## **TARGET MATHEMATICS by:- AGYAT GUPTA**

Page 1 of 4







**CODE:- AG-3-1899** 

पजियन क्रमांक **REGNO:-TMC -D/79/89/36** 

#### **General Instructions:**

- 1. All question are compulsory.
- 2. The question paper consists of 29 questions divided into three sections A,B and C. Section A comprises of 10 question of 1 mark each. Section B comprises of 12 questions of 4 marks each and Section C comprises of 7 questions of 6 marks each.
- 3. Question numbers 1 to 10 in Section A are multiple choice questions where you are to select one correct option out of the given four.
- 4. There is no overall choice. However, internal choice has been provided in 2 question of four marks and 2 questions of six marks each. You have to attempt only one If the alternatives in all such questions.
- 5. Use of calculator is not permitted.
- 6. Please check that this question paper contains 3 printed pages.
- 7. Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.

### सामान्य निर्देश :

- 1. सभी प्रश्न अनिवार्य हैं।
- 2. इस प्रश्न पत्र में 29 प्रश्न है, जो 3 खण्डों में अ, ब, व स है। खण्ड अ में 10 प्रश्न हैं और प्रत्येक प्रश्न 1 अंक का है। खण्ड ब में 12 प्रश्न हैं और प्रत्येक प्रश्न 4 अंको के हैं। खण्ड स में 7 प्रश्न हैं और प्रत्येक प्रश्न 6 अंको का है।
- 3. प्रश्न संख्या 1 से 10 बहुविकल्पीय प्रश्न हैं। दिए गए चार विकल्पों में से एक सही विकल्प चुनें।
- 4. इसमें कोई भी सर्वोपरि विकल्प नहीं है, लेकिन आंतरिक विकल्प 2 प्रश्न 4 अंको में और 2 प्रश्न 6 अंको में दिए गए हैं। आप दिए गए विकल्पों में से एक विकल्प का चयन करें।
- 5. कैलकुलेटर का प्रयोग वर्जित हैं।
- 6. कृपया जाँच कर लें कि इस प्रश्न-पत्र में मुद्रित पृष्ठ 3 हैं।
- 7. प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पुष्ठ पर लिखें।

## Pre-Board Examination 2010 -11

Time : 3 Hoursअधिकतम समय : 3Maximum Marks : 100अधिकतम अंक : 100Total No. Of Pages :3कुल पृष्ठों की संख्या : 3

# CLASS – XII CBSE MATHEMATICS Section A Q.1 Find the value of collection (a collection) Answering at [1,7] 7

Find the value of 
$$\tan^{-1} \left[ 2\cos \left( 2\sin^{-1} \frac{1}{2} \right) \right]$$
 Ans  $\tan^{-1}(1) = \tan^{-1} \left[ \tan \frac{\pi}{4} \right] = 0$ 

If 
$$\int_0^1 (3x^2 + 2x + k) dx = 0$$
, find the value of k. Ans.k = -2

Q.3 If  $A = \begin{bmatrix} 0 & i \end{bmatrix}$  and  $B = \begin{bmatrix} 0 & 1 \end{bmatrix}$ , find the value of  $|A| + |B|$ . Ans = 0

If the binary operation \* on the set of integers Z, is defined by 
$$a*b = a + 3b^2$$
, then find the value of  $2*4$ . {Ans.50

Q.5 If 
$$|\vec{a} + \vec{b}| = |\vec{a} - \vec{b}|$$
, then find the angle between  $\vec{a}$  and  $\vec{b}$ . Ans  $\frac{\pi}{2}$ 

TMC/D/79/89 1 P.T.O.

Resi.: D-79 Vasant Vihar; Office: 89-Laxmi bai colony

Ph. :2337615; 4010685®, 92022217922630601(O) Mobile : 9425109601;9907757815 (P); 9300618521;9425110860(O);9993461523;9425772164 PREMIER INSTITUTE for X , XI & XII .© publication of any part of this paper is strictly prohibited..

Visit us at: http://www.targetmathematic.com; Email:agyat99@gmail.com.





|           | TARGET MATHEMATICS by:- AGYAT GUPTA Page 2 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q.6       | Find the value of $\lambda$ , so that the lines $\frac{1-x}{3} = \frac{7y-14}{2\lambda} = \frac{5z-10}{11}$ and $\frac{7-7x}{3\lambda} = \frac{y-5}{1} = \frac{6-z}{5}$ are perpendicular to each other {Ans. $\lambda = 7$                                                                                                                                                                                                                                                                                                                            |
| Q.7       | Evaluate $\int \frac{dx}{x \cos^2(1 + \log x)}$ . Ans $I = \tan(1 + \log x) + c$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Q.8       | If $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 2 & 5 \end{pmatrix} = \begin{pmatrix} 7 & 11 \\ k & 23 \end{pmatrix}$ , then write the value of k. {Ans.k = 17}                                                                                                                                                                                                                                                                                                                                                              |
| Q.9       | If A is non-singular matrix of order 3 and $ adjA  =  A ^{K}$ , then write the value of k. Ans $k = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Q.10      | Find the angle between two vectors $\vec{a} \& \vec{b}$ having the same length $\sqrt{2}$ and their scalar product is -1.<br>Ans $\vec{a}$ and $\vec{b} = \frac{2\pi}{3}$                                                                                                                                                                                                                                                                                                                                                                              |
|           | Section B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Q.11      | Find the image of the point having position vector $\hat{i} + 3\hat{j} + 4\hat{k}$ in the plane $\vec{r} \cdot (2\hat{i} - \hat{j} + \hat{k}) + 3 = 0$ Ans $-3\hat{i} + 5\hat{j} + 2\hat{k}$                                                                                                                                                                                                                                                                                                                                                           |
| Q.12      | Evaluate $\int \frac{x^2 + x + 1}{(x+2)(x^2+1)}$ . Ans $\frac{3}{5}\log x+2  + \frac{1}{5}[\log x^2+1  + \tan^{-1}x] + C$                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Q.13      | Show that $\frac{1}{2}\overrightarrow{AC} \times \overrightarrow{BD}$ represents the vector area of the plane quadrilateral ABCD. Also find the area                                                                                                                                                                                                                                                                                                                                                                                                   |
|           | of quadrilateral whose diagonals are $4i - j - 3k \& -2i + j - 2k$ . Ans. $\frac{15}{2}$ unit <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Q.14      | Is $f(x) =  x-1  +  x-2 $ continuous and differentiable at $x = 1, 2$ . Ans : $f(x)$ is continuous at $x = 1, 2$ but not differentiable at $x = 1 & 2$ .                                                                                                                                                                                                                                                                                                                                                                                               |
| Q.15      | From the differential equation of the family of circles touching the x-axis at origin. Ans: Equation of circle: $x^2 + (y-a)^2 = a^2$ Required differential eqn $(x^2 - y^2)y_1 = 2xy$                                                                                                                                                                                                                                                                                                                                                                 |
| Q.16      | Using properties of determinants, prove that : $\begin{vmatrix} a^2 + 1 & ab & ac \\ ab & b^2 + 1 & bc \\ ca & cb & c^2 + 1 \end{vmatrix} = (1 + a^2 + b^2 + c^2).$                                                                                                                                                                                                                                                                                                                                                                                    |
| Q.17      | Find the particular solution, satisfying the given condition, for the following differential equation . $\frac{dy}{dx} - \frac{y}{x} + \cos ec \left(\frac{y}{x}\right) = 0, \ y = 0 \text{ when } x = 1 \text{ Ans} : \log x  + \log e = \cos \frac{y}{x} \Rightarrow \log ex  = \cos \frac{y}{x}$ OR  Solve: $\left(\frac{e^{-2\sqrt{x}}}{\sqrt{x}} - \frac{y}{\sqrt{x}}\right) \frac{dx}{dy} = 1, \ x \neq 0.$ Ans $ye^{2\sqrt{x}} = \left(2\sqrt{x} + c\right)$                                                                                    |
| Q.18      | let R <sub>+</sub> be the set of all non-negative real numbers Let $f: R_+ \to [4, \infty): f(x) = x^2 + 4$ . Show that f is                                                                                                                                                                                                                                                                                                                                                                                                                           |
|           | invertible that find $f^{-1}$ Ans $f^{-1}(y) = \sqrt{y-4}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Q.19      | Find the value of x for which $f(x) = [x(x-2)]^2$ is an increasing function. Also, find the points on the curve, where the tangents is parallel to x-axis. Ans function increase for $(0,1) \cup (2,\infty)$ & Function decrease for $(-\infty,0) \cup (1,2)$ Required points are $(0,0)$ , $(1,1)$ , $(2,0)$ OR  Find the equation of the normals to the curve $y = x^3 + 2x + 6$ which are parallel to the line $x + 14y + 4 = 0$ . Ans Equation of normal at $(2,18)$ is $x + 14y + 86 = 0$ & Equation of normal at $(-2,-6)$ is $x + 14y + 86 = 0$ |
| TMC/D/79/ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

Resi.: D-79 Vasant Vihar; Office: 89-Laxmi bai colony

Ph.:2337615; 4010685®, 92022217922630601(O) Mobile: 9425109601;9907757815 (P); 9300618521;9425110860(O);9993461523;9425772164

PREMIER INSTITUTE for X, XI & XII. © publication of any part of this paper is strictly prohibited..

Visit us at: http://www.targetmathematic.com; Email:agyat99@gmail.com.

|      | TARGET WATTEWATICS by AGTAT GOFTA Page 3 014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.50 | 14y + 86 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Q.20 | A football match may be either won, drawn or lost by the host country's team. So there are three ways of forecasting the result of any match, one correct and two incorrect. Find the probability forecasting at least three correct result for four matches. Ans: $\mathbf{p} = 1/3$ ; $\mathbf{q} = 2/3$ ; $\mathbf{n} = 4$ ; Required probability = $p(x=3) + p(x=4) = 4 \cdot \frac{2}{3} \cdot \frac{1}{27} + \frac{1}{81} = \frac{1}{9}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Q.21 | If $x = a(\cos\theta + \log\tan\frac{\theta}{2})$ & $y = a\sin\theta$ , find the value of $\frac{d^2y}{dx^2}at\theta = \frac{\pi}{4}$ . Ans $\left(\frac{d^2y}{dx^2}\right) = \frac{2\sqrt{2}}{a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | Differentiate w.r.t.x: $y = \frac{(2x+3)\sqrt{3x-4}}{(x^2+1)^3}$ , find $\frac{dy}{dx} = \frac{(2x+3)\sqrt{3x-4}}{(x^2+1)^3} = \frac{2}{2x+3} + \frac{3}{2(3x-4)} - \frac{6x}{(x^2+1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Q.22 | Prove that: $2 \tan^{-1} \left[ \sqrt{\frac{a-b}{a+b}} \tan \frac{\theta}{2} \right] = \cos^{-1} \left( \frac{b+a\cos\theta}{a+b\cos\theta} \right)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | Prove that: $tan^{-1}(1) + tan^{-1}(2) + tan^{-1}(3) = \pi$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | Section C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Q.23 | Find the inverse of the matrix $A = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix}$ by using elementary row transformations. Ans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | $A^{-1} = \begin{bmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Q.24 | A small firm manufactures gold rings and chains. The total number of rings and chains manufactured per day is at most 24. It takes 1 hour to make a ring and 30 minutes to make a chain. The maximum number of hours available per day is 16. If the profit on a ring is ₹ 300 and that on a chain is ₹ 190, find the number of rings and chains that should be manufactured per day, so as to earn the maximum profit. Make it as an L.P.P. and solve it graphically. {Ans $z = 300 x + 190 y$ $\frac{1}{2} x + \frac{1}{2} y \le \frac{1}{2} x + \frac{1}$ |
| Q.25 | Using integration, find the area of the region bounded by the curve $x^2 = 4y$ and the line $x = 4y - 2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | Find the area bounded by the curve $y^2 = 4a^2(x-1)$ and the lines $x = 1$ and $y = 4a$ . Ans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | $\int_{0}^{4a} x dy - \int_{0}^{4a} 1 \cdot dy = \frac{16a}{3} sq.unit.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Q.26 | The sum of the surface areas of a rectangular parallelepiped with side x, 2x and $\frac{x}{3}$ and a sphere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | gives to the constant. Prove that the sum of their volume is minimum if x is equal to three times the radius of sphere. Find the minimum value of the sum of the volumes. Ans: $S = 6x^2 + 4\pi r^2$ $f(x) = \frac{2x^3}{3} + \frac{4}{3}\pi r^3 \text{ volume is minimum at } x = 3r \text{ and minimum volume is } = \frac{2}{3}[27r^3 + 2\pi r^3] = \frac{2}{3}r^3[27 + 2\pi]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

TMC/D/79/89 3 P.T.O.

Resi.: D-79 Vasant Vihar; Office: 89-Laxmi bai colony

Ph. :2337615; 4010685®, 92022217922630601(O) Mobile :  $\underline{9425109601;9907757815}$  (P); 9300618521;9425110860(O);9993461523;9425772164 PREMIER INSTITUTE for X , XI & XII . © publication of any part of this paper is strictly prohibited..

|      | TARGET MATHEMATICS by:- AGYAT GUPTA Page 4 of 4                                                                                                                                                                      |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | OR                                                                                                                                                                                                                   |
|      | A rectangle is inscribed in a semi-circle of radius 'a' with one of its sides on the diameter of semi-circle. Find the dimensions of the rectangle so that its area is maximum. Find the area also.  Ans             |
|      | $f(\theta) = 2a^2 \sin \theta \cos \theta = a^2 \sin 2\theta$ & Area = $a^2 sq.units$                                                                                                                                |
| Q.27 | Evaluate: $\int_{1}^{3} (2x^2 + 3x + 7) dx$ as limit of sums. Ans $= \frac{130}{3}$ .                                                                                                                                |
| Q.28 | A bag contain 4 balls. Two balls are drawn at random, and are found to be white. What is the                                                                                                                         |
|      | probability that all balls are white? Ans: Required Probability = $\frac{\frac{1}{3} \times 1}{\frac{1}{3} \times \frac{1}{6} + \frac{1}{3} \times \frac{3}{6} + \frac{1}{3} \times 1} = \frac{6}{10} = \frac{3}{5}$ |
| Q.29 | Find the equation of the plane through the intersection of planes $2x - 3y + 4z - 1 = 0$ and $x - y + 4$                                                                                                             |
|      | = 0, whose perpendicular distance from the origin equal to 1. Ans: $\lambda = \frac{-11}{3}$ Equation of plane – 5 x +                                                                                               |
|      | 2 y + 12 z - 47 = 0                                                                                                                                                                                                  |

P.T.O. TMC/D/79/89

Resi.: D-79 Vasant Vihar; Office: 89-Laxmi bai colony

Ph. :2337615; 4010685@, 92022217922630601(O) Mobile : 9425109601;9907757815 (P); 9300618521;9425110860(O);9993461523;9425772164

PREMIER INSTITUTE for X , XI & XII . © publication of any part of this paper is strictly prohibited..

Visit us at : http://www.targetmathematic.com; Email:agyat99@gmail.com.

