SOLUTION \& ANSWER FOR ISAT-2011
 SET - A

[PHYSICS, CHEMISTRY \& MATHEMATICS]

PART A - PHYSICS

1. A projectile is fired at an angle 60° with some velocity u ------

Ans : No correct answer

Sol: $\quad R=\frac{u^{2}}{g} \sin 2 \theta$

$$
x=\frac{d R}{R}=2 \cot 2 \theta d \theta
$$

$$
T=\frac{2 u \sin \theta}{g}
$$

$$
y=\frac{d T}{T}=\cot \theta d \theta
$$

$$
\frac{x}{y}=\frac{2 \cot 2 \theta}{\cot \theta}=\frac{2 \cot 120^{\circ}}{\cot 60^{\circ}}=-2
$$

$\Rightarrow \mathrm{x}=-2 \mathrm{y}$ (No correct answer)
2. A ball is dropped down vertically from a tall building ------

Ans : $\theta=\frac{1}{4} \sin ^{-1}\left(\frac{d}{h}\right)$
Sol:

$$
\begin{aligned}
& \theta+\theta+\phi=90^{\circ} \Rightarrow \phi=\left(90^{\circ}-2 \theta\right) \\
& \mathrm{d}
\end{aligned}=\frac{1}{2} \frac{\mathrm{u}^{2}}{\mathrm{~g}} \sin 2 \phi=\frac{1}{2} \cdot \frac{2 \mathrm{gh}}{\mathrm{~g}} \sin 2 \phi, \begin{array}{r}
2 \mathrm{gh} \\
\\
=\mathrm{h} \sin 2\left(90^{\circ}-2 \theta\right)=\mathrm{h} \sin \left(180^{\circ}-4 \theta\right) \\
\\
=h \sin 4 \theta \Rightarrow \theta=\frac{1}{4} \sin ^{-1}\left(\frac{\mathrm{~d}}{\mathrm{~h}}\right)
\end{array}
$$

3. A photon with an initial frequency $10^{11} \mathrm{~Hz}$------

Ans : $4 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}$
Sol: $\quad E_{1}=h v_{1}=6.63 \times 10^{-34} \times 10^{11}$

$$
=6.63 \times 10^{-23} \mathrm{~J}
$$

$$
E_{2}=h v_{2}=6.63 \times 10^{-34} \times 0.9 \times 10^{11}
$$

$$
=5.967 \times 10^{-23} \mathrm{~J}
$$

$$
\therefore \Delta \mathrm{E}=\mathrm{E}_{1}-\mathrm{E}_{2}=6.63 \times 10^{-24} \mathrm{~J}
$$

$$
\Delta \mathrm{E}=\frac{1}{2} \mathrm{mv}^{2} \Rightarrow \mathrm{v}=\sqrt{\frac{2 \Delta \mathrm{E}}{\mathrm{~m}}} \cong 4 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}
$$

4. The correct potential energy diagram for ------

Ans :

Sol: For $r<R$,
$d U=-\bar{F} \cdot d r=\frac{k}{R^{3}} r d r$
$\Rightarrow U=\int_{0}^{r} \frac{k}{R^{3}} r d r=\frac{k}{2 R^{3}} r^{2}$
When $r=0, U=0$
\Rightarrow Only option (a) is correct.
When $r=R, U_{(R)} \Rightarrow \frac{k R^{2}}{2 R^{3}}$

$$
=\frac{\mathrm{k}}{2 \mathrm{R}}
$$

5. Suppose the particle starts from $r=\propto-----$

Ans: $(3 / 8)(k / R)$

$$
\text { Sol: } \begin{aligned}
\mathrm{KE} & =\mathrm{U}_{(\mathrm{R})}-\mathrm{U}_{(\mathrm{R} / 2)} \\
& =\frac{\mathrm{k}}{2 \mathrm{R}}-\frac{\mathrm{k}}{8 \mathrm{R}} \\
& =\frac{3 \mathrm{k}}{8 \mathrm{R}}
\end{aligned}
$$

6. Let a particle have an instantaneous position ----

Ans: $\bar{r} . \bar{v}=0 ; \bar{a} \cdot \bar{v}>0 ; \bar{a} \cdot \bar{r}<0$

Sol: In circular motion,
$\bar{r} \perp \bar{v} \Rightarrow \bar{r} . \bar{v}=0$
$\overline{\mathrm{a}}$ and $\overline{\mathrm{r}}$ make angle $\theta>90^{\circ}$
$\Rightarrow \mathrm{H}^{\circ}<0$
$\overline{\mathrm{a}}$ and $\overline{\mathrm{v}}$ may make angle θ between them which is either $>90^{\circ}$ or $\angle 90^{\circ}$ or $=90^{\circ}$
So for general case $\bar{a} \cdot \bar{v}>0$
7. A large parallel plate capacitor is made of two metal plates of size ------

Ans : $+5 \times 10^{5} \varepsilon_{0} J$
Sol: $\Delta \mathrm{C}=\frac{\left(\mathrm{K}_{1}-\mathrm{K}_{2}\right) \varepsilon_{0} \mathrm{~A}^{\prime}}{\mathrm{d}}$

$$
\begin{aligned}
& \quad=\frac{(3-2) \varepsilon_{0} \times 0.1 \times 1}{0.1} \\
& =\varepsilon_{0} \\
& \Delta \mathrm{U}=\frac{1}{2} \Delta \mathrm{CV}^{2}=\frac{1}{2} \times \varepsilon_{0} \times 10^{6} \\
& =+5 \times 10^{5} \varepsilon_{0} \mathrm{~J}
\end{aligned}
$$

8. A current I is flowing in a long straight wire along the z-axis------

Ans: $\mathrm{V}_{\mathrm{z}}(\Delta \mathrm{t})=\mathrm{v}_{0}$
Sol: $\overline{\mathrm{F}}$ on q is along $-\hat{\mathrm{i}}$ direction $\Rightarrow \overline{\mathrm{a}}$ of q is along $-\hat{i}$ direction \Rightarrow component of velocity in \hat{k} does not change
$\Rightarrow \mathrm{v}_{\mathrm{z}}(\Delta \mathrm{t})=\mathrm{v}_{0}$
9. A non-conducting sphere of radius R has a charge Q distributed

Ans :

Sol: From $r=0$ to $r=R$.
$E \propto r \Rightarrow$ straight line, inclined to r.
From $r=R$ to $r=b$.
$E \propto \frac{1}{r^{2}}$
At $r \geq b, E=0$
10. The magnetic field at the centre of a loop carrying ------

Ans: $\frac{\mu_{0} \mathrm{I}}{3 \mathrm{R}} \frac{7}{8} \hat{k}$

Sol:

$B=B_{1}+B_{2}=\frac{\mu_{0} I}{12 R}+\frac{\mu_{0} 5 I}{24 R}=\frac{7}{24} \frac{\mu_{0} I}{R}$;
Direction \hat{k}
11. A current I is flowing in a wire of length λ. The total momentum ------

Ans: $\frac{\mathrm{mI} \lambda}{\mathrm{q}}$
Sol: $\quad I=\frac{q}{t} \Rightarrow \frac{1}{t}=\frac{I}{q}$
$v=\frac{\lambda}{\mathrm{t}}=\frac{\mathrm{I} \lambda}{\mathrm{q}}$
$p=m v=\frac{m I \lambda}{q}$
12. In an oil drop experiment, charged oil drops of mass m and charge $q-----$

Ans: $\frac{\mathrm{mg} 4 \pi \varepsilon_{0}(\mathrm{r}-\mathrm{R})^{2}}{\mathrm{q}^{2}}$
Sol: The answer must be dimensionless $\Rightarrow q^{2}$ is required in denominator to cancel $\varepsilon_{0} \Rightarrow$ only (B) can be the answer.
13. Two lenses, one biconvex of focal length f_{1} and another ------

$$
\begin{aligned}
& \text { Ans: } M=\frac{f_{1}}{f_{2}} \\
& \text { Sol: } m_{1}=\frac{v_{1}}{u_{1}}=\frac{f_{1}}{L} \\
& m_{2}=\frac{v_{2}}{u_{2}}=\frac{L}{f_{2}} \\
& M=m_{1} m_{2}=\frac{f_{1}}{f_{2}} \\
& (L \text { is large } \Rightarrow \infty)
\end{aligned}
$$

14. The central fringe in a Young's double slit experiment ------

Ans: $\frac{3}{4}$

Sol: Path difference $=(\mu-1) \mathrm{t}$

$$
\begin{aligned}
& =(1.4-1) \times 5 \times 10^{-6} \\
& =2 \times 10^{-6} \mathrm{~m}
\end{aligned}
$$

Phase difference $\Delta \phi=\frac{2 \times 10^{-6} \times 2 \pi}{632.8 \times 10^{-9}}$
$=19.858 \mathrm{rad}$
$=3.16 \times 2 \pi \mathrm{rad}$
$\Rightarrow \Delta \phi=0.16 \times 2 \pi=57.6^{\circ}$
$\Rightarrow \mathrm{I}=\mathrm{I}_{0} \mathrm{~cm}^{2}\left(\frac{\Delta \phi}{2}\right)=0.767 \mathrm{I}_{0} \cong \frac{3}{4} \mathrm{I}_{0}$
15. A polarizer is introduced in the path of a beam of unpolarized light incident ------

Ans: $\theta=30^{\circ}$ and the polarizer is placed in P (It is assumed that the polarized light is getting completely transmitted.)

Sol: $\tan \phi=\mu$ (Brewster's law)

$$
\Rightarrow \phi=\tan ^{-1}(\sqrt{3})=60^{\circ}
$$

on transparent material.

$$
\Rightarrow \theta=90^{\circ}-\phi=30^{\circ}
$$

16. A submarine travelling at $10 \mathrm{~m} \mathrm{~s}^{-1}$ is chasing another one in front of it ------

Ans : $13 \mathrm{~m} \mathrm{~s}^{-1}$
Sol: $\quad f_{1}=f_{0} \frac{(c-v)}{(c+10)}$

$$
\begin{aligned}
f_{2} & =f_{1} \frac{(c+10)}{(c+v)}=\frac{f_{0}(c-v)(c+10)}{(c-10)(c+v)} \\
& =f_{0} \frac{(c-v)(c+10)}{(c+v)(c-10)} \\
f_{0} & =25000 \mathrm{~Hz} ; f_{2}=24900 \mathrm{~Hz} \\
c & =1500 \mathrm{~m} \mathrm{~s}^{-1} ; v=13 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

17. When light of intensity I reflects from a surface separating two ------

Ans : $\mu=\sqrt{\mu_{1} \mu_{2}} ; 2 \mu t=\frac{\lambda(2 n+1)}{2}$
18. A point object is placed below a wide glass plate of refractive index n. As an

Ans: $2 \tan ^{-1} \frac{n}{\sqrt{n^{2}-1}}$

Sol:

$$
\begin{aligned}
& \theta=2 C^{\prime} ; \tan C^{\prime}=\frac{r}{d^{\prime}}=\frac{n r}{d} \\
&=n \tan C=\frac{n}{\sqrt{n^{2}-1}}\left(\Theta \sin C=\frac{1}{n}\right) \\
& \Rightarrow \theta=2 \tan ^{-1} \frac{n}{\sqrt{n^{2}-1}}
\end{aligned}
$$

19. A light sensor is fixed at one corner of the bottom of a rectangular tank ------

Ans : A quarter of a circle of radius $=10 \sqrt{3} \mathrm{~m}$

Sol: $\tan C=\frac{1}{\sqrt{n^{2}-1}}=\frac{r}{d}$

$$
\Rightarrow r=\frac{\mathrm{d}}{\sqrt{\mathrm{n}^{2}-1}}=10 \sqrt{3} \mathrm{~m}
$$

20. The average pressure on a sphere submerged in water is the pressure ------

Ans : 63 N

Sol: $P=$ pressure at centre $=\rho g \mathrm{H}$

$$
=1000 \times 10 \times(0.1+0.1)
$$

$$
=2000 \mathrm{~N} \mathrm{~m}^{-2}
$$

$$
\begin{aligned}
\mathrm{F} & =\mathrm{P} \times \text { area } \\
& =2000 \times \pi \times(0.1)^{2} \\
& =20 \pi=63 \mathrm{~N}
\end{aligned}
$$

21. Laplace correction to the speed of sound is made only for gases and not ------

Ans :Much smaller relative pressure change when the wave is passing through them.

Sol: Knowledge based.
22. Three rods of equal lengths and cross sectional areas are joined

$$
\text { Ans: } \mathrm{T}_{1}=\frac{3}{5} \mathrm{~T}_{\mathrm{A}}+\frac{2}{5} \mathrm{~T}_{\mathrm{B}} ; \quad \mathrm{T}_{2}=\frac{2}{5} \mathrm{~T}_{\mathrm{A}}+\frac{3}{5} \mathrm{~T}_{\mathrm{B}}
$$

Sol: $\frac{K A\left(T_{A}-T_{1}\right)}{L}=\frac{2 K A\left(T_{1}-T_{2}\right)}{L}=\frac{K A\left(T_{C}-T_{B}\right)}{L}$
On solving,

$$
\begin{aligned}
\mathrm{T}_{1} & =\frac{3}{5} \mathrm{~T}_{\mathrm{A}}+\frac{2}{5} \mathrm{~T}_{\mathrm{B}} \text { and } \\
\mathrm{T}_{2} & =\frac{2}{5} \mathrm{~T}_{\mathrm{A}}+\frac{3}{5} \mathrm{~T}_{\mathrm{B}}
\end{aligned}
$$

23. The diameter of a metal wire is measured using a screw gauge, ------

Ans : $1.21 \times 10^{-5} \Omega \mathrm{~m}$

Sol: Pitch $=0.5 \mathrm{~mm}$
$L . C=\frac{\text { Pitch }}{N}=\frac{0.5}{50}=0.01 \mathrm{~mm}$
P.S.R $=4 \times 0.5=2.0 \mathrm{~mm}$

CSR $=20 \times L C=20 \times 0.01=0.2 \mathrm{~mm}$
$\mathrm{d}=2.2 \mathrm{~mm}=2.2 \times 10^{-3} \mathrm{~m}$
$\rho=\frac{R A}{\lambda} \Rightarrow \rho=1.21 \times 10^{-5} \Omega \mathrm{~m}$
24. Which of the following quantities has the least number of ------

Ans: 0.08765

Sol: Knowledge based.
25. In an experiment designed to determine the universal gravitational ------

Ans: No correct answer.
Sol: $\quad[G]=M^{-1} L^{3} T^{-2}$

$$
\begin{aligned}
& =\frac{\mathrm{L}^{3}}{\mathrm{MT}^{2}} \\
\frac{d \mathrm{G}}{\mathrm{G}} & =\frac{3 \Delta \mathrm{~L}}{\mathrm{~L}}+\frac{\Delta \mathrm{M}}{\mathrm{M}}+\frac{2 \Delta \mathrm{~T}}{\mathrm{~T}} \\
& =3 \mathrm{a}+\mathrm{b}+2 \mathrm{c}
\end{aligned}
$$

PART B - CHEMISTRY

26. The relative stability of the octahedral complexes

Ans: (i) $>$ (ii) $>$ (iii) $>$ (iv)
Sol: oxygen ligands have high affinity for Fe (III) and affinity of Fe (III) for amines is low
27. Number of isomers that ---

Ans: 3
Sol: The complex is square planar and is of the type $\mathrm{M}_{\mathrm{abcd}}$. It has three geometrical isomers.
28. When a metal is in its low oxidation state,

Ans :Chloride is a σ donor and the carbon monoxide is both a σ donor as well as π acceptor

Sol: Metal - CO bond is stronger than Metal Cl bond because CO act as a σ donor as well as π acceptor ligand
29. Freshly prepared, bright blue coloured, ------

Ans: $\left[\mathrm{e}\left(\mathrm{NH}_{3}\right)_{n}\right]^{-}(\mathrm{e} \mathrm{e}$ ' is an electron $)$

Sol: Ammoniated electron brings about the reduction of the functional group
30. The statement that is NOT \qquad

Ans: silicates are mainly built through ' SiO_{2} ' units

Sol: silicates are built through tetrahedral $\mathrm{SiO}_{4}{ }^{4-}$ units
31. The $\left(\mathrm{SIO}_{3}{ }^{2-}\right)_{\mathrm{n}}$------

Ans: cyclic silicates
Sol: Linear single chain silicates have empirical formula $\left[\left(\mathrm{SiO}_{3}\right)^{2-}\right\rfloor_{\mathrm{n}}$
32. The oxoacid of sulphur that ------

Ans : pyrosulphuric acid $\left(\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}\right)$
Sol: pyrosulphuric acid $\left(\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}\right)$
is

33. The reason for the formation ------

Ans : acidic nature of $\mathrm{B}(\mathrm{OH})_{3}$
Sol: $\mathrm{B}(\mathrm{OH})_{3}$ is a Lewis acid. It reacts with water to form $\left[\mathrm{B}(\mathrm{OH})_{4}\right]^{-} \& \mathrm{H}^{+}$
34. An optically active alcohol (X)------

Ans: 2-ethyl-3-buten-1-ol
Sol:

35. The major product formed in the

Ans :

Sol: Ozonolysis of the given unsaturated compound gives

This undergoes intramolecular aldol condensation to form the compound having structure (A)
36. The following transformation -----

Ans: $\mathrm{NaOH} / \mathrm{I}_{2}$

Sol: lodoform reaction will bring about the given conversion
37. Among the following halides, ------

Ans: III

Sol:
 does not undergo ionisation
(III)
because the resultant cation is
antiaromatic
38. Isopropanol can be converted

Ans : pyridinium chlorochromate followed by peracetic acid

Sol:

39. Among the isomeric butylbenzenes, the one

Ans:

Sol: For the oxidation of the side chain, the carbon attached to the benzene ring must contain at least one hydrogen
40. The following reaction is ------

Ans : i $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCOCl} / \mathrm{AlCl}_{3}$:
ii. $\mathrm{Br}_{2} / \mathrm{FeBr}_{3}$: iii. $\mathrm{NH}_{2} . \mathrm{NH}_{2} / \mathrm{KOH}$

Sol:

41. The major product of the following------

Ans:

Sol: Protonation of oxygen followed by cleavage of three membered ring gives a 3° carbocation. This undergoes ring expansion followed by loss of proton gives (B)
42. Conversion of benzene into 1, 3------

Ans : i. HNO_{3} / conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$: ii. $\mathrm{Br}_{2} / \mathrm{FeBr}_{3}$ iii. $\mathrm{Sn} / \mathrm{HCl}$ iv. $\mathrm{NaNO}_{2} / \mathrm{HCl}, 0-5^{\circ} \mathrm{C}$
v. CuBr

Sol:

$\xrightarrow{\mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}}$

43. Liquid oxygen and liquid nitrogen are ------

Ans: Liquid oxygen will be attracted but liquid nitrogen unaffected

Sol: Oxygen is paramagnetic and nitrogen is diamagnetic
44. The highest transition energy ------

Ans : $27434.25 \mathrm{~cm}^{-1}$
Sol: $\quad \bar{v}=R_{H}\left[\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right]$

$$
\begin{aligned}
& =109737\left[\frac{1}{4}-0\right] \\
& =27434.25 \mathrm{~cm}^{-1}
\end{aligned}
$$

45. A one litre glass bulb is evacuated and ------

Ans : 30
Sol: $\quad P V=\frac{W}{M} R T$
$M=\frac{1.2 \times 0.08 \times 312.5}{1 \times 1}$
$=30$
46. The van der Waals coefficient of the inert

Ans: Induced dipole- Induced dipole : increased atomic volume

Sol: ' a ' is a measure of attraction between the molecules and ' b ' is a measure of the size of the molecules
47. Assuming ΔH^{0} and S^{0} do not change with

Ans: 300 K

Sol: $\mathrm{A}_{(\lambda)} \longrightarrow \mathrm{A}_{(\mathrm{g})}$
$\Delta H^{\circ}=30 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta S^{\circ}=100 \mathrm{~J} \mathrm{~mol}^{-1}$
$\mathrm{T}=\frac{\Delta \mathrm{H}^{\mathrm{o}}}{\Delta \mathrm{S}^{\mathrm{o}}}=300 \mathrm{~K}$
48. A solution of CaCl_{2} was prepared by ------

Ans : 0.0006
Sol: $\quad \Delta T_{f}=i \times K_{f} \times m$

$$
\begin{aligned}
& =\frac{3 \times 2 \times 0.0112}{112} \\
& =0.0006
\end{aligned}
$$

49. Of thr four values of pH given below which ------

Ans: 4.4

Sol:

50. The Habers's process process for the \qquad

Ans: Ammonia dissociates spontaneously above 500 K

Sol: $\quad \Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}$
At equilibrium $\Delta G^{\circ}=0$
$\therefore \mathrm{T}=\frac{\Delta \mathrm{H}^{0}}{\Delta \mathrm{~S}^{0}}=\frac{-95 \times 10^{3}}{-190}=500 \mathrm{~K}$
Above $500 \mathrm{~K}, \Delta \mathrm{G}^{\circ}$ is +ve

PART C - MATHEMATICS

51. Martin throws two dice simultaneously.

Ans: $\frac{1}{20}$

Sol: Let L denote the event of offering lunch

$$
\begin{aligned}
P(L)= & P(12) \cdot P(L \mid 12)+P(7) \cdot P(L \mid 7) \\
& +P \text { (others) } \cdot P(L \mid \text { others })
\end{aligned}
$$

$$
P(12)=\frac{1}{36} ; P(7)=\frac{6}{36} P(\text { others })=\frac{29}{36}
$$

$$
\therefore \mathrm{P}(12 \mid \mathrm{L})=\frac{\frac{1}{36} \times \frac{2}{3}}{\frac{1}{36} \times \frac{2}{3}+\frac{6}{36} \times \frac{1}{2}+\frac{29}{36} \times \frac{1}{3}}
$$

$$
=\frac{1}{20}
$$

52. A spices has an initial population 4^{10}. ------

Ans: 20
Sol: $P=4^{10}$
$P_{1}=4^{10} \frac{3}{2} ; P_{2}=4^{10} \frac{3}{2} \cdot \frac{1}{2}$
$P_{3}=4^{10}\left(\frac{3}{2}\right)^{2} \frac{1}{2} ; P_{4}=4^{10}\left(\frac{3}{2}\right)^{2}\left(\frac{1}{2}\right)^{2}$
$\therefore P_{t}=4^{10}\left(\frac{3}{2}\right)^{\frac{t}{2}} \cdot\left(\frac{1}{2}\right)^{\frac{t}{2}}$ when t - even

$$
\begin{aligned}
& \therefore 4^{10}\left(\frac{3}{2}\right)^{\frac{t}{2}}\left(\frac{1}{2}\right)^{\frac{t}{2}}=3^{10} \\
& \left(\frac{3}{4}\right)^{\frac{t}{2}}=\left(\frac{3}{4}\right)^{10} \Rightarrow \frac{t}{2}=10 \\
& \therefore t=20
\end{aligned}
$$

53. If 4 squares are chosen at random ------

Ans: $2 \frac{{ }^{8} \mathrm{C}_{4}}{{ }^{64} \mathrm{C}_{4}}$

Sol: Eight squares lie on a main diagonal and there are 2 main diagonals.

$$
\therefore \text { Probability }=2 \frac{{ }^{8} \mathrm{C}_{4}}{{ }^{64} \mathrm{C}_{4}}
$$

54. A student was calculating the variance ------

Ans: $\frac{825}{100}$

$$
\text { Sol: } \frac{\sum x^{2}}{n}-\left(\frac{\sum x}{n}\right)^{2}=v
$$

$$
\begin{align*}
& 10 \sum \mathrm{x}_{\mathrm{c}}^{2}-\left(\sum \mathrm{x}\right)^{2}=100 \mathrm{~V} \tag{1}\\
& 10 \sum \mathrm{x}_{\mathrm{c}}^{2}-\left(\sum \mathrm{x}\right)^{2}=100 \mathrm{~V}_{\mathrm{c}} \tag{2}\\
& \sum \sum \mathrm{x}=46 \\
& \sum \mathrm{x}_{\mathrm{c}}=\sum \mathrm{x}-1+10=\sum \mathrm{x}+9 \\
& \therefore \sum \mathrm{x}_{\mathrm{c}}^{2}=\sum \mathrm{x}^{2}-1^{2}+10^{2}=\sum \mathrm{x}^{2}+99 \\
& \therefore \quad \text { From (2) } \\
& \left(\sum \mathrm{x}^{2}+99\right)-\left(\sum \mathrm{x}+9\right)^{2}=100 \mathrm{~V}_{\mathrm{c}}
\end{align*}
$$

$$
\Rightarrow
$$

$$
10\left(\sum x^{2}-\left(\sum \mathrm{x}\right)^{2}\right)+990-18+46-81
$$

$=100 \mathrm{~V}_{\mathrm{c}}$
$\therefore 100 \mathrm{~V}+81=100 \mathrm{~V}_{\mathrm{c}}$
$\therefore \mathrm{V}_{\mathrm{c}}=\frac{744+81}{100}=\frac{825}{100}$
55. A fair coin is tossed 6 times ------

Ans: $\frac{5}{16}$

Sol: Head appears as the $6^{\text {th }}$ trial for the third time. So in the first 5 trials .Head appeared twice.
\therefore Probability $={ }^{5} \mathrm{P}_{2}\left(\frac{1}{2}\right)^{6}=\frac{5}{16}$
56. The sum of the roots of the equation ------

Ans: $\log _{2} 11$
Sol: Rewriting
$\log _{2} 2^{x}+\log _{2} 2-\log _{2}\left(2^{x}+3\right)^{2}+\log _{2}\left(10-2^{-x}\right)=0$
$\left(\frac{2^{x} \times 2}{\left(2^{x}+3\right)^{2}} \times\left(10-2^{-x}\right)\right)=1$
Rearranging
$2 \times\left(10 \times 2^{x}-1\right)=\left(2^{x}+3\right)^{2}$
$2(10 y-1)=y^{2}+6 y+9$, taking $y=2^{x}$
$Y^{2}-14 y+11=0$
$2^{x_{1}+x_{2}}=11$
$x_{1}+x_{2}=\log _{2} 11$
57. Let $\mathrm{z}=\mathrm{a}\left(\cos \frac{\pi}{5}+\mathrm{i} \sin \frac{\pi}{5}\right)-----$

Ans : $\frac{a^{2010}}{1-z}$

Sol: $\quad z^{2010}=\mathrm{a}^{2010}\left(\cos \frac{2010 \pi}{5}+\mathrm{i} \sin \frac{2010}{5} \pi\right)$
$=\mathrm{a}^{2010}(\cos 2 \pi+\mathrm{i} \sin 2 \pi)$
$=\mathrm{a}^{2010} \mathrm{z}^{2010}+\mathrm{z}^{2011}+\mathrm{z}^{2012}+\ldots$.
$=z^{2010}\left(\frac{1}{1-z}\right)$
$=\frac{a^{2010}}{1-z}$
58. The locus of the point z satisfying arg------

Ans : a single point
Sol: let $z=x+i y$
$Z+1=(x+1)+i y$
$\therefore \arg (z+1)=\tan ^{-1}\left(\frac{y}{x+1}\right)=\alpha$
$\arg (z-1)=\tan ^{-1}\left(\frac{y}{x-1}\right)=\beta$
$\therefore \tan \alpha=\frac{y}{x+1} \tan \beta=\frac{y}{x-1}$
Since $\frac{1}{\tan \alpha}-\frac{1}{\tan \beta}=2$

$$
\begin{aligned}
& \Rightarrow \frac{x+1}{y}-\frac{(x-1)}{y}=2 \\
& \Rightarrow 2=2 y \Rightarrow y=1
\end{aligned}
$$

line parallel to the x-axis
59. For the equation, $\sin x+\cos x=-----$

Ans : there is a solution, for exactly one $a>0$
Sol: Equation can be written as

$$
\frac{1}{\sqrt{2}} \cos \left(x-\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}\left(a+\frac{1}{a}\right)
$$

$$
\cos \left(x-\frac{\pi}{4}\right)=a+\frac{1}{a}
$$

if $a>0 \Rightarrow a+\frac{1}{a} \geq 2$, equality for $a=1$
but $\cos \left(x-\frac{\pi}{4}\right) \leq 1$
\therefore Equation has one solution
60. The number of solutions of the equation

Ans: 6
Sol:
From the following graph it is seen that there are 6 intersection points.

61. Consider the circles $C_{1}: x^{2}-y^{2}=64$

Ans: $\left(\frac{6}{\sqrt{2}}, \frac{6}{\sqrt{2}}\right)$
Sol: .Let centre of the circle be (α, α)
\therefore Equation is
$x^{2}+y^{2}-2 \alpha x-2 y \alpha+2 \alpha^{2}=100$
Equation of given circle

$$
\begin{equation*}
x^{2}+y^{2}=64 \tag{1}
\end{equation*}
$$

(2)
\therefore Equation of common chord

$$
\Rightarrow \mathrm{S}_{1}-\mathrm{S}_{2}=0
$$

$$
\Rightarrow x \alpha+y \alpha-\alpha^{2}+18=0
$$

Since length of common chord $=16$
which is a diameter of $x^{2}+y^{2}=64$
$\Rightarrow \alpha^{2}=18$
$\therefore \alpha=3 \sqrt{2}=\left(\frac{6}{\sqrt{2}}\right)$
\therefore Centre $\left(\frac{6}{\sqrt{2}}, \frac{6}{\sqrt{2}}\right)$
62. A line segment joining $(1,0,1)$ and the origin -----

Ans: $x^{2}-2 y^{2}-z^{2}=0$

Sol: The semi vertical angle α is given by
$\sin \alpha=\frac{x}{r}=\frac{1}{\sqrt{2}}$
\Rightarrow locus of any point on the cone is
$\frac{x}{r}=\frac{1}{\sqrt{2}}$
i.e $\frac{x^{2}}{x^{2}+y^{2}+z^{2}}=\frac{1}{2}$ or $x^{2}-y^{2}-z^{2}=0$
63. Let (x, y, z) be any point on the line passing ------

Ans: $x^{2}-2 y^{2}-z^{2}=0$
Sol: (x, y, z) passing through a line which is parallel to that vector $\mathrm{i}+\mathrm{j}+\mathrm{k}$.
Then this vector is perpendicular to the plane passing through (x, y, z)
64. A tangent to the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1----$

Ans: $\sqrt{82}$

Sol: Equation tangent is
$\frac{x}{5} \cos +\frac{y}{4} \sin \theta=1$
$\therefore \mathrm{A}\left(\frac{5}{\cos \theta}, 0\right)$ and $\mathrm{B}\left(0 \frac{4}{\sin \theta}\right)$
$\sin O A B$ is isosceles $O A=O B \Rightarrow$
$\frac{5}{\cos \theta}=\frac{4}{\sin \theta}=k$
$\therefore \cos \theta=\frac{5}{\mathrm{k}}$ as $\sin \theta=\frac{4}{\mathrm{k}} \Rightarrow \mathrm{k}=\sqrt{41}$
$\therefore A B=\sqrt{\mathrm{k}^{2}+\mathrm{k}^{2}}=\sqrt{82}$
65. Let $a_{n}=\frac{1}{n}\left[(2 n+1)(2 n+2) . . .(2 n+n)^{1 / n}\right]--\cdots--$

Ans: $\int_{2}^{3} \log (2+x) d x$

Sol: $\log \quad a_{n}=$

$$
\begin{aligned}
& \frac{1}{n}\left[\log \left(2+\frac{1}{n}\right)+\log \left(2+\frac{2}{n}\right)+\ldots+\log \left(2+\frac{n}{n}\right)\right] \\
& \lim _{n \rightarrow \infty}^{\left(\log a_{n}\right)}=\lim _{n \rightarrow \infty} \frac{3-2}{n} \sum_{n=1}^{n} \log \left(2+\frac{r}{n}\right) \\
& =\int_{2}^{3} \log (2+x) d x=L
\end{aligned}
$$

66. The value of $\lim _{n \rightarrow x} \frac{1^{3}+2^{3}+\ldots .+(3 n)^{3}}{3 n^{4}}$ is ------

Ans: 27/4
Sol: $\lim _{n \rightarrow \alpha} \frac{\sum_{1}^{34}\left(r^{3}\right)}{3 n^{4}}==\lim _{n-13} \frac{\left(3 n \frac{(3 n+1}{2}\right)^{2}}{3 n^{4}}=\frac{27}{4}$
67. The value of $\int_{0}^{\pi / 2} \frac{2+\sin x}{1+\cos x} e^{\pi / 2} d x$ is

Ans : $2 e^{\frac{\pi}{4}}$

Sol:

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{4}} \frac{2+\sin x}{1+\cos x} e^{\frac{x}{2}} d x=\int_{0}^{\frac{\pi}{2}}\left(\sec ^{2} \frac{x}{2}+\tan \frac{x}{2}\right) e^{\frac{x}{2}} d x \\
& =2 \int_{0}^{\frac{\pi}{4}}(\sec u+\tan u) e^{u} d u \\
& =2\left(e^{u} \tan u\right)_{0}^{\pi / 4}=2 e^{\pi / 4}
\end{aligned}
$$

68. The differential equation satisfied by

Ans: $x+3 y y^{1}=0$

Sol: $y=\alpha x^{3} \Rightarrow y^{1}=3 \alpha x^{2} \Rightarrow \alpha=\frac{y^{1}}{3 x^{2}}$
\therefore Differential equation of given
come in $y=\frac{y^{1} x^{3}}{3 x^{2}} \Rightarrow 3 y=x y^{1}$
\therefore Corresponding curve perpendicular to it
ie $3 y=x \frac{-1}{y^{1}}$
$\Rightarrow 3 y y^{1}+x=0$
69. Let $f(x)=x(|x-\pi|)-----$

Ans : onto but NOT one-one
Sol: $\quad f(x)=x|x-\pi| \quad\left(2+\cos ^{2} x\right)$
$F(x)$ is continuous everywhere. $f(-\infty)=$
$-\infty, f((-\infty)=\infty$
$\therefore \mathrm{f}$ is onto
If $0<x<\pi$
$f(x)=x(\pi-x)\left(2+\cos ^{2} x\right)$
$f(\pi-x)=\pi-x(x)\left(2+\cos ^{2} x\right)$
$\therefore \mathrm{f}$ is not one - one
70. The equation $2 x^{3}-3 x^{2}-p=0-----$

Ans : $(0,1)$
Sol: Let $f(x)=2 x^{3}-3 x^{2}+p$
$f^{\prime}(x)=6 x(x-1)$;
$f^{\prime \prime}(0)=-6<0 ; f^{\prime \prime}(1)=6>0$
$f(0)=p ; f(1)=-1+p$

$f(x)$ will have 3 distinct real roots if $p>0$
and $-1+p<0$
ie. $p \in(0,1)$
71. For a real number x let \qquad

Ans : continuous at $x=1$ but NOT continuous at $x=2$

Sol: $f(x)=\{x\}^{[x]} \cos \frac{\pi}{2} x$
$\therefore \lim _{x \rightarrow 1^{-}} f(x)=\lim _{h \rightarrow 0} f(1-h)$
$=\lim _{h \rightarrow 0}\{1-h\}^{[1-h]} \cos \frac{\pi}{2}(1-h)=0$
$\therefore \lim _{x \rightarrow 1^{+}} f(x)=\lim _{h \rightarrow 0}\{1+h\}^{[1+h]} \cos \frac{\pi}{2}(1+h)=0$
$f(1)=0$ and $f(x)$ is continuous at $x=1$.
Again, $\lim _{x \rightarrow 2^{-}} f(x)=\lim _{h \rightarrow 0} f(2-h)$
$=\lim _{h \rightarrow 0}\{2-h\}^{[2-h]} \cos \frac{\pi}{2}(2-h)$
$=\lim _{h \rightarrow 0}\{2-h\}^{1} \cos \frac{\pi}{2}(2-h)$
$=1 \times \cos \pi=-1$.
$\lim _{x \rightarrow 2^{+}} f(x)=\lim _{h \rightarrow 0}\{2+h\}^{2} \cos \frac{\pi}{2}(2+h)$
$=0$.
$\therefore \mathrm{f}(\mathrm{x})$ is not continuous at $\mathrm{x}=2$.
72. Let $\mathrm{f}:(0, \infty) \rightarrow \mathrm{R}$ be------

Ans: 2
Sol: $f(x)=2 x^{\sin 2 x} \cos 2 x$

$$
\begin{aligned}
\therefore \lim _{x \rightarrow 0} f(x) & =2 \lim _{x \rightarrow 0} x^{\sin 2 x} \\
& =2 e^{\lim _{x \rightarrow 0} \frac{\log x}{\operatorname{cosec} 2 x}} \\
& =2 .
\end{aligned}
$$

73. The distance of the point $(1,2,3)$ \qquad

Ans: $3 \sqrt{3}$

Sol: Equation of line passing through (1, 2, 3) and parallel to $\hat{f}=(-3 \hat{i}+2 \hat{j})+\lambda(\hat{i}+\hat{j}+\hat{k})$ is $\rho=(\hat{i}+2 \hat{j}+3 \hat{k}+\lambda(\hat{i}+\hat{j}+\hat{k}))$
$\therefore \frac{\mathrm{x}-1}{1}=\frac{\mathrm{y}-2}{2}=\frac{\mathrm{z}-3}{1}=\lambda$
$x=1+\lambda, y=2+\lambda, z=3+\lambda$
$2 x+y+2 z+5=0$ $2(1+\lambda)+(2+\lambda)+2(3+\lambda)+5=0$ $\lambda=-3$
\therefore point of intersection is $(-2,-1,0)$ Distance from (1, 2, 3) $\sqrt{3^{2}+3^{2}+3^{2}}=3 \sqrt{3}$.
74. If the vector------

Ans: 92
Sol: Let $V_{1}=\lambda(\hat{i}-\hat{j}+\hat{k})$

$$
\begin{gathered}
V_{2}=\mu(a \hat{i}+b \hat{j}+c \hat{k}) \\
V_{2} \cdot(2 \hat{i}-\hat{k})=0 \Rightarrow c=2 a \\
\therefore V_{1}+V_{2}=(\lambda+\mu a) \hat{i}+(-\lambda+\mu b) \hat{j}+(\lambda+2 \mu a) \hat{k} \\
\lambda=-1, \mu a=4, \mu b=3 \\
\therefore\left|V_{1}\right|^{2}+\left|V_{2}\right|^{2}=3 \lambda^{2}+5(\mu \mathrm{a})^{2}+(\mu \mathrm{b})^{2} \\
=3+5 \times 16+9=92 .
\end{gathered}
$$

75. A plane H passes through the intersection------

Ans: $\bar{r}(3 \hat{i}-\hat{j}+3 \hat{k})=1$

Sol: Point dividing ($3,0,2$) and ($0,3,-1$) in the ratio $2: 1$ internally is $(1,2,0)$
Equation of the required plane is $(x+y+z+3)+\lambda(x-y+3 z-2)=0$
$\Rightarrow 6+\lambda(-3)=0 \Rightarrow \lambda=2$
Equation is $3 x-y+3 z-1=0$, i.e. $\hat{r}(3 \hat{i}-\hat{j}+3 \hat{k})=1$

