# SOLUTION & ANSWER FOR ISAT-2011 SET – A

# [PHYSICS, CHEMISTRY & MATHEMATICS]

### PART A – PHYSICS

- 4. The correct potential energy diagram for -----
- **1.** A projectile is fired at an angle 60° with some velocity u -----

Ans: No correct answer

Sol: 
$$R = \frac{u^2}{g} \sin 2\theta$$
  
 $x = \frac{dR}{R} = 2 \cot 2\theta \, d\theta$   
 $T = \frac{2u \sin \theta}{g}$   
 $y = \frac{dT}{T} = \cot \theta \, d\theta$   
 $\frac{x}{y} = \frac{2 \cot 2\theta}{\cot \theta} = \frac{2 \cot 120^\circ}{\cot 60^\circ} = -2$   
 $\Rightarrow x = -2y$  (No correct answer)

2. A ball is dropped down vertically from a tall building -----

Ans : 
$$\theta = \frac{1}{4} \sin^{-1} \left( \frac{d}{h} \right)$$

Sol:

Ans:  
Ans:  
Sol:  

$$\theta + \theta + \phi = 90^{\circ} \Rightarrow \phi = (90^{\circ} - 2\theta)$$
  
 $d = \frac{1}{2} \frac{u^2}{g} \sin 2\phi = \frac{1}{2} \cdot \frac{2 \text{ gh}}{g} \sin 2\phi$   
 $= h \sin 2 (90^{\circ} - 2\theta) = h \sin (180^{\circ} - 4\theta)$   
 $= h \sin 4\theta \Rightarrow \theta = \frac{1}{4} \sin^{-1} \left(\frac{d}{h}\right)$   
Ans:

3. A photon with an initial frequency 10<sup>11</sup> Hz -----

# Ans : $4 \times 10^3 \text{ m s}^{-1}$

Sol: 
$$E_1 = hv_1 = 6.63 \times 10^{-34} \times 10^{11}$$
  
=  $6.63 \times 10^{-23} \text{ J}$   
 $E_2 = hv_2 = 6.63 \times 10^{-34} \times 0.9 \times 10^{11}$   
=  $5.967 \times 10^{-23} \text{ J}$   
 $\therefore \Delta E = E_1 - E_2 = 6.63 \times 10^{-24} \text{ J}$   
 $\Delta E = \frac{1}{2} \text{mv}^2 \Rightarrow \text{v} = \sqrt{\frac{2\Delta E}{m}} \cong 4 \times 10^3 \text{ m s}^{-1}$ 



Sol: For r < R,  $dU = -\overline{F}.dr = \frac{k}{R^3}r dr$   $\Rightarrow U = \int_0^r \frac{k}{R^3}r dr = \frac{k}{2R^3}r^2$ When r = 0, U = 0

⇒ Only option (a) is correct  
When r = R, U<sub>(R)</sub> ⇒ 
$$\frac{kR^2}{2R^3}$$
  
=  $\frac{k}{2R}$ 

5. Suppose the particle starts from  $r = \infty$  -----

Ans: (3/8) (k/R)

$$KE = U_{(R)} - U_{(R/2)}$$
$$= \frac{k}{2 R} - \frac{k}{8 R}$$
$$= \frac{3 k}{8 R}$$

6. Let a particle have an instantaneous position ----

Ans :  $\overline{r}.\overline{v} = 0$ ;  $\overline{a}.\overline{v} > 0$ ;  $\overline{a}.\overline{r} < 0$ 

Sol: In circular motion,  

$$\overline{r} \perp \overline{v} \Rightarrow \overline{r}.\overline{v} = 0$$
  
 $\overline{a}$  and  $\overline{r}$  make angle  $\theta > 90^{\circ}$   
 $\Rightarrow \ \bigcirc < 0$   
 $\overline{a}$  and  $\overline{v}$  may make angle  $\theta$  between  
them which is either > 90° or <90° or = 90°  
So for general case  $\overline{a}.\overline{v} > 0$ 

- 7. A large parallel plate capacitor is made of two metal plates of size -----
  - Ans:  $+5 \times 10^5 \varepsilon_0 J$ Sol:  $\Delta C = \frac{(K_1 - K_2)\varepsilon_0 A'}{d}$  $= \frac{(3 - 2)\varepsilon_0 \times 0.1 \times 1}{0.1}$  $= \varepsilon_0$  $\Delta U = \frac{1}{2} \Delta C V^2 = \frac{1}{2} \times \varepsilon_0 \times 10^6$  $= +5 \times 10^5 \varepsilon_0 J$
- 8. A current I is flowing in a long straight wire along the z-axis-----
  - Ans :  $v_Z (\Delta t) = v_0$
  - Sol:  $\overline{F}$  on q is along  $-\hat{i}$  direction  $\Rightarrow \overline{a}$  of q is along  $-\hat{i}$  direction  $\Rightarrow$  component of velocity in  $\hat{k}$  does not change  $\Rightarrow v_Z (\Delta t) = v_0$
- 9. A non-conducting sphere of radius R has a charge Q distributed -----
  - Ans :



- Sol: From r = 0 to r = R.  $E \propto r \Rightarrow$  straight line, inclined to r. From r = R to r = b.  $E \propto \frac{1}{r^2}$ At r ≥ b, E = 0 1
- 10. The magnetic field at the centre of a loop carrying -----
  - Ans:  $\frac{\mu_0 I}{3 R} \frac{7}{8} \hat{k}$



11. A current I is flowing in a wire of length  $\lambda$ . The total momentum -----

Ans : 
$$\frac{mI\lambda}{q}$$
  
Sol:  $I = \frac{q}{t} \Rightarrow \frac{1}{t} = \frac{I}{q}$   
 $v = \frac{\lambda}{t} = \frac{I\lambda}{q}$   
 $p = mv = \frac{mI\lambda}{q}$ 

12. In an oil drop experiment, charged oil drops of mass m and charge q-----

Ans: 
$$\frac{mg4\pi\epsilon_0(r-R)^2}{q^2}$$

- Sol: The answer must be dimensionless  $\Rightarrow q^2$ is required in denominator to cancel  $\epsilon_0 \Rightarrow$ only (B) can be the answer.
- 13. Two lenses, one biconvex of focal length  $f_1$  and another -----

Ans: 
$$M = \frac{f_1}{f_2}$$
  
Sol:  $m_1 = \frac{v_1}{u_1} = \frac{f_1}{L}$   
 $m_2 = \frac{v_2}{u_2} = \frac{L}{f_2}$   
 $M = m_1 m_2 = \frac{f_1}{f_2}$   
(L is large  $\Rightarrow \infty$ )

'2 (L is large ⇒ ∞) 14. The central fringe in a Young's double slit experiment -----

Ans : 
$$\frac{3}{4}$$

Sol: Path difference = 
$$(\mu - 1) t$$
  
=  $(1.4 - 1) \times 5 \times 10^{-6}$   
=  $2 \times 10^{-6} m$   
Phase difference  $\Delta \phi = \frac{2 \times 10^{-6} \times 2\pi}{632.8 \times 10^{-9}}$   
=  $19.858 \text{ rad}$   
=  $3.16 \times 2\pi \text{ rad}$   
 $\Rightarrow \Delta \phi = 0.16 \times 2\pi = 57.6^{\circ}$   
 $\Rightarrow I = I_0 \text{ cm}^2 \left(\frac{\Delta \phi}{2}\right) = 0.767 I_0 \cong \frac{3}{4} I_0$ 

- 15. A polarizer is introduced in the path of a beam of unpolarized light incident -----
  - Ans :  $\theta = 30^{\circ}$  and the polarizer is placed in P (It is assumed that the polarized light is getting completely transmitted.)
  - Sol:  $tan\phi = \mu$  (Brewster's law)  $\Rightarrow \phi = \tan^{-1}(\sqrt{3}) = 60^{\circ}$ on transparent material.  $\Rightarrow \theta = 90^{\circ} - \phi = 30^{\circ}$
- 16. A submarine travelling at 10 m  $s^{-1}$  is chasing another one in front of it ------

Sol: 
$$f_1 = f_0 \frac{(c-v)}{(c+10)}$$
  
 $f_2 = f_1 \frac{(c+10)}{(c+v)} = \frac{f_0(c-v)(c+10)}{(c-10)(c+v)}$   
 $= f_0 \frac{(c-v)(c+10)}{(c+v)(c-10)}$   
 $f_0 = 25000 \text{ Hz}; f_2 = 24900 \text{ Hz}$   
 $c = 1500 \text{ m s}^{-1}; v = 13 \text{ m s}^{-1}$ 

17. When light of intensity I reflects from a surface separating two -----

Ans : 
$$\mu = \sqrt{\mu_1 \mu_2}$$
;  $2\mu t = \frac{\lambda(2n+1)}{2}$ 

18. A point object is placed below a wide glass plate of refractive index n. As an -----



19. A light sensor is fixed at one corner of the bottom of a rectangular tank -----

Ans : A quarter of a circle of radius =  $10\sqrt{3}$  m

Sol: 
$$\tan C = \frac{1}{\sqrt{n^2 - 1}} = \frac{r}{d}$$
  
 $\Rightarrow r = \frac{d}{\sqrt{n^2 - 1}} = 10\sqrt{3} \text{ m}$ 

20. The average pressure on a sphere submerged in water is the pressure -----

Ans: 63 N

Sol: P = pressure at centre = 
$$\rho g H$$
  
= 1000 × 10 × (0.1 + 0.1)  
= 2000 N m<sup>-2</sup>  
F = P × area  
= 2000 ×  $\pi$  × (0.1)<sup>2</sup>  
= 20 $\pi$  = 63 N

- 21. Laplace correction to the speed of sound is made only for gases and not -----
  - Ans :Much smaller relative pressure change when the wave is passing through them.
  - Sol: Knowledge based.
- 22. Three rods of equal lengths and cross sectional areas are joined ------1. K.

Ans: 
$$T_1 = \frac{3}{5}T_A + \frac{2}{5}T_B$$
;  $T_2 = \frac{2}{5}T_A + \frac{3}{5}T_B$   
Sol:  $\frac{KA(T_A - T_1)}{L} = \frac{2KA(T_1 - T_2)}{L} = \frac{KA(T_C - T_B)}{L}$   
On solving,  
 $T_1 = \frac{3}{5}T_A + \frac{2}{5}T_B$  and  
 $T_2 = \frac{2}{5}T_A + \frac{3}{5}T_B$ 

23. The diameter of a metal wire is measured using a screw gauge, -----

Ans :  $1.21 \times 10^{-5} \Omega$  m

Sol: Pitch = 0.5 mm L.C =  $\frac{\text{Pitch}}{\text{N}} = \frac{0.5}{50} = 0.01 \text{ mm}$  $P.S.R = 4 \times 0.5 = 2.0 \text{ mm}$  $CSR = 20 \times LC = 20 \times 0.01 = 0.2 \text{ mm}$  $d = 2.2 \text{ mm} = 2.2 \times 10^{-3} \text{ m}$  $\rho = \frac{RA}{\lambda} \Rightarrow \rho = 1.21 \times 10^{-5} \,\Omega \text{ m}$ 

24. Which of the following quantities has the least number of -----

Ans: 0.08765

- Sol: Knowledge based.
- 25. In an experiment designed to determine the universal gravitational ------
  - Ans: No correct answer.

Sol: [G] = M<sup>-1</sup>L<sup>3</sup>T<sup>-2</sup>  
= 
$$\frac{L^3}{MT^2}$$
  
 $\frac{dG}{G} = \frac{3\Delta L}{L} + \frac{\Delta M}{M} + \frac{2\Delta T}{T}$   
= 3a + b + 2c

#### PART B – CHEMISTRY

- 26. The relative stability of the octahedral complexes
  - Ans : (i) > (ii) > (iii) > (iv)
  - Sol: oxygen ligands have high affinity for Fe(III) and affinity of Fe(III) for amines is low
- 27. Number of isomers that -----

Ans: 3

- Sol: The complex is square planar and is of the type  $M_{abcd}$ . It has three geometrical isomers.
- 28. When a metal is in its low oxidation state, ----- Ans :Chloride is a  $\sigma$  donor and the carbon
  - monoxide is both a  $\sigma$  donor as well as  $\pi$  acceptor
    - Sol: Metal CO bond is stronger than Metal Cl bond because CO act as a  $\sigma$  donor as well as  $\pi$  acceptor ligand
- 29. Freshly prepared, bright blue coloured, -----

Ans :  $[e(NH_3)_n]^{-}$  ('e' is an electron)

- Sol: Ammoniated electron brings about the reduction of the functional group
- 30. The statement that is NOT -----

- Ans : silicates are mainly built through 'SiO<sub>2</sub>' units
- Sol: silicates are built through tetrahedral  $SiO_4^{4-}$  units

Ans : cyclic silicates

- Sol: Linear single chain silicates have empirical formula  $\left[(SiO_3)^{2-}\right]_n$
- 32. The oxoacid of sulphur that -----

Ans : pyrosulphuric acid (H<sub>2</sub>S<sub>2</sub>O<sub>7</sub>)

Sol: pyrosulphuric acid 
$$(H_2S_2O_7)$$
  
O O  
II II  
is  $H-O-S-O-S-O-H$   
II II

33. The reason for the formation -----

Ans: acidic nature of B(OH)3

- Sol:  $B(OH)_3$  is a Lewis acid. It reacts with water to form  $[B(OH)_4]^- \& H^+$
- 34. An optically active alcohol (X) -----

Ans: 2-ethyl-3-buten-1-ol

Sol:

$$CH_{2}CH_{3}$$

$$|$$

$$H_{2}C=CH-CH-CH_{2}OH$$
(optically active)
$$\int H_{2} / Ni$$

$$CH_{2}CH_{3}$$

 $H_3C - CH_2 - CH - CH_2OH$ (optically inactive)

35. The major product formed in the ------



Sol: Ozonolysis of the given unsaturated compound gives

$$CH_3 - C - (CH_2)_3 - C - CH_3$$
  
O O

This undergoes intramolecular aldol condensation to form the compound having structure (A)

- 36. The following transformation -----
  - Ans: NaOH / I2
  - Sol: lodoform reaction will bring about the given conversion
- 37. Among the following halides, -----
  - Ans : III



- 38. Isopropanol can be converted -----
  - Ans : pyridinium chlorochromate followed by peracetic acid
  - Sol:  $CH_3 CHOH CH_3 \frac{PCC}{PCC}$

$$\begin{array}{c} CH_3 - C - CH_3 \xrightarrow{CH_3CO_3H} CH_3 - C - OCH_3 \\ O & O \end{array}$$

39. Among the isomeric butylbenzenes, the one --



- Sol: For the oxidation of the side chain, the carbon attached to the benzene ring must contain at least one hydrogen
- 40. The following reaction is -----



41. The major product of the following-----



Sol: Protonation of oxygen followed by cleavage of three membered ring gives a 3° carbocation. This undergoes ring expansion followed by loss of proton gives (B)

42. Conversion of benzene into 1, 3-----

Ans : i. HNO<sub>3</sub> / conc. H<sub>2</sub>SO<sub>4</sub>: ii. Br<sub>2</sub> / FeBr<sub>3</sub> iii. Sn / HCl iv. NaNO<sub>2</sub> / HCl,0-5°C v. CuBr



Ans : i (CH<sub>3</sub>)<sub>2</sub>CHCOCI / AICI<sub>3</sub>: ii. Br<sub>2</sub> / FeBr<sub>3</sub> : iii. NH<sub>2</sub>. NH<sub>2</sub> / KOH

- 43. Liquid oxygen and liquid nitrogen are ------
  - Ans : Liquid oxygen will be attracted but liquid nitrogen unaffected
  - Sol: Oxygen is paramagnetic and nitrogen is diamagnetic
- 44. The highest transition energy ------

Sol: 
$$\overline{\upsilon} = R_{H} \left[ \frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}} \right]$$
  
= 109737  $\left[ \frac{1}{4} - 0 \right]$   
= 27434.25 cm<sup>-1</sup>

45. A one litre glass bulb is evacuated and ------

Sol: 
$$PV = \frac{W}{M}RT$$
  
 $M = \frac{1.2 \times 0.08 \times 312.5}{1 \times 1}$   
 $= 30$ 

- 46. The van der Waals coefficient of the inert -----
  - Ans : Induced dipole- Induced dipole : increased atomic volume
  - Sol: 'a' is a measure of attraction between the ManagementEd molecules and 'b' is a measure of the size of the molecules
- 47. Assuming  $\Delta H^0$  and  $S^0$  do not change with
  - Ans: 300 K
  - Sol:  $A_{(\lambda)} \longrightarrow A_{(g)}$  $\Delta H^{\circ} = 30 \text{ kJ mol}^{-1}$  $\Delta S^{\circ} = 100 \text{ J mol}^{-1}$  $T = \frac{\Delta H^{o}}{\Delta S^{o}} = 300 \text{ K}$
- 48. A solution of CaCl<sub>2</sub> was prepared by ------

Ans: 0.0006

Sol: 
$$\Delta T_f = i \times K_f \times m$$
  
=  $\frac{3 \times 2 \times 0.0112}{112}$   
= 0.0006

49. Of thr four values of pH given below which -----

Sol: 
$$H_2CO_3 \longrightarrow H^+ + HCO_3^-$$
;  
 $HCO_3^- \longrightarrow H^+ + CO_3^{--}$   
 $[H^+] = C\alpha = \sqrt{K_{a_1} \cdot C} \text{ since } K_{a_1} >> K_{a_2}$   
 $= \sqrt{4 \times 10^{-7} \times 4 \times 10^{-3}}$   
 $= 4 \times 10^{-5}$   
 $pH = 4.4$ 

- 50. The Habers's process process for the -----
  - Ans : Ammonia dissociates spontaneously above 500 K

Sol: 
$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$
  
At equilibrium  $\Delta G^{\circ} = 0$   
 $\therefore T = \frac{\Delta H^{\circ}}{\Delta S^{\circ}} = \frac{-95 \times 10^{3}}{-190} = 500 \text{ K}$   
Above 500 K,  $\Delta G^{\circ}$  is +ve

### **PART C – MATHEMATICS**

51. Martin throws two dice simultaneously. -----

Ans :

S

ol: Let L denote the event of offering lunch  
P(L) = P (12). P(L | 12) + P(7) .P(L | 7)  
+ P (others). P(L | others)  
P(12) = 
$$\frac{1}{36}$$
; P(7) =  $\frac{6}{36}$  P(others) =  $\frac{29}{36}$   
 $\therefore$  P(12 | L) =  $\frac{\frac{1}{36} \times \frac{2}{3}}{\frac{1}{36} \times \frac{2}{3} + \frac{6}{36} \times \frac{1}{2} + \frac{29}{36} \times \frac{1}{3}}{\frac{1}{20}}$ 

52. A spices has an initial population 4<sup>10</sup>. -----

Ans: 20

Sol: 
$$P = 4^{10}$$
  
 $P_1 = 4^{10} \frac{3}{2}; P_2 = 4^{10} \frac{3}{2} \cdot \frac{1}{2}$   
 $P_3 = 4^{10} \left(\frac{3}{2}\right)^2 \frac{1}{2}; P_4 = 4^{10} \left(\frac{3}{2}\right)^2 \left(\frac{1}{2}\right)^2$   
 $\therefore P_t = 4^{10} \left(\frac{3}{2}\right)^{\frac{1}{2}} \cdot \left(\frac{1}{2}\right)^{\frac{1}{2}}$  when t - even

$$\therefore 4^{10} \left(\frac{3}{2}\right)^{\frac{t}{2}} \left(\frac{1}{2}\right)^{\frac{t}{2}} = 3^{10}$$
$$\left(\frac{3}{4}\right)^{\frac{t}{2}} = \left(\frac{3}{4}\right)^{10} \Rightarrow \frac{t}{2} = 10$$
$$\therefore t = 20$$

53. If 4 squares are chosen at random ------

Ans: 
$$2\frac{{}^{8}C_{4}}{{}^{64}C_{4}}$$

Sol: Eight squares lie on a main diagonal and there are 2 main diagonals.
 ∴ Probability = 2 <sup>8</sup>C<sub>4</sub>/<sub>64</sub>C<sub>4</sub>

54. A student was calculating the variance -----

Ans : 
$$\frac{825}{100}$$
  
Sol:  $\frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2 = V$   
 $10\sum x_c^2 - (\sum x)^2 = 100 V$  (1)  
 $10\sum x_c^2 - (\sum x)^2 = 100 V_c$  (2)  
 $\sum x = 46$   
 $\sum x_c = \sum x - 1 + 10 = \sum x + 9$   
 $\therefore \sum x_c^2 = \sum x^2 - 1^2 + 10^2 = \sum x^2 + 99$   
 $\therefore From$  (2)  $\Rightarrow$  10  
 $(\sum x^2 + 99) - (\sum x + 9)^2 = 100 V_c$   
 $\Rightarrow$   
 $10(\sum x^2 - (\sum x)^2) + 990 - 18 + 46 - 81$   
 $= 100 V_c$   
 $\therefore V_c = \frac{744 + 81}{100} = \frac{825}{100}$ 

55. A fair coin is tossed 6 times -----

Ans : 
$$\frac{5}{16}$$

Sol: Head appears as the 6<sup>th</sup> trial for the third time. So in the first 5 trials .Head appeared twice.

$$\therefore \text{ Probability} = {}^{5}\text{P}_{2} \quad \left(\frac{1}{2}\right)^{6} = \frac{5}{16}$$

56. The sum of the roots of the equation -----

Ans: log<sub>2</sub>11

Sol: Rewriting  $\log_2 2^x + \log_2 2 - \log_2 (2^x + 3)^2 + \log_2 (10 - 2^{-x}) = 0$ 

$$\begin{pmatrix} \frac{2^{x} \times 2}{(2^{x} + 3)^{2}} \times (10 - 2^{-x}) \\ \text{Rearranging} \\ 2 \times (10 \times 2^{x} - 1) = (2^{x} + 3)^{2} \\ 2(10y - 1) = y^{2} + 6y + 9, \text{ taking } y = 2^{x} \\ Y^{2} - 14y + 11 = 0 \\ 2^{x_{1} + x_{2}} = 11 \\ x_{1} + x_{2} = \log_{2} 11$$

57. Let 
$$z = a\left(\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}\right)$$
------

Ans: 
$$\frac{a^{2010}}{1-z}$$

Sol: 
$$z^{2010} = a^{2010} \left( \cos \frac{2010\pi}{5} + i \sin \frac{2010}{5} \pi \right)$$
  
 $= a^{2010} (\cos 2\pi + i \sin 2\pi)$   
 $= a^{2010}$   
 $\therefore z^{2010} + z^{2011} + z^{2012} + ....$   
 $= z^{2010} \left( \frac{1}{1-z} \right)$   
 $= \frac{a^{2010}}{1-z}$ 

58. The locus of the point z satisfying arg-----

Ans : a single point

Sol: let 
$$z = x + iy$$
  
 $Z + 1 = (x + 1) + iy$   
 $\therefore$  arg  $(z + 1) = \tan^{-1}\left(\frac{y}{x+1}\right) = \alpha$   
arg  $(z - 1) = \tan^{-1}\left(\frac{y}{x-1}\right) = \beta$   
 $\therefore$  tan  $\alpha = \frac{y}{x+1}$  tan  $\beta = \frac{y}{x-1}$   
Since  $\frac{1}{\tan \alpha} - \frac{1}{\tan \beta} = 2$ 

$$\Rightarrow \frac{x+1}{y} - \frac{(x-1)}{y} = 2$$
$$\Rightarrow 2 = 2y \Rightarrow y = 1$$
line parallel to the x - axis

59. For the equation,  $\sin x + \cos x = -----$ 

Ans : there is a solution, for exactly one a> 0

- Sol: Equation can be written as  $\frac{1}{\sqrt{2}}\cos\left(x-\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}\left(a+\frac{1}{a}\right)$  $\cos\left(x-\frac{\pi}{4}\right) = a + \frac{1}{a}$ if  $a > 0 \Rightarrow a + \frac{1}{a} \ge 2$ , equality for a = 1but  $\cos\left(x-\frac{\pi}{4}\right) \leq 1$ : Equation has one solution
- 60. The number of solutions of the equation -
  - Ans: 6
  - Sol:
- From the following graph it is seen that there are 6 intersection points.



61. Consider the circles  $C_1 : x^2 - y^2 = 64$ 

Ans: 
$$\left(\frac{6}{\sqrt{2}}, \frac{6}{\sqrt{2}}\right)$$

Sol: .Let centre of the circle be 
$$(\alpha, \alpha)$$
  
 $\therefore$  Equation is  
 $x^2 + y^2 - 2\alpha x - 2y\alpha + 2\alpha^2 = 100$  ----- (1)  
Equation of given circle  
 $x^2 + y^2 = 64$  ----- (2)  
 $\therefore$  Equation of common chord  
 $\Rightarrow S_1 - S_2 = 0$   
 $\Rightarrow x\alpha + y\alpha - \alpha^2 + 18 = 0$  ----- (3)  
Since length of common chord = 16  
which is a diameter of  $x^2 + y^2 = 64$   
 $\Rightarrow \alpha^2 = 18$ 

$$\therefore \alpha = 3\sqrt{2} = \left(\frac{6}{\sqrt{2}}\right)$$
$$\therefore \text{ Centre } \left(\frac{6}{\sqrt{2}}, \frac{6}{\sqrt{2}}\right)$$

62. A line segment joining (1, 0, 1) and the origin -----

Ans: 
$$x^2 - 2y^2 - z^2 = 0$$

- Sol: The semi vertical angle  $\alpha$  is given by  $\sin \alpha = \frac{x}{r} = \frac{1}{\sqrt{2}}$  $\Rightarrow$  locus of any point on the cone is  $\frac{x}{r} = \frac{1}{\sqrt{2}}$ i.e  $\frac{x^2}{x^2 + y^2 + z^2} = \frac{1}{2}$  or  $x^2 - y^2 - z^2 = 0$
- 63. Let (x, y, z) be any point on the line passing -----

Ans: 
$$x^2 - 2y^2 - z^2 = 0$$

Sol: (x, y, z) passing through a line which is parallel to that vector i+ j+ k. Then this vector is perpendicular to the plane passing through (x, y, z)

. **λ**.

64. A tangent to the ellipse 
$$\frac{x^2}{25} + \frac{y^2}{16} = 1$$
------

đ.

Ans : √82

Sol:

Sol: Equation tangent is  

$$\frac{x}{5}\cos + \frac{y}{4}\sin\theta = 1$$

$$\therefore A\left(\frac{5}{\cos\theta}, 0\right) \text{ and } B\left(0\frac{4}{\sin\theta}\right)$$
sin OAB is isosceles OA = OB  $\Rightarrow$   

$$\frac{5}{\cos\theta} = \frac{4}{\sin\theta} = k$$

$$\therefore \cos\theta = \frac{5}{k} \operatorname{as} \sin\theta = \frac{4}{k} \Rightarrow k = \sqrt{41}$$

$$\therefore AB = \sqrt{k^2 + k^2} = \sqrt{82}$$
65. Let  $a_n = \frac{1}{n} \left[ (2n+1) (2n+2) \dots (2n+n)^{1/n} \right] \dots$ 

Ans : 
$$\int_{2}^{3} \log(2+x) dx$$

Sol: 
$$\log = \frac{1}{n} \left[ \log \left( 2 + \frac{1}{n} \right) + \log \left( 2 + \frac{2}{n} \right) + \dots + \log \left( 2 + \frac{n}{n} \right) \right]$$
  
$$\lim_{n \to \infty}^{(\log a_n)} = \lim_{n \to \infty} \frac{3 - 2}{n} \sum_{n=1}^n \log \left( 2 + \frac{r}{n} \right)$$
$$= \int_2^3 \log(2 + x) dx = L$$

66. The value of 
$$\lim_{n \to x} \frac{1^3 + 2^3 + \dots + (3n)^3}{3n^4}$$
 is -----

Ans: 27/4

Sol: 
$$\lim_{n \to \alpha} \frac{\sum_{n=1}^{34} (r^3)}{3n^4} = \lim_{n \to 13} \frac{\left(3n \frac{(3n+1)}{2}\right)^2}{3n^4} = \frac{27}{4}$$

67. The value of  $\int_0^{\pi/2} \frac{2 + \sin x}{1 + \cos x} e^{\pi/2} dx$  is --Ans :  $2e^{\frac{\pi}{4}}$ 

Sol:

$$\int_{0}^{\frac{\pi}{4}} \frac{2+\sin x}{1+\cos x} e^{\frac{x}{2}} dx = \int_{0}^{\frac{\pi}{2}} \left(\sec^{2}\frac{x}{2}+\tan\frac{x}{2}\right) e^{\frac{x}{2}} dx$$
$$= 2\int_{0}^{\frac{\pi}{4}} (\sec u + \tan u) e^{u} du$$
$$= 2\left(e^{u} \tan u\right)_{0}^{\frac{\pi}{4}} = 2e^{\frac{\pi}{4}}$$

68. The differential equation satisfied by

Ans : 
$$x+3yy^{1} = 0$$

Sol:  $y = \alpha x^3 \Rightarrow y^1 = 3 \alpha x^2 \Rightarrow \alpha = \frac{y^1}{3x^2}$ ∴ Differential equation of given come in y =  $y^1x^3$ : Corresponding curve perpendicular to it ie 3y = x  $\frac{-1}{v^1}$ 

$$\Rightarrow$$
 3yy<sup>1</sup> + x = 0

69. Let  $f(x) = x (|x - \pi|)$ ------

Ans : onto but NOT one-one

Sol: 
$$f(x) = x |x - \pi| (2 + \cos^2 x)$$

F(x) is continuous everywhere. f (- $\infty$ ) =  $-\infty$ , f (( $-\infty$ ) =  $\infty$ ∴ f is onto If  $0 < x < \pi$  $f(x) = x (\pi - x) (2 + \cos^2 x)$  $f(\pi - x) = \pi - x(x)(2 + \cos^2 x)$ : f is not one - one

- 70. The equation  $2x^3 3x^2 p = 0$  -----
  - Ans: (0, 1)

Sol: Let 
$$f(x) = 2x^3 - 3x^2 + p$$
  
 $f'(x) = 6x (x - 1);$   
 $f''(0) = -6 < 0; f''(1) = 6 > 0$   
 $f(0) = p; f(1) = -1 + p$ 



- f(x) will have 3 distinct real roots if p > 0and -1 + p < 0i.e.  $p \in (0, 1)$
- 71. For a real number x let -----
  - Ans : continuous at x = 1 but NOT continuous at x = 2

Sol: 
$$f(x) = \{x\}^{[x]} \cos \frac{\pi}{2} x$$
  
 $\therefore \lim_{x \to 1^{-}} f(x) = \lim_{h \to 0} f(1-h)$   
 $= \lim_{h \to 0} \{1-h\}^{[1-h]} \cos \frac{\pi}{2} (1-h) = 0$   
 $\therefore \lim_{x \to 1^{+}} f(x) = \lim_{h \to 0} \{1+h\}^{[1+h]} \cos \frac{\pi}{2} (1+h) = 0$   
 $f(1) = 0 \text{ and } f(x) \text{ is continuous at } x = 1.$   
Again,  $\lim_{x \to 2^{-}} f(x) = \lim_{h \to 0} f(2-h)$   
 $= \lim_{h \to 0} \{2-h\}^{[2-h]} \cos \frac{\pi}{2} (2-h)$   
 $= \lim_{h \to 0} \{2-h\}^{1} \cos \frac{\pi}{2} (2-h)$   
 $= 1 \times \cos \pi = -1.$   
 $\lim_{x \to 2^{+}} f(x) = \lim_{h \to 0} \{2+h\}^{2} \cos \frac{\pi}{2} (2+h)$   
 $= 0.$   
 $\therefore f(x) \text{ is not continuous at } x = 2.$ 

72. Let  $f: (0, \infty) \rightarrow R$  be-----

Ans: 2

Sol: 
$$f(x) = 2x^{\sin 2x} \cos 2x$$
  
 $\therefore \lim_{x \to 0} f(x) = 2 \lim_{x \to 0} x^{\sin 2x}$   
 $= 2e^{\lim_{x \to 0} \frac{\log x}{\cos ec 2x}}$   
 $= 2.$ 

73. The distance of the point (1, 2, 3) -----

Ans:  $3\sqrt{3}$ 

Sol: Equation of line passing through (1, 2, 3) and parallel to  $\hat{\mathbf{r}} = (-3\hat{\mathbf{i}} + 2\hat{\mathbf{j}}) + \lambda(\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}})$  is  $\stackrel{\rho}{r} = \left(\hat{i} + 2\hat{j} + 3\hat{k} + \lambda\left(\hat{i} + \hat{j} + \hat{k}\right)\right)$  $\therefore \frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{1} = \lambda$  $\begin{aligned} x &= 1+\lambda, \, y = 2+\lambda, \, z = 3+\lambda \\ 2x+y+2z+5 &= 0 \end{aligned}$  $2(1 + \lambda) + (2 + \lambda) + 2(3 + \lambda) + 5 = 0$  $3x - (x - 3\hat{k}) = 1$  $\lambda = -3$  $\lambda = -3$   $\therefore$  point of intersection is (-2, -1, 0) Distance from (1, 2, 3)  $\sqrt{3^2+3^2+3^2}=3\sqrt{3}$ 

74. If the vector-----

Ans : 92

Sol: Let 
$$V_1 = \lambda (\hat{i} - \hat{j} + \hat{k})$$
  
 $V_2 = \mu (a\hat{i} + b\hat{j} + c\hat{k})$   
 $V_2 . (2\hat{i} - \hat{k}) = 0 \Rightarrow c = 2a$   
 $\therefore V_1 + V_2 = (\lambda + \mu a)\hat{i} + (-\lambda + \mu b)\hat{j} + (\lambda + 2\mu a)\hat{k}$   
 $\lambda = -1, \ \mu a = 4, \ \mu b = 3$   
 $\therefore |V_1|^2 + |V_2|^2 = 3\lambda^2 + 5(\mu a)^2 + (\mu b)^2$   
 $= 3 + 5 \times 16 + 9 = 92.$ 

75. A plane H passes through the intersection-----

Ans :  $\bar{r}(3\hat{i} - \hat{j} + 3\hat{k}) = 1$ 

Sol: Point dividing (3, 0, 2) and (0, 3, -1) in the ratio 2:1 internally is (1, 2, 0) Equation of the required plane is  $(x + y + z + 3) + \lambda (x - y + 3z - 2) = 0$  $\Rightarrow$  6 +  $\lambda$  (-3) = 0  $\Rightarrow$   $\lambda$  = 2 Equation is 3x - y + 3z - 1 = 0, i.e.