Some useful physical constants

Speed of light
$$c = 3 \times 10^8 \text{ m s}^{-1}$$

Plank's constant $h = 6.63 \times 10^{-34} \text{ J s}$
Boltzmann constant $k_B = 1.38 \times 10^{-23} \text{ J K}^{-1}$

 $= 1.6 \times 10^{-19} \text{ C}$ Charge of electron

Q. 1 - Q. 25 carry one mark each.

- Consider an anti-symmetric tensor P_{ij} with the indices i and j running from 1 to 5. The Q.1 number of independent components of the tensor is
 - (A)3

Q.2

- (B) 10
- The value of the integral $\int_{c}^{c} \frac{e^{z} \sin(z)}{z^{2}} dz$, where the contour cis the unit circle:

|z-2|=1, is

- $(A) 2\pi i$
- (B) 4 ni

- The eigenvalues of the matrix Q.3

- (D) -5, 1, 1
- (A) 5, 2, -2 (B) -5, -1, -1 (D) 5, 1, -1 (D) Q.4 If $f(x) =\begin{cases} 0 & \text{for } x < 3, \\ x 3 & \text{for } x \ge 3, \end{cases}$ then the Laplace transform of f(x) is

- (D) $s^{-3}e^{-3s}$
- The valence electrons do not directly determine the following property of a metal. Q.5
 - (A) Electrical conductivity
- (B) Thermal conductivity

(C) Shear modulus

- (D) Metallic lustre
- Consider X-ray diffraction from a crystal with a face-centered-cubic (fcc) lattice. The Q.6 lattice plane for which there is NO diffraction peak is
 - (A) (2, 1, 2)
- \bigvee (B) (1, 1, 1)
- (C) (2,0,0)
- (D) (3, 1, 1)

- The Hall coefficient, R_H , of sodium depends on Q.7
 - (A) The effective charge carrier mass and carrier density
 - (B) The charge carrier density and relaxation time
 - (C) The charge carrier density only
 - (D) The effective charge carrier mass

- Q.8 The Bloch theorem states that within a crystal, the wavefunction, $\psi(\vec{r})$, of an electron has the form
 - (A) $\psi(\vec{r}) = u(\vec{r})e^{i\vec{k}\cdot\vec{r}}$ where $u(\vec{r})$ is an arbitrary function and \vec{k} is an arbitrary vector
 - (B) $\psi(\vec{r}) = u(\vec{r})e^{i\vec{G}\cdot\vec{r}}$ where $u(\vec{r})$ is an arbitrary function and \vec{G} is a reciprocal lattice vector
 - (C) $\psi(\vec{r}) = u(\vec{r})e^{i\vec{G}\cdot\vec{r}}$ where $u(\vec{r}) = u(\vec{r} + \vec{\Lambda})$, $\vec{\Lambda}$ is a lattice vector and \vec{G} is a reciprocal lattice vector
 - (D) $\psi(\vec{r}) = u(\vec{r})e^{i\vec{k}\cdot\vec{r}}$ where $u(\vec{r}) = u(\vec{r} + \vec{\Lambda})$, $\vec{\Lambda}$ is a lattice vector and \vec{k} is an arbitrary vector
- Q.9 In an experiment involving a ferromagnetic medium, the following observations were made. Which one of the plots does NOT correctly represent the property of the medium? (T_c is the Curie temperature)

- Q.10 The thermal conductivity of a given material reduces when it undergoes a transition from its normal state to the superconducting state. The reason is:
 - (A) The Cooper pairs cannot transfer energy to the lattice
 - (B) Upon the formation of Cooper pairs, the lattice becomes less efficient in heat transfer
 - The electrons in the normal state lose their ability to transfer heat because of their coupling to the Cooper pairs
 - (D) The heat capacity increases on transition to the superconducting state leading to a reduction in thermal conductivity

Sveejith P3/24

Q.11 The basic process underlying the neutron β - decay is

(A) $d \rightarrow u + e^- + \overline{V}_c$

(B) $d \rightarrow u + e^{-}$

(C) $s \rightarrow u + e^{-} + \overline{V}_{e}$

(D) $u \rightarrow d + e^{-} + \overline{V}$

Q.12 In the nuclear shell model the spin parity of ^{15}N is given by

- (A) $\frac{1}{2}$
- (B) $\frac{1}{2}^{+}$
- (C) $\frac{3}{2}$
- (D) 3⁺/₂

Q.13 Match the reactions on the left with the associated interactions on the right.

 $(1) \pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$

(i) Strong

(2) $\pi^0 \rightarrow \gamma + \gamma$

(ii) Electromagnetio

(3) $\pi^0 + n \to \pi^- + p$

(iii) Weak

(A) (I, iii), (2, ii), (3, i)

(B) (1, 1), (2, ii), (3, iii)

(C) (1, ii), (2, i), (3, iii)

(D)-(1, iii), (2, i), (3, ii)

Q.14 To detect trace amounts of a gaseous species in a mixture of gases, the preferred probing tool is

- (A) Ionization spectroscopy with X-rays
- (B) NMR spectroscopy

(C) ESR spectroscopy

(D) Laser spectroscopy

Q.15 A collection of N atoms is exposed to a strong resonant electromagnetic radiation with N_g atoms in the ground state and N_e atoms in the excited state, such that $N_g + N_e = N$. This collection of two-level atoms will have the following population distribution:

(A) $N_{\sigma} \ll N$

(B) $N_{\rm g} >> N_{\rm e}$

(C) $N_g \approx N_e \approx N_g$

(D) $N_{\kappa} - N_{\epsilon} \approx N/2$

Q.16 Two states of an atom have definite parities. An electric dipole transition between these states is

- (A) Allowed if both the states have even parity
- (B) Allowed if both the states have odd parity
- (C) Allowed if the two states have opposite parities
- (D) Not allowed unless a static electric field is applied

- Q.17 The spectrum of radiation emitted by a black body at a temperature 1000 K peaks in the
 - (A) Visible range of frequencies
- (B) Infrared range of frequencies
- (C) Ultraviolet range of frequencies
- (D) Microwave range of frequencies
- Q.18 An insulating sphere of radius a carries a charge density $\rho(\vec{r}) = \rho_0(a^2 - r^2)\cos\theta$, r < a. The leading order term for the electric field at a distance d, far away from the charge distribution, is proportional to
 - (A) d^{-1}
- (B) d^{-1}
- (C) d^{-3}
- Q.19 The voltage resolution of a 12 - bit digital to analog converter (DAC), whose output varies from -10 V to +10 V is, approximately
 - (A) l mV
- (B) 5 mV
- (C) 20 mV
- (D) 100 mV
- In one of the following circuits, negative feedback does not operate for a negative input. Q.20 Which one is it? The opamps are running from ± 15 % supplies.

(C)

(D)

- A system of M non-interacting classical point particles is constrained to move on the Q.21two-dimensional surface of a sphere. The internal energy of the system is
 - (A) $\frac{3}{2}Nk_BT$

- (B) $\frac{1}{2}Nk_BT$ (C) Nk_BT (D) $\frac{5}{2}Nk_BT$
- Which of the following atoms cannot exhibit Bose-Einstein condensation, even in 0.22 principle?
 - $(A)^{\mathsf{I}}H_{\mathsf{I}}$
- (B) 4He,
- (C) $^{21}Na_{11}$
- (D) ${}^{40}K_{10}$

- For the set of all Lorentz transformations with velocities along the x-axis, consider the Q.23 two statements given below:
 - P: If L is a Lorentz transformation then, L^{-1} is also a Lorentz transformation.
 - Q: If L_1 and L_2 are Lorentz transformations then, L_1L_2 is necessarily a Lorentz transformation.

Choose the correct option.

- (A) P is true and Q is false.
- (B) Both P and Q are true.
- (C) Both P and Q are false.
- (D) P is false and Q is true.
- Which of the following is an allowed wavefunction for a particle in a bound state? N is a Q.24 constant and α , $\beta > 0$.

(A)
$$\psi = N \frac{e^{-\alpha r}}{r^3}$$

(B)
$$\psi = N(1 - e^{-\alpha r})$$

(C)
$$\psi = Ne^{-\alpha x}e^{-\beta(x^2+y^2+z^2)}$$

(D)
$$\psi = \begin{cases} \text{non-zero constant} & \text{if } r < R \\ 0 & \text{if } r > R \end{cases}$$

- A particle is confined within a spherical region of radius one femtometer (10⁻¹⁵ m). Its Q.25 momentum can be expected to be about

 - (A) $20 \frac{keV}{c}$ (B) $200 \frac{keV}{c}$

- Q. 26 Q.55 carry two marks each.
- which of the following statements is For the complex function, correct?
 - (A) z = 0 is a branch point
 - (B) z = 0 is a pole of order one
 - (C) z = 0 is a removable singularity
 - (D) z = 0 is an essential singularity
- The solution of the differential equation for y(t): $\frac{d^2y}{dt^2} y = 2\cosh(t)$, subject to the Q.27

initial conditions
$$y(0) = 0$$
 and $\frac{dy}{dt}\Big|_{t=0} = 0$, is

(A)
$$\frac{1}{2}$$
 cosh(t) + t sinh(t)

(B)
$$-\sinh(t) + t \cosh(t)$$

(C) $t \cosh(t)$

(D) $t \sinh(t)$

Given the recurrence relation for the Legendre polynomials Q.28

$$(2n+1) x P_n(x) = (n+1) P_{n+1}(x) + n P_{n-1}(x),$$

which of the following integrals has a non-zero value?

(A)
$$\int_{-1}^{+1} x^2 P_{\alpha}(x) P_{\alpha+1}(x) dx$$

(B)
$$\int_{-1}^{1} x P_n(x) P_{n+2}(x) dx$$

(C)
$$\int_{-1}^{1} x \left[P_{\kappa}(x) \right]^{2} dx$$

(D)
$$\int_{1}^{1} x^{2} P_{n}(x) P_{n+2}(x) dx$$

For a two-dimensional free electron gas, the electronic density n, and the Fermi energy 0.29 $E_{\rm s}$, are related by

(A)
$$n = \frac{(2mE_F)^{\frac{3}{2}}}{3\pi^2\hbar^3}$$

$$(B) n = \frac{mE_F}{\pi\hbar^2}$$

$$(C) n = \frac{mE_F}{2\pi\hbar^2}$$

(D)
$$n = \frac{2^{\frac{1}{2}} (mE_F)^{\frac{1}{2}}}{\pi h}$$

- the resonance frequencies of a medium, the real part of the Far away from any of 0.30dielectric permittivity is
 - (A) Always independent of frequency
- (B) Monotonically decreasing with frequency
- (C) Monotonically increasing with frequency
- (D) A non-monotonic function of frequency
- The ground state wavefunction of deuteron is in a superposition of s and d states. Which of Q.31 the following is NOT true as a consequence?
 - (A) It has a non-zero quadruple moment
 - (B) The neutron-proton potential is non-central
 - (C) The orbital wavefunction is not spherically symmetric
 - (D) The Hamiltonian does not conserve the total angular momentum
- The first three energy levels of 228 Th₉₀ are shown below 0.32

The expected spin-parity and energy of the next level are given by

- (A) (6°; 400 keV) (B) (6°; 300 keV)
- (C) $(2^+; 400 \text{ keV})$ (D) $(4^+; 300 \text{ keV})$

The quark content of Σ^+, K^-, π^- and p is indicated: Q.33

$$|\Sigma^{+}\rangle = |uus\rangle; |K^{-}\rangle = |s\overline{u}\rangle; |\pi^{-}\rangle = |\overline{u}d\rangle; |p\rangle = |uud\rangle.$$

In the process, $\pi^- + p \rightarrow K^- + \Sigma^+$, considering strong interactions only, which of the following statements is true?

- (A) The process is allowed because $\Delta S = 0$
- (B) The process is allowed because $\Delta I_3 = 0$
- (C) The process is not allowed because $\Delta S \neq 0$ and $\Delta I_3 \neq 0$
- (D) The process is not allowed because the baryon number is violated
- The three principal moments of inertia of a methanol (CH3 OH) molecule have the Q.34 property $I_x = I_y = I$ and $I_z \neq I$. The rotational energy eigenvalues are

(A)
$$\frac{\hbar^2}{2I}l(l+1) + \frac{\hbar^2 m_l^2}{2} \left(\frac{1}{I_z} - \frac{1}{I}\right)$$

$$(B) \frac{\hbar^2}{2l(l+1)}$$

(C)
$$\frac{\hbar^2 m_l^2}{2} \left(\frac{1}{I_z} - \frac{1}{I} \right)$$

$$0) \frac{\hbar^2}{2I} l(l+1) + \frac{\hbar^2 m_i^2}{2} \left(\frac{1}{I_z} + \frac{1}{I} \right)$$

A particle of mass m is confined in the potential Q.35

Let the wavefunction of the particle be given by

$$\psi(x) = \sqrt{\frac{2}{5}} \psi_0 + \sqrt{\frac{2}{5}} \psi_1,$$

where ψ_0 and ψ_0 are the eigenfunctions of the ground state and the first excited state respectively. The expectation value of the energy is

(B)
$$\frac{25}{10}\hbar a$$

(B)
$$\frac{25}{10}\hbar\omega$$
 (C) $\frac{13}{10}\hbar\omega$

(D)
$$\frac{11}{10}\hbar\omega$$

Q.36 Match the typical spectra of stable molecules with the corresponding wave-number range

- 2. Rotational spectra
- 3. Molecular dissociation

(A)
$$1 - ii$$
, $2 - i$, $3 - iii$

(C)
$$1 - iii$$
, $2 - ii$, $3 - i$

ii.
$$10^5 - 10^6 \text{cm}^{-1}$$

iii.
$$10^{0} - 10^{2}$$
 cm⁻¹

(B)
$$1 - ii$$
, $2 - iii$, $3 - i$

(D)
$$1 - i$$
, $2 - ii$, $3 - iii$

Q.37 Consider the operations $P: \vec{r} \to -\vec{r}$ (parity) and $T: t \to -t$ (time-reversal). For the electric and magnetic fields \vec{E} and \vec{B} , which of the following set of transformations is correct?

(A)
$$P: \vec{E} \to -\vec{E}, \vec{B} \to \vec{B};$$

 $T: \vec{E} \to \vec{E}, \vec{B} \to -\vec{B}$

(C)
$$P: \vec{E} \to -\vec{E}, \vec{B} \to \vec{B};$$

 $T: \vec{E} \to -\vec{E}, \vec{B} \to -\vec{B}$

$$(B) P: \vec{E} \to \vec{E}, \vec{B} \to \vec{B}$$

$$T \xrightarrow{E} E, B \to B$$

$$\bar{E} \to -\bar{E}, \bar{B} \to \bar{B}$$

Q.38 Two magnetic dipoles of magnitude meach are placed in a plane as shown.

The energy of interaction is given by

$$(C) \frac{3\mu_0}{2\pi} \frac{m^2}{d^3}$$

$$(B) \quad \frac{\mu_0}{4\pi} \frac{m^2}{d^3}$$

(D)
$$-\frac{3\mu_0}{8\pi}\frac{m^2}{d^3}$$

Q.39 Consider a conducting loop of radius a and total loop resistance R placed in a region with a magnetic field B thereby enclosing a flux ϕ_0 . The loop is connected to an electronic circuit as shown, the capacitor being initially uncharged.

If the loop is pulled out of the region of the magnetic field at a constant speed u, the final output voltage V_{out} is independent of

(A) ϕ_0

(B) u

(C) R

(D) (

Q.40 The figure shows a constant current source charging a capacitor that is initially uncharged.

If the switch is closed at t = 0 which of the following plots depicts correctly the output voltage of the circuit as a function of time?

PH

Q.41 For any set of inputs, A and B, the following circuits give the same output, Q, except one. Which one is it?

Q.42 CO_2 molecule has the first few energy levels uniformly separated by approximately 2.5 meV. At a temperature of 300 K, the ratio of the number of molecules in the 4^{th} excited state to the number in the 2^{nd} excited state is about

- (A) 0.5
- (B) 0.6
- (C) 0.8
- (D) 0.9

Q.43 Which among the following sets of Maxwell relations is correct? (U - internal energy, H - enthalpy, A - Helmholtz free energy and G - Gibbs free energy)

(A)
$$T = \left(\frac{\partial U}{\partial V}\right)_{S}$$
 and $P = \left(\frac{\partial U}{\partial S}\right)_{V}$

(B)
$$V = \left(\frac{\partial H}{\partial P}\right)_{S}$$
 and $T = \left(\frac{\partial H}{\partial S}\right)_{P}$

(C)
$$P = -\left(\frac{\partial G}{\partial V}\right)_T$$
 and $V = \left(\frac{\partial G}{\partial P}\right)_S$

(D)
$$P = -\left(\frac{\partial A}{\partial S}\right)_T$$
 and $S = -\left(\frac{\partial A}{\partial P}\right)_V$

Q.44 For a spin-s particle, in the eigen basis of \vec{S}^2 , S_z the expectation value $\langle sm|S_x^2|sm\rangle$ is

(A) $\frac{\hbar^2 \{s(s+1)-m^2\}}{2}$

(B) $\hbar^2 \left\{ s(s+1) - 2m^2 \right\}$

(C) $h^2 \{s(s+1) - m^2\}$

(D) $\hbar^2 m^2$

- Q.45 A particle is placed in a region with the potential $V(x) = \frac{1}{2}kx^2 \frac{\lambda}{3}x^3$, where $k, \lambda > 0$.

 Then,
 - (A) x = 0 and $x = \frac{k}{\lambda}$ are points of stable equilibrium
 - (B) x = 0 is a point of stable equilibrium and $x = \frac{k}{\lambda}$ is a point of unstable equilibrium
 - (C) x = 0 and $x = \frac{k}{\lambda}$ are points of unstable equilibrium
 - (D) There are no points of stable or unstable equilibrium
- Q.46 A π^0 meson at rest decays into two photons, which move along the x-axis. They are both detected simultaneously after a time, t = 10 s. In an inertial frame moving with a velocity V = 0.6 c in the direction of one of the photons, the time interval between the two detections is
 - (A) 15 s
- (B) 0 s
- (C) 10 s
- (D) 20 s
- Q.47 A particle of mass m is confined in an infinite potential well:

$$V(x) = \begin{cases} 0 & \text{if } 0 < x < L, \\ \infty & \text{otherwise.} \end{cases}$$

It is subjected to a perturbing potential $V_0(x) = V_0 \sin\left(\frac{2\pi x}{L}\right)$

within the well. Let $E^{(1)}$ and $E^{(2)}$ be the corrections to the ground state energy in the first and second order in V_0 , respectively. Which of the following are true?

(A) $E^{(1)} = 0$; $E^{(2)} < 0$

- (B) $E^{(1)} > 0$; $E^{(2)} = 0$
- (C) $E^{(1)} = 0$; $E^{(2)}$ depends on the sign of V_0
- (D) $E^{(1)} < 0$; $E^{(2)} < 0$

Common Data Questions

Common Data for Questions 48 and 49:

In the presence of a weak magnetic field, atomic hydrogen undergoes the transition:

 ${}^{2}P_{1/2} \rightarrow {}^{1}S_{1/2}$ by emission of radiation.

- Q.48 The number of distinct spectral lines that are observed in the resultant Zeeman spectrum is
 - $(A)^{\prime}2$
- (B)3
- (C) 4
- (D) 6

Q.49 The spectral line corresponding to the transition

$${}^{2}P_{\frac{1}{2}}\left(m_{j}=+\frac{1}{2}\right) \rightarrow {}^{1}S_{\frac{1}{2}}\left(m_{j}=-\frac{1}{2}\right)$$

is observed along the direction of the applied magnetic field. The emitted electromagnetic field is

- (A) Circularly polarized
- (B) Linearly polarized

(C) Unpolarized

(D) Not emitted along the magnetic field direction

Common Data for Questions 50 and 51:

The partition function for a gas of photons is given by

$$\ln Z = \frac{\pi^2}{45} \frac{V(k_B T)^3}{\hbar^3 C^3}$$

Q.50 The specific heat of the photon gas varies with temperature as

Q.51 The pressure of the photon gas is

(B)
$$\frac{\pi^2}{8} \frac{(k_B T)^4}{\hbar^3 c^3}$$

(C)
$$\frac{\pi^2}{45} \frac{\left(k_B T\right)^4}{\hbar^3 c^3}$$

(D)
$$\frac{\pi}{45} \frac{(k_B T)^{\frac{3}{2}}}{\hbar^3 c^3}$$

Linked Answer Questions

Statement for Linked Answer Questions 52 and 53:

Consider the propagation of electromagnetic waves in a linear, homogeneous and isotropic material medium with electric permittivity ε , and magnetic permeability μ .

- For a plane wave of angular frequency ω and propagation vector \bar{k} propagating in the Q.52medium Maxwell's equations reduce to
 - (A) $\vec{k} \cdot \vec{E} = 0$; $\vec{k} \cdot \vec{H} = 0$; $\vec{k} \times \vec{E} = \omega \varepsilon \vec{H}$; $\vec{k} \times \vec{H} = -\omega u \vec{E}$
 - (B) $\vec{k} \cdot \vec{E} = 0$; $\vec{k} \cdot \vec{H} = 0$; $\vec{k} \times \vec{E} = -\omega \varepsilon \vec{H}$; $\vec{k} \times \vec{H} = \omega \mu \vec{E}$
 - (C) $\vec{k} \cdot \vec{E} = 0$; $\vec{k} \cdot \vec{H} = 0$; $\vec{k} \times \vec{E} = -\omega \mu \vec{H}$; $\vec{k} \times \vec{H} = \omega \varepsilon \vec{E}$
 - (D) $\vec{k} \cdot \vec{E} = 0$; $\vec{k} \cdot \vec{H} = 0$; $\vec{k} \times \vec{E} = \omega \mu \vec{H}$; $\vec{k} \times \vec{H} = -\omega \epsilon \vec{E}$
- If ε and μ assume negative values in a certain frequency range, then the directions of the Q.53 propagation vector \vec{k} and the Poynting vector \vec{S} in that frequency range are related as
 - (A) \bar{k} and \vec{S} are parallel
 - (B) \vec{k} and \vec{S} are anti-parallel
 - (C) \vec{k} and \vec{S} are perpendicular to each other
 - (D) \vec{k} and \vec{S} make an angle that depends on the magnitude of $|\varepsilon|$ and $|\mu|$

Statement for Linked Answer Questions 54 and 55:

The Lagrangian for a simple pendulum is given by:

$$\mathcal{L} = \frac{1}{2}ml^2 \dot{\theta}^2 - mgl(1 - \cos\theta)$$

- Hamilton's equations are then given by 0.54
- (B) $\dot{p}_{\theta} = mgl\sin\theta; \quad \dot{\theta} = \frac{p_{\theta}}{ml^2}$

- (D) $\dot{p}_{\theta} = -\left(\frac{g}{l}\right)\theta; \quad \dot{\theta} = \frac{p_{\theta}}{ml}$
- 0.55 The Poisson bracket between θ and θ is

(B) $\{\theta, \dot{\theta}\} = \frac{1}{mL^2}$

(C) $\{\theta,\dot{\theta}\}=\frac{1}{1}$

(D) $\{\theta, \theta\} = \frac{g}{I}$

General Aptitude (GA) Questions

Q.56 - Q.60 carry	one mark each.	

Q 56	Choose the most sentence: His rather casual	approp riate word from		. \	\ \ ,"	
	(A) masked(B) belied(C) betrayed(D) suppressed		mis tack (f seriousness about the	subject.	
Q.57.	Which of the follow	ving opt ions is the close	st in meaning to the wor	d below.		
	(A) cyclic (B) indirect (C) confusing (D) crooked					
Q.58.	semence.	approp riate word fro				
	(A) uphold (B) restrain (C) cherish (D) conserve					
Q.59.	25 persons are in a room. 15 of them play hockey, 17 of them play football and 10 of them play both hockey and football. Then the number of persons playing neither hockey nor football is:					
	(A) 2	(B) 17	(C) 13	(D) 3		
Q.60.		w consists of a pair of tesses the relation in the orket		by four pairs of words.	Select the	
	(A) fallow: land (B) unaware: sleet (C) wit: jester (D) renovated: hop					
	Q.65 carry two					
Q.61	V	how much is 731 + 67	(C) 1623	(D) 1513		
	(A) 534	(B) 1403	(C.) 1022			

		GATE 2	010 Question Paper		P		
2010							
Q.62.	Is January. The ag is less than 3 years i. ii.	ge difference between a s. Given the following f	e > Irfan's age + Saira's tween Gita and Saira is the youngest.	age.	(C)		
			` '	M			
Q.63.	populations. Che and regretfully, t are useful tools fo	mical agents that do t there exist people in n or their cause.	arge scale clashes of a heir work silently appo- nilitary establishments ams up the meaning of th	who think that ch	paces name,		
	 (A) Modern warfare has resulted in civil strife. (B) Chemical agents are useful in modern warfare. (C) Use of chemical agents in warfare would be undesirable. (D) People in military establishments like to use chemical agents in war. 						
Q.64.	5 skilled workers can build a wall in 20 days; 8 semi-skilled workers can build a wall in 25 days; 10 unskilled workers can build a wall in 30 days. If a team has 2 skilled, 6 semi-skilled and 5 unskilled workers, how long will it take to build the wall?						
	(A) 20 days	(B) 18 days	(C) 16 days	(D) 15 days			
Q.65.	Given digits 2, 2, 3, 3, 4, 4, 4, 4 how many distinct 4 digit numbers greater than 3000 can be formed?						
	(A) 50	(B) 51	(C) 52	(D) 54			
		END OF THE	QUESTION PAP	ER			