RUHS Pharmacy 2018 Question Paper

Subject :: Physics

Q. No. 1 0011001	Dimensions of resistance in an electric circuit, in terms of dimensions of mass \mathbf{M}, of length \mathbf{L}, of time \mathbf{T} and of current \mathbf{I} would be
Option A	$\mathrm{ML}^{2} \mathrm{~T}^{-2}$
Option B	$\mathrm{ML}^{2} \mathrm{~T}^{-1} \mathrm{I}^{-1}$
Option C	$\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{I}^{-2}$
Option D	$\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{I}{ }^{-1}$
Correct Option	\mathbf{C}

	The density of a solid ball is to be determined in an experiment. The diameter of the ball is measured with a screw gauge, whose pitch is $\mathbf{0 . 5} \mathbf{~ m m ~}$ and there are $\mathbf{5 0}$ divisions on the circular scale. The reading on the main Qsale is $\mathbf{2 . 5} \mathbf{~ m m}$ and that on the circular scale is 20 divisions. If the measured mass of the ball has a relative error of 2\%, the relative percentage error in the density is
Option A	0.9%
Option B	2.4%
Option C	3.1%
Option D	4.2%
Correct Option	C

Q. No. 3 0011003	Two particles, one with constant velocity $\mathbf{5 0} \mathbf{~ m} / \mathbf{s}$ and the other with uniform acceleration 10ms same direction. They will be at a distance of $\mathbf{1 2 5} \mathbf{~ m}$ from each other after
Option A	5 sec
Option B	$5(1+\sqrt{ } 2) \mathrm{sec}$
Option C	10 sec
Option D	$10(\sqrt{ } 2+1) \mathrm{sec}$
Correct Option	B

Q. No. 4 0011004	The acceleration of a particle (a) is related to its velocity (\mathbf{v}) by a = -2 v. What is the nature of velocity- time curve?
Option A	Linearly increasing
Option B	Exponentially decreasing
Option C	Exponentially increasing
Option D	Linearly decreasing
Correct Option	B

A block B is pushed momentarily along a horizontal surface with an initial 0011005
velocity V. If μ is the coefficient of sliding friction between B and the surface, block B will come to rest after a time

Option A	$\mathrm{g} \mu / \mathrm{V}$
Option B	g / V
Option C	V / g
Option D	$\mathrm{V} / \mathrm{g} \mu$
Correct Option	D

Q. No. 6 0011006	A conveyor belt is moving at a constant speed of $\mathbf{2} \mathbf{~ m} / \mathbf{s .}$ A box is gently dropped on it. The coefficient of friction between them is $\mu=0.5$. The distance that the box will move relative to belt before coming to rest on it, taking $\mathbf{g}=\mathbf{1 0} \mathbf{m s}^{\mathbf{- 2}}$, is
Option A	1.2 m
Option B	0.6 m
Option C	zero
Option D	0.4 m
Correct Option	D

Q. No. 7 0011007	A point mass of $\mathbf{1} \mathbf{~ k g ~ c o l l i d e s ~ e l a s t i c a l l y ~ w i t h ~ a ~ s t a t i o n a r y ~ p o i n t ~ m a s s ~ o f ~} \mathbf{5} \mathbf{~ k g .}$ After their collision, the $\mathbf{1} \mathbf{~ k g ~ m a s s ~ r e v e r s e s ~ i t s ~ d i r e c t i o n ~ a n d ~ m o v e s ~ w i t h ~ a ~}$ speed of $\mathbf{2} \mathbf{~ m s}^{\mathbf{- 1}}$. Which of the following statement(s) is (are) correct for the system of these two masses?
Option A	Total momentum of the system is $30 \mathrm{~kg} \mathrm{~ms}^{-1}$.
Option B	Momentum of 5 kg mass after collision is $4 \mathrm{~kg} \mathrm{~ms}^{-1}$.
Option C	Kinetic energy of the centre of mass is 0.75 J.
Option D	Total kinetic energy of the system is 4 J.
Correct Option	\mathbf{C}

Q. No. 8 0011008	An engine pumps water through a hose pipe. Water passes through the pipe and leaves it with a velocity of $\mathbf{2} \mathbf{~ m} / \mathbf{s}$. The mass per unit length of water in the pipe is $\mathbf{1 0 0} \mathbf{~ k g / \mathbf { m } . \text { What is the power of the engine? }}$
Option A	400 W
Option B	200 W
Option C	100 W
Option D	800 W
Correct Option	A

Q. No. 9 0011009	A circular disc of radius \mathbf{R} is removed from a bigger circular disc of radius $\mathbf{2}$ \mathbf{R}, such that the circumferences of the discs coincide. The centre of mass of the new disc is $\alpha \mathbf{R}$ from the centre of the bigger disc. The value of α is
Option A	$1 / 4$
Option B	$1 / 3$
Option C	$1 / 2$
Option D	$1 / 6$
Correct	B

Option	
$\begin{aligned} & \text { Q. No. } 10 \\ & 0011010 \end{aligned}$	A flywheel of moment of inertia $3 \times 10^{\mathbf{2}} \mathbf{~ k g ~ m}{ }^{\mathbf{2}}$ is rotating with uniform angular speed of $4.6 \mathrm{rad} \mathrm{s}^{-1}$. If a torque of $6.9 \times 10^{\mathbf{2}} \mathbf{N m}$ retards the wheel, then the time in which the wheel comes to rest is
Option A	1.5 s
Option B	2 s
Option C	0.5 s
Option D	2.5 s
Correct Option	B

$\begin{aligned} & \text { Q. No. } 11 \\ & 0011011 \end{aligned}$	Infinite numbers of masses, each of 1 Kg , are placed along the x-axis at $x=$ $\pm 1 \mathrm{~m}, \pm \mathbf{2 m}, \pm 4 \mathrm{~m}, \pm \mathbf{8} \mathrm{m}, \pm 16 \mathrm{~m}$. . The magnitude of the resultant gravitational potential in terms of gravitational constant \mathbf{G} at the origin ($x=$ 0) is
Option A	G/2
Option B	G
Option C	2 G
Option D	4 G
Correct Option	D

Q. No. 12 0011012	The radii of circular orbits of two satellites A and B of the earth are 4 R and R R respectively. If the speed of satellite A is $\mathbf{3} \mathbf{~ V , ~ t h e n ~ t h e ~ s p e e d ~ o f ~ s a t e l l i t e ~ B ~}$ will be
Option A	$3 \mathrm{~V} / 4$
Option B	6 V
Option C	12 V
Option D	$3 \mathrm{~V} / 2$
Correct Option	B

Q. No. 13 0011013	Copper of fixed volume V is drawn into wire of length I. When this wire is subjected to a constant force F, the extension produced in the wire is $\Delta /$. Which of the following graph is a straight line?
Option A	$\Delta /$ versus $1 / I$
Option B	$\Delta /$ versus I^{2}
Option C	$\Delta /$ versus $1 / I^{2}$
Option D	$\Delta /$ versus I
Correct Option	B

Q. No. 14 0011014	A capillary tube of radius \mathbf{r} is immersed in water and water rises in it to a height $\mathbf{h .}$ The mass of water in the capillary tube is $\mathbf{5} \mathbf{g}$. Another capillary tube of radius $\mathbf{2} \mathbf{r}$ is immersed in water. The mass of water that will rise in this tube is
Option A	2.5 g
Option B	5.0 g

Option C	10 g
Option D	20 g
Correct Option	\mathbf{C}

Q. No. 15 0011015	When $\mathbf{1} \mathbf{k g}$ of ice at $\mathbf{0}^{\circ} \mathbf{C}$ melts to water $\mathbf{a t ~}^{0^{\circ}} \mathbf{C}$, the resulting change in its entropy, taking latent heat of ice to be $\mathbf{8 0} \mathbf{c a l} / \mathbf{g}$ is
Option A	$273 \mathrm{cal} / \mathrm{K}$
Option B	$8 \times 10^{4} \mathrm{cal} / \mathrm{K}$
Option C	$80 \mathrm{cal} / \mathrm{K}$
Option D	$293 \mathrm{cal} / \mathrm{K}$
Correct Option	D

Q. No. 16 0011016	A Carnot engine, whose efficiency is 40\%, takes in heat from a source maintained at a temperature of 500 K. It is desired to have an engine of efficiency 60\%. Then, the intake temperature for the same exhaust (sink) temperature must be
Option A	Efficiency of Carnot engine cannot be made larger than 50\%.
Option B	1200 K
Option C	750 K
Option D	600 K
Correct Option	C

Q. No. 17 0011017	Temperature remaining constant, the pressure of gas is decreased by 20\%. The percentage change in volume is
Option A	Increased by 20%
Option B	Decreased by 20%
Option C	increased by 25%
Option D	decreased 25%
Correct Option	C

Q. No. 18 0011018	At $\mathbf{1 0}^{\mathbf{o}} \mathbf{C}$, the value of the density of a fixed mass of an ideal gas divided by its pressure is \mathbf{x}. At $\mathbf{1 1 0} \mathbf{0}^{\mathbf{}} \mathbf{C}$, this ratio is
Option A	x
Option B	$(383 / 283) \mathrm{x}$
Option C	$(10 / 110) \mathrm{x}$
Option D	$(283 / 383) \mathrm{x}$
Correct Option	D

Q. No. 19 0011019	The amplitude of the vibrating, particle due to superposition of two SHMs, $\mathrm{y}_{1}=\sin (\omega \mathrm{t}+\pi / 3)$ and $\mathrm{y}_{2}=\sin \omega \mathrm{t}$,
is	

	$\sqrt{ } 2$
Option C	2
Option D	$\sqrt{ } 3$
Correct Option	D

Q. No. 20 O011020	$\mathbf{I f}$ a spring of stiffness ' \mathbf{k} ' is cut into two parts 'A' and 'B' of length IA : IB $=\mathbf{2}$ $: \mathbf{3}$, then the stiffness of spring 'A' is given by
Option A	$(5 / 2) \mathrm{k}$
Option B	$(3 / 5) \mathrm{k}$
Option C	$2 \mathrm{k} / 5$
Option D	k
Correct Option	A

Q. No. 21 0011021	\mathbf{N} identical drops of mercury are charged simultaneously to $\mathbf{1 0}$ volt. When combined to form one large drop, the potential is found to be $\mathbf{4 0} \mathbf{~ V , ~ t h e ~ v a l u e ~}$ of \mathbf{N} is
Option A	4
Option B	6
Option C	8
Option D	10
Correct Option	C

Q. No. 22 0011022	Two capacitors of capacitance C are connected in series. If one of them is filled with dielectric substance of dielectric constant K, what is the effective capacitance?
Option A	$\frac{K C}{(1+K)}$
Option B	$\mathrm{C}(\mathrm{K}+1)$
Option C	$\frac{2 K C}{(1+K)}$
Option D	$1+\mathrm{C}$
Correct Option	A

Q. No. 23 0011023	Consider a neutral conducting sphere. A positive point charge is placed outside the sphere. The net charge on the sphere is then
Option A	Negative and distributed uniformly over the surface of the sphere.
Option B	Negative and appears only at the point on the sphere closest to the point charge.
Option C	Negative and distributed non- uniformly over the entire surface of the sphere.
Option D	Zero.
Correct Option	D

Option A	$\frac{2 R r}{R+r}$
Option B	$\frac{8 R(R+r)}{(3 R+r)}$
Option C	$2 \mathrm{r}+4 \mathrm{R}$
Option D	$\frac{5 R}{2+2 r}$
Correct Option	A

Q. No. 25 0011025	A current of 2 A flows through a 2Ω resistor when connected across a battery. The same battery supplies a current of 0.5 A when connected across a $\mathbf{9} \Omega$ resistor. The internal resistance of the battery is
Option A	0.5Ω
Option B	$1 / 3 \Omega$
Option C	$1 / 4 \Omega$
Option D	1Ω
Correct Option	B

Q. No. 26 0011026	A bulb rated $\mathbf{3 6} \mathbf{W}$ and 12 V is connected across $\mathbf{2 0} \mathbf{V}$ cell. What resistance is required to glow it with full intensity?
Option A	1.2Ω
Option B	2.7Ω
Option C	5.8Ω
Option D	7Ω
Correct Option	B

Q. No. 27 0011027	A coil of \mathbf{n} number of turns is wound tightly in the form of a spiral with inner and outer radii a and \mathbf{b} respectively. When a current of strength I is passed through the coil, the magnetic field at its centre is
Option A	$\mu_{\mathrm{n} \mathrm{nI}} /(\mathrm{b}-\mathrm{a}) \times \log _{e} a / b$
Option B	$\mu_{0 n \mathrm{n}} / 2(\mathrm{~b}-\mathrm{a})$
Option C	$2 \mu_{\mathrm{nnI}} / \mathrm{b}$

Option D Correct Option	$\mu \mathrm{nII} / 2(\mathrm{~b}-\mathrm{a}) \times \log _{e} b / a$
	\mathbf{D}

Q. No. 28 0011028	A long straight wire of radius 'a' carries a steady current 'i'. The current is uniformly distributed across its cross- section. The ratio of the magnetic field at a/2 and 2a is
Option A	$1 / 2$
Option B	$1 / 4$
Option C	4
Option D	1
Correct Option	D

	A closely wound solenoid of 2000 turns and area of cross-section $\mathbf{1 . 5} \times \mathbf{1 0}^{-}$ Q. No. 29 2 carries a current of 2.0 A. It is suspended through its centre and perpendicular to its length, allowing it to turn in a horizontal plane in a uniform magnetic field 5 $\times 1 \mathbf{1 0}^{-2}$ tesla making an angle of $\mathbf{3 0}^{\circ}$ with the axis of the solenoid. The torque on the solenoid will be
Option A	$3 \times 10^{-3} \mathrm{~N} \mathrm{~m}$
Option B	$1.5 \times 10^{-3} \mathrm{~N} \mathrm{~m}$
Option C	$1.5 \times 10^{-2} \mathrm{~N} \mathrm{~m}$
Option D	$3 \times 10^{-2} \mathrm{~N} \mathrm{~m}$
Correct Option	\mathbf{C}

Q. No. 30 0011030	A solenoid is placed inside another solenoid, the length of both being equal carrying same magnitude of current. The other parameters like radius and number of turns are in aratio 1:2 for the two solenoids. The mutual inductance on each other would be
Option A	$M_{12}=M_{21}$
Option B	$M_{12}=2 M_{21}$
Option C	$2 M_{12}=M_{21}$
Option D	$M_{12}=4 M_{21}$
Correct Option	A

Q. No. 31 O011031	A transformer is used to light a $100 \mathbf{W}$ and 110 V lamp from $220 \mathbf{V}$ main supply. If the main current is $\mathbf{0 . 5} \mathbf{A}$, then efficiency of transformer is
Option A	91%
Option B	100%
Option C	85%
Option D	95%
Correct Option	A

	earth's magnetic field $\mathbf{0 . 3 0} \times \mathbf{1 0}^{\mathbf{- 4}} \mathbf{W b} / \mathbf{m}^{\mathbf{2}}$. The instantaneous value of the e.m.f. induced in the wire will be
Option A	6.0 mV
Option B	3 mV
Option C	4.5 mV
Option D	1.5 mV
Correct Option	B

Q. No. 33 0011033	The electric and magnetic field of an electromagnetic wave are
Option A	In opposite phase and perpendicular to each other.
Option B	In opposite phase and parallel to each other.
Option C	In phase and perpendicular to each other.
Option D	In phase and parallel to each other.
Correct Option	C

Q. No. 34 0011034	An electromagnetic wave propogating along north has its electric and magnetic field vector upwards. Its magnetic field vector points towards
Option A	North
Option B	east
Option C	west
Option D	downwards
Correct Option	B

Q. No. 35 0011035	The refractive index and the permeability of a medium are respectively $\mathbf{1 . 5}$ and $\mathbf{5} \times \mathbf{1 0}^{\mathbf{- 7}} \mathbf{H m}^{\mathbf{- 1}}$. The relative permittivity of the medium is nearly
Option A	25
Option B	15
Option C	81
Option D	6
Correct Option	D

	Mixture of light consisting of wavelength $\mathbf{5 9 0} \mathbf{~ n m}$ and an unknown wavelength illuminates young's double slit and gives rise to two overlapping interference patterns on the screen. The central maximum of both lights Qoincides. Further, it is observed that a third bright fringe of known light coincides with the fourth bright fringe of unknown light. From this data the wavelength of unknown light is
0011036	885.0 nm
Option A	442.5 nm
Option B	776.8 nm
Option C	393.4 nm
Correct Option	B

Q. No. 37 0011037	A lens having focal length \boldsymbol{f} and aperture of diameter \boldsymbol{d} forms an image of intensity \boldsymbol{I}. Aperture of diameter d/2 in central region of lens is covered by a black paper. Focal length of lens and intensity of image now will be respectively
Option A	fand $\frac{I}{4}$
Option B	$\frac{3 f}{4}$ and $\frac{I}{2}$
Option C	fand $\frac{3 I}{4}$
Option D	$\frac{f}{2}$ and $\frac{I}{2}$
Correct Option	C

Q. No. 38 0011038	Which of the following is not due to total internal reflection?
Option A	Working of optical fibre.
Option B	Difference between apparent and real depth of a pond.
Option C	Mirage on a hot summer day.
Option D	Brilliance of diamond.
Correct Option	B

Q. No. 39 0011039	The threshold wavelength for a photoelectric emission from a material is $\mathbf{4 8 0 0} \AA$. Photoelectrons will be emitted from the material, when it is illuminated with light from a
Option A	40 W blue lamp
Option B	40 W green lamp
Option C	100 W red lamp
Option D	100 W yellow lamp
Correct Option	A

Q. No. 40 0011040	In phtoelectric emmision process from a metal of work function $\mathbf{1 . 8 ~ e V , ~ t h e ~}$ kinetic energy of the most energetic electron is $\mathbf{0 . 5} \mathbf{~ e V . ~ T h e ~ c o r r e s p o n d i n g ~}$ stopping potential is
Option A	1.8 V
Option B	1.3 V
Option C	0.5 V
Option D	2.3 V
Correct Option	C

Q. No. 41 0011041	If a source of power 4 $\mathbf{~ k W}$ produces $\mathbf{1 0} \mathbf{0 0}^{\mathbf{2 0}}$ photons/second, the radiation belongs to a part of the spectrum called
Option A	Ultraviolet rays
Option B	microwaves

Option C	γ-rays
Option D	X-rays
Correct Option	D

Q. No. 42 0011042	The half life period of a radioactive element X is same as the mean life time of another radioactive element Y. Initially, they have the same number of atoms. Then,
Option A	X and Y decay at the same rate always.
Option B	X will decay faster then Y.
Option C	Y will decay faster than X.
Option D	X and Y have same decay rate initially.
Correct Option	C

Q. No. 43 0011043	The energy of a hydrogen atom in the ground state is $\mathbf{- 1 3 . 6} \mathbf{~ e V . ~ T h e ~ e n e r g y ~ o f ~}$ a $\mathbf{H e}^{+}$ion in the first excited state will be
Option A	-13.6 eV
Option B	-27.2 eV
Option C	-54.4 eV
Option D	-6.8 eV
Correct Option	A

Q. No. 44 0011044	Two samples X and Y contain equal amounts of radioactive substances. If $\mathbf{1 / 1 6 t h}$ of sample X and $\mathbf{1 / 2 5 6}$ th of sample Y remain after $\mathbf{8} \mathbf{~ h r}$, then the ratio of half periods of X and Y is
Option A	$2: 1$
Option B	$1: 2$
Option C	$1: 4$
Option D	$1: 16$
Correct Option	A

Q. No. 45 0011045	Sodium has body centred packing. Distance between two nearest atoms is $3.7 \AA$. the lattice parameter is
Option A	$4.3 \AA$
Option B	$3.0 \AA$
Option C	$8.6 \AA$
Option D	$6.8 \AA$
Correct Option	A

Q. No. 46 0011046	Which of the following bonds produces a solid that reflects light in the visible region and whose electrical conductivity decreases with temperature and has high melting point?
Option A	Metallic bond

Option B	Vander waal's bonding
Option C	ionic bonding
Option D	covalent bonding
Correct Option	A

Q. No. 47 0011047	If a small amount of antimony is added to germanium crystal
Option A	It becomes a p-type semiconductor.
Option B	The antimony becomes an acceptor atom.
Option C	There will be more free elctrons than holes in the semiconductor.
Option D	Its resistace is increased.
Correct Option	C

Q. No. 48 0011048	The sky wave propogation is suitable for radiowaves of frequency
Option A	Upto 2 MHz
Option B	from 2 MHz to 20 MHz
Option C	from 2 MHz to 30 MHz
Option D	from 2 MHz to 50 MHz
Correct Option	C

Q. No. 49 0011049	Which of the following device is full duplex?
Option A	Mobile phone
Option B	Walky-talky
Option C	Loud speaker
Option D	Radio
Correct Option	A

Q. No. 50 0011050	Which of the following frequencies will be suitable for beyond the horizon communication?
Option A	10 kHz
Option B	10 MHz
Option C	1 GHz
Option D	1000 GHz
Correct Option	B

