Name.....

SIXTH SEMESTER B.C.A. DEGREE EXAMINATION, FEBRUARY/MARCH 2005

(Vocational Course)

Optional Subject: Statistics

Paper XII—DESIGN OF EXPERIMENTS

Time: Three Hours

Maximum: 90 Marks

A maximum of 30 marks can be scored from each of the three units.

Unit I

- Explain the basic principles of experimentation.
- 2. State and prove a necessary and sufficient condition for estimability of a parametric function $b'\theta$, w.r. to the standard Gauss-Markov set up.
- 3. If y_1 , y_2 , y_3 and y_4 are independent normal variables with $E(y_1) = \mu + \theta_1$, $E(y_2) = \mu + \theta_1$, $E(y_3) = \mu + \theta_2$ and $E(y_4) = \mu + \theta_2$. Obtain the blue of $\theta_2 \theta_1$.
- 4. What is meant by analysis of variance? What are the important assumptions? Carry out the analysis of variance of a one-way classification model.
- 5. A test run of three brands of scooters were made 5 times and the following mileages per litre of petrol were observed:—

Brand I: 68 km., 72 km., 69 km., 75 km., 79 km. Brand II: 62 km.. 75 km.. 63 km., 68 km., 65 km. Brand III: 72 km., 68 km.. 70 km.. 70 km.. 71 km.

Carry out the analysis of variance and draw your conclusions.

6. Three varieties of coal were analysed by four chemists and the ash content in the varieties were as follows:

Variety		Chemists				
		1	2	3	4	
A		8	. 5	5	7	
В	•••	7	6	. 4	4	
C	•••	3	6	5	4	

Do the varieties differ significantly in their ash content?

 $(6 \times 7 = 42 \text{ marks})$

7. What is the general form of a two-way classified mode? An agricultural experiment was conducted in an RBD with 6 varieties in 5 blocks, and the following results were obtained:—

Blocks		Varieties						
		1	2	3	4	5	6	
1		30	23	34	25	20	13	
2		39	22	28	25	28	32	
3	•••	56	43	43	31	49	17	
4		38	45	36	35	32	20	
5	•••	44	51	23	58	40	30	

Analyse the design and give a brief report on your findings.

 $(1 \times 8 = 8 \text{ marks})$

Unit II

- 8. What are the assumptions of a completely randomised design? State the model and carry out the analysis of variance.
- 9. Explain missing plot analysis. Describe how you will estimate a missing observation in a RBD. Obtain the estimate.
- Describe a Latin square design and explain how the basic principles of experimentation are applied here. Also explain its advantages and RBD.
- 11. Obtain expressions for the efficiency of LSD over CRD and RBD.
- 12. Four types of food stuffs were applied on 20 chicks and the following gain in weight were observed. Carry out the analysis of variance:

A	55	49	42	21	52
В	61	112	30	89	63
C	42	97	81	95	92
D	169	137	169	85	154

13. The following is an RBD with one missing observation. Carry out the analysis of variance and estimate the missing observation.

		Treatment					
		1	2 .	3	4	5	6
	1	18-5	15.7	16.2	14.1	13-0	13-6
Blocks	2	11.7		12.9	14-4	16.9	12-5
	3	15.4	16.6	15.5	20.3	18-4	21.5
	4	16.5	18 ·6	12.7	15-7	16.5	18.0

 $(6 \times 7 = 42 \text{ marks})$

14. Carry out the ANOVA for the following LSD and give a brief report:

Α	\mathbf{C}	В	\mathbf{D}
12	19	10	8
С	В	· D	A
18	12	6	7
В	D	A	С
22	10	5	21
D	A	C	В
12	7	27	17

 $(1 \times 8 = 8 \text{ marks})$

Unit III

- 15. Explain the important features of a factorial experiment. How does it differ from standard designs?
- 16. Obtain expressions for the main effects and interaction effects of a 2^3 experiment.
- 17. What is meant by "confounding"? Explain how you will confound the interaction effect ABC in a 2³ experiment. Describe the layout.
- 18. The following is a 2² factorial experiment arranged in the form of an RBD with 4 replications for each factor combination:—

Block				
ľ	(1)	k	p	kp
	23	2 5	22 .	38
п	p	(1)	\boldsymbol{k}	kp
	40	26	36	38
Ш	(1)	\boldsymbol{k}	pk	p
	29	20	30	20
IV.	kp	\boldsymbol{k}	.p	(1)
	34	31	24	28

Analyse the data and give your comments.

- 19. Describe a 3^2 experiment. Explain how confounding is done in a 3^2 experiment using modulo relations.
- 20. Distinguish between Complete and Partial confounding. Illustrate using a 2³ experiment.

 $(6 \times 7 = 42 \text{ marks})$

21. The following table gives the layout of a 2^3 factorial experiment in 4 replicates. Examine whether the blocks are homogeneous and the treatment effects differ significantly.

Block I			Block II				
nk	kp .	p	np	kp	p_{\downarrow}	k	nk
291	391	. 312	373	407	324	272	306
1	k	n	nkp	n •	nkp	np	1
101	265	106	450	89	449	338	106
Block III			Block IV				
p	1	np	kp	np	nk	\boldsymbol{n}	p
323	87	324	423	361	272	103	324
							_
nk	k	n	nkp	\boldsymbol{k}	1	nkp	kp

 $(1 \times 8 = 8 \text{ marks})$