (d) L = 200, K = 2 (c) L = 210, K = 1960 A circular shaft is subjected to a torque 'T' and a Bending Moment M. The ratio of max. shear 8 stress to max, bending stress is (c) 2T/M (d) M/2T (a) 2M/T (b) T/2M

Set A



_	1.0	10.1	143		
	$\frac{Q (1 - Tan \theta)}{\mu Tan \theta}$	(b) $\frac{\mu Q Tan\theta}{(1-\mu Tan \theta)}$	(c) μ <i>Q Cosθ</i>	$\frac{\mu Q}{Cos\theta}$	
					-

A hydraulic jack is used to compress a spring as shown in fig. Stiffness of spring is 10^5 N/m. By applying a pressure 'p' in the hydraulic cylinder, the spring gets compressed by 10mm. The cross sectional area of the piston is 25 cm². The applied pressure 'p is

10

4

_	(a) 4 x 10 ⁵ Pascals	(b) 40 Pascals	(c) 250 Pascals	(d) 25 Pascals			
1	A small plastic boat loaded with pieces of steel rods is floating in a bath tub. If the cargo is dumped into the water , allowing the boat to float empty, the water level in the tub will						
-	(a) Rise	(b) Fall	(c) Remains the sam	e (d) Rise and then fall			
2	Viscosity of water in comparison to mercury is						
-	(a) higher	(b) lower	(c) same	(d) unpredictable			
3	Froude number is sig	nificant in:		12			
-	(a) Supersonics, as wi	th projectile and jet p	propulsion	4			
	the second se	CONTRACTOR OF CONT	flow, as with pipes, air cr	rafts wings, nozzles, etc.			
	(c) Simultaneous mot and wave making eff			e discontinuity, gravity force			
	(d) All of these						
4	The purpose of surge	tank in a nine line is	to				
-	(a) smoothen the flo	second seco	the second	(b) minimize friction losses in pipe			
-	(c) prevent occurrent	CONTRACTOR OF TAXABLE PARTY OF TAXABLE PARTY.		(d) relieve pressure due to water hammer			
15.	Head loss in turbulent flow in a pipe						
_	(a) varies directly as	the second s	the second	(b) varies inversely as square of velocity			
_	(c) varies approximation	tely as square of velo	city (d) varies inversely	as velocity			
16.	from the bottom of	the tank. If the orifi		fice of diameter 0.1m at 0.3m and coefficient of discharge o			
-	(a) 69.37 N	(b) 67.39 N	(c) 63.79 N	(d) 65.39 N			
17.	A model of a hydraulic turbine is tested at a head of 1/4 th of that under which the full scale turbine works. The diameter of the model is half of that of the full scale turbine. If N is the RPN of the full scale turbine, then RPM of the model will be						
	(a) N/4	(b) N/2	(c) N	(d) 2N			
18	where the diameter	r is reduced from 20) cm to 10 cm. The pro	reducer in a horizontal pipe essure in the 20 cm pipe ju ssure of 50 kPa and a specif			

Set A

	(a) 0.05	(b) 0.16		(c) 0.27		d) 0.38		
	For the stability of a floating body, under the influence of gravity alone, which of the following is true?							
-	(a) Metacentre should be below the centre of gravity							
	(b) Metacentre should be above the centre of gravity							
	(c) Metacentre and centre of gravity must lie on the same horizontal line							
-	(d) Metacentre	and centre of gra	avity must lie	on the same ve	rtical line		14	
20	(d) Metacentre and centre of gravity must lie on the same vertical line A smooth pipe of diameter 200mm carries water. The pressure in the pipe at Section S1 (elevation: 10m) is 50 kPa . At section S2 (elevation: 12 m) the pressure is 20 kPa and velocity is 2 m/sec . Density of water is 1000 kg/m ³ and acceleration due to gravity is 9.8 m/ sec ² . Which of the following is true?							
-	(a) Flow is fro	om \$1 to \$2 and	d head loss is	16				
		om S1 to S2 and	i head loss is	(d) Flow is from	n 52 to 51	and head	loss is 1.06m	
	The 2-D flow with velocity $\overline{v} = (x + 2y + 2)I + (4 - y)j$ is							
21.	THE L'O HOW H							
21.				(b) compress	ible and no	ot irrotati	onal	
21.	(a) compressib	le and irrotation ible and irrotation	al	(b) compress (d) incompre	ible and no ssible and	not irrotati	onal ational	
21.	(a) compressib (c) incompress A venturimete horizontal pip sections is fou	le and irrotation ible and irrotatio er of 20mm the e of 40mm diar nd to be 30 kPa,	al mal roat diameter meter. If the then, neglecti	(b) compress (d) incompre is used to me pressure differen ng frictional loss	asure the ence betwe es, the flow	velocity cen the p velocity	ational of water in a ipe and throat is	
	(a) compressib (c) incompress A venturimete	le and irrotation ible and irrotatio er of 20mm the e of 40mm diar nd to be 30 kPa,	al onal roat diameter meter, if the	(b) compress (d) incompre is used to me pressure differe	asure the ence betwe es, the flow	velocity	ational of water in a ipe and throat is	
	(a) compressib (c) incompress A venturimete horizontal pip sections is fou (a) 0.2 m/sec A room cont (the refriger electric resis that the refr continuously	le and irrotation ible and irrotation er of 20mm thi e of 40mm diar nd to be 30 kPa, (b) 1.0 ains 60 kg of ai ator consumes stance heater,	al mal roat diameter neter. If the then, neglectli m/sec ir at 100 kPa 250 W of el and a 50-W TV, the fan, imperature in	(b) compress (d) incompre is used to me pressure differen ng frictional loss	ssible and asure the ence betwe es, the flow com ha running) cold win c resistar	not irrota velocity een the p velocity (d) 2.0 n (d) 2.0 n	ational of water in a ipe and throat is n/sec V refrigerator V TV, a 1-kW it is observer r are running	
22.	(a) compressib (c) incompress A venturimete horizontal pip sections is fou (a) 0.2 m/sec A room cont (the refriger electric resis that the refr continuously	le and irrotation ible and irrotation er of 20mm thi e of 40mm diar nd to be 30 kPa, (b) 1.0 ains 60 kg of ai ator consumes stance heater, igerator, the 3 but the air te e room that dag	al mal roat diameter neter. If the then, neglectli m/sec ir at 100 kPa 250 W of el and a 50-W TV, the fan, imperature in	(b) compress (d) incompre is used to me pressure difference frictional loss (c) 1.4 m/sec and 15°C. The ectricity when fan. During a and the electri	ssible and asure the ence betwe es, the flow com ha running) cold win c resistar	not irrota velocity een the p v velocity (d) 2.0 m is a 250-V is a 120-V ter day, nee heate stant. Th	ational of water in a ipe and throat is n/sec V refrigerator V TV, a 1-kW it is observer r are running the rate of hea	
22.	(a) compressib (c) incompress A venturimete horizontal pip sections is fou (a) 0.2 m/sec A room cont (the refriger electric resis that the refr continuously loss from the (a) 3312 kJ/l Efficiency o	le and irrotation Ible and irrotation ible and irrotation e of 20mm thir e of 40mm diar ind to be 30 kPa, (5) 1.0 ains 60 kg of ai ator consumes stance heater, rigerator, the 7 r but the air te e room that day h (b) 4	al onal roat diameter neter. If the then, neglection om/sec ir at 100 kPa 250 W of el and a 50-W TV, the fan, imperature in y is 1752 kJ/h e is given as 1	(b) compress (d) incompre is used to me pressure differe ng frictional loss (c) 1.4 m/sec and 15°C. The ectricity when fan. During a and the electri in the room rer	ssible and asure the ence betwo es, the flow e room ha running) cold win c resistar nains con (c) 5112	not irrota velocity een the p velocity (d) 2.0 m s a 250-V , a 120-V ter day, nee beate stant. Th 2 kJ/h	ational of water in a ipe and throat is n/sec V refrigerator V TV, a 1-kW it is observed r are running re rate of hea (d) 2952 kJ/h	

25.	An adiabatic heat exchanger is used to heat cold water at 15° C entering at a rate of 5 kg/s by hot air at 90°C entering also at rate of 5 kg/s. If the exit temperature of hot air is 20°C, the exit temperature of cold water is						
	(a) 27°C	(b) 32°C		(c) 52°C	(d) 85°C	
26.	For given combined radiative and convective heat transfer coefficient 'h _t ' and given thermal conductivity k [*] Critical thickness of insulation for cylinder and sphere is given as						
-	L L	L L	24	24 4	24	k	
	(a) $\frac{k}{h_r}$ and $\frac{k}{h_r^2}$	(b) $\frac{k}{h_l}$ a	nd —	(c) $\frac{2k}{h_{\rm f}}$ and $\frac{k}{h_{\rm f}^2}$	(d) 20	and $\frac{k}{h}$	
	$h_l = h_l^2$	n _i	h_{t}	$h_{\rm f} = h_{\rm f}^2$	nr	h _t	
27.	Match the followin		Li- Rev	nolds number			
			the bitch starts	selt number	-		
	Q: Free surface flow R: Boundary layer flow		and the second se	W: Weber number			
	S: Pipe flow	layer now	international sectors in the sector of the	ude number	-		
			ch number	-			
			n friction coefficien				
-	and the second s		and the second se	the second s	TN		
_				(b) P-W; Q-X (d) P-Y; Q-W;			
-	(c) F-1; Q-W; K-2	3 3-U; I-A		(u) 1-1; Q-W	K-2, 5-0,	1	
 A spherical thermocouple junction of diameter 0.706 mm is to be a measurement of temperature of a gas stream. The convective heat transfe on the bead surface is 400 W/m²K. Thermo-physical properties of the material are k = 20 W/mK, C = 400 J/kg K and r = 8500 kg/m³. If the ti initially at 30°C is placed in a hot stream of 300°C, the time taken by reach 298°C, is 					ansfer co-officient of thermocouple the thermocouple		
	a) 2.35 s	b) 4.9 s	5		c) 14.7 s	d) 29.4 s	
29.	Two insulating materials of thermal conductivity K and 2K are available for lagging a pipe carrying a hot fluid. If the radial thickness of each material is the same.						
	(a) material with higher thermal conductivity should be used for the inner layer and one with lower thermal conductivity for the outer.						
3	(b) material with lower thermal conductivity should be used for the inner layer and one with higher thermal conductivity for the outer.						
	(c) it is immaterial in which sequence the insulating materials are used						
	(c) it is immateria	l in which s	equence	the insulating mat	erials are us	sed	

51

7

5

30.	The definition of 1 K as per the internationally accepted temperature scale is (a) 1/100th the difference between normal boiling point and normal freezing point of water. (b) 1/273.15th the normal freezing point of water (c) 100 times the difference between the triple point of water and the normal freezing point of water.					
334						
	(d) 1/273.16th of the triple point of water.					
31.	For a perfect gas match list I with list II: List I	List II				
	(A) Isobaric thermal expansion coefficient	(1) 0				
	(B) Isothermal compressibility	(2) ••				
	(C) Isentropic compressibility	(3) 1/v				
	(D) Joule – Thomson coefficient	(3) 1/V (4) 1/T				
	(D) Joure - Thomson coefficient					
		(5) 1/p				
	14 12 12 12 12	(6) 1/ 7p				
_	CALL AND A CALL AND A CALL A					
		(a) A A R S C 6 D 1 (d) A 3 R 4 C 6 D 5				
32.						
32.	For a given heat flow and for the same thick material will be maximum for					
32.	For a given heat flow and for the same thick material will be maximum for (a) copper (b) steel (c) gl Select statements from List II matching the A, B if the correct choice for (1) is (A) and the List I (A) Fourier number (1) Surface (B) Weber number (2) Forced (C) Grashoff number (3) Natura (D) Schmidt number (4) Radiati	ass-wool (d) refractory brick (d) refractory brick processes in List I. Enter your answer as hat for (2) is (B) List II e tension convection l convection ion ent heat conduction				
	For a given heat flow and for the same thick material will be maximum for (a) copper (b) steel (c) gl Select statements from List II matching the A, B if the correct choice for (1) is (A) and the List I (A) Fourier number (1) Surface (B) Weber number (C) Grashoff number (3) Natura (D) Schmidt number (b) Schmidt number (6) Mass d	ass-wool (d) refractory brick (d) refractory brick processes in List I. Enter your answer as hat for (2) is (B) List II e tension convection l convection ion ent heat conduction				
	For a given heat flow and for the same thick material will be maximum for (a) copper (b) steel (c) gl Select statements from List II matching the A, B if the correct choice for (1) is (A) and the List I (A) Fourier number (1) Surface (B) Weber number (A) Fourier number (1) Surface (C) Grashoff number (3) Natura (D) Schmidt number (4) Radiati (5) Transie (6) Mass d (a) A-2, B-1, C-3, D-5 (b) A-5, B-1, C-3, D-6 (c)	iness, the temperature drop across the ass-wool (d) refractory brick processes in List I. Enter your answer as hat for (2) is (B) List II e tension convection l convection ion ent heat conduction iffusion) A-5, B-2, C-3, D-1 (d) A-5, B-1, C-3, D-4				
33.	For a given heat flow and for the same thick material will be maximum for (a) copper (b) steel (c) gl Select statements from List II matching the A, B if the correct choice for (1) is (A) and the List I (A) Fourier number (1) Surface (B) Weber number (A) Fourier number (1) Surface (B) Weber number (2) Forced (C) Grashoff number (3) Natura (D) Schmidt number (D) Schmidt number (4) Radiati (5) Transie (6) Mass d (a) A-2, B-1, C-3, D-5 (b) A-5, B-1, C-3, D-6 (c)	iness, the temperature drop across the ass-wool (d) refractory brick processes in List I. Enter your answer as hat for (2) is (B) List II e tension convection l convection ion ent heat conduction iffusion) A-5, B-2, C-3, D-1 (d) A-5, B-1, C-3, D-4				

8

	thermodynamics system	for the process to be fe	asible, the entropy c	hange, S2 – S1 of the			
	(a) is positive or z	ero (b) is	negative or zero				
	(c) is zero		n be positive, negati	ive or zero			
36.	In descending or water, (c) saturat	ler of magnitude, the t ed water vapour and (hermal conductivity d) aluminum can be	of (a) pure iron, (b) liquid arranged as			
	(a) a b c d	(b) b c a d	(c) d a b c	(d) d c b a			
37.	For the same inlet and outlet temperatures of hot and cold fluids, the Log Mean Temperature Difference (LMTD) is						
_	(a) greater for pa	rallel flow heat exchan	ger than for counter	r flow heat exchanger.			
	(b) greater for co	unter flow heat exchan	ger than for paralle	I flow heat exchanger.			
		parallel and counter f					
	(d) dependent on	the properties of the f	luids.				
38.	A positive value of Joule-Thomson coefficient of a fluid means						
	(a) temperature (lrops during throttling	(b) temperature remains constant during threttling				
	(c) temperature	ises during throttling	(d) none of these	2			
-	 A Carnot engine.rejects 30% of absorbed heat to a sink at 30°C. The temp the heat source is 						
39.		N2					
39.		(b) 433 °C	(c) 737 °C	(d) 1010 °C			
39. 40.	the heat source is (a) 100 °C An engine operat	(b) 433 °C	re limits of 900 K ar	(d) 1010 °C ad T and T and 400 K. For			
	the heat source is (a) 100 °C An engine operat	(b) 433 °C	re limits of 900 K ar				
	the heat source is (a) 100 °C An engine operatoth both to be equal (a) 700 K	(b) 433 °C tes between temperatu y efficient, the values o (b) 600 K nger, the hot liquid en ng fluid enters at 30°C	re limits of 900 K an of T will be (c) 750 K ters with a tempera	nd T and T and 400 K. For			

0

٦

Set A