Set Code : T2

Booklet Code : A

Note: (1) Answer all questions.

- (2) Each question carries 1 mark. There are no negative marks.
- (3) Answer to the questions must be entered only on OMR Response Sheet provided separately by completely shading with H.B. Pencil, only one of the circles 1, 2, 3 or 4 provided against each question, and which is most appropriate to the question.

(MEC)

MECHANICAL ENGINEERING INSTRUCTIONS TO CANDIDATES

- 1. Candidates should write their Hall Ticket Number only in the space provided at the top left hand corner of this page, on the leaflet attached to this booklet and also in the space provided on the OMR Response Sheet. BESIDES WRITING, THE CANDIDATE SHOULD ENSURE THAT THE APPROPRIATE CIRCLES PROVIDED FOR THE HALL TICKET NUMBERS ARE SHADED USING H.B. PENCIL ONLY ON THE OMR RESPONSE SHEET. DO NOT WRITE HALL TICKET NUMBER ANY WHERE ELSE.
- 2. Immediately on opening this Question Paper Booklet, check:
 - (a) Whether 200 multiple choice questions are printed (50 questions in Mathematics, 25 questions in Physics, 25 questions in Chemistry and 100 questions in Engineering)
 - (b) In case of any discrepancy immediately exchange the Question paper Booklet of same code by bringing the error to the notice of invigilator.
- 3. Use of Calculators, Mathematical Tables and Log books is not permitted.
- Candidate must ensure that he/she has received the Correct Question Booklet, corresponding to his/her branch of Engineering.
- 5. Candidate should ensure that the booklet Code and the Booklet Serial Number, as it appears on this page is entered at the appropriate place on the OMR Response Sheet by shading the appropriate circles provided therein using H.B. pencil only. Candidate should note that if they fail to enter the Booklet Serial Number and the Booklet Code on the OMR Response Sheet, their Answer Sheet will not be valued.
- 6. Candidate shall shade one of the circles 1, 2, 3 or 4 corresponding question on the OMR Response Sheet using H.B. Pencil only. Candidate should note that their OMR Response Sheet will be invalidated if the circles against the question are shaded using Black / Blue ink pen / Ball pen / any other pencil other than H.B. Pencil or if more than one circle is shaded against any question.
- 7. One mark will be awarded for every correct answer. There are no negative marks.
- The OMR Response Sheet will not be valued if the candidate :
 - (a) Writes the Hall Ticket Number in any part of the OMR Response Sheet except in the space provided for the purpose.
 - (b) Writes any irrelevant matter including religious symbols, words, prayers or any communication whatsoever in any part of the OMR Response Sheet.
 - (c) Adopts any other malpractice.
- Rough work should be done only in the space provided in the Question Paper Booklet.
- 10. No loose sheets or papers will be allowed in the examination half.
- 11. Timings of Test: 10.00 A.M. to 1.00 P.M.
- 12. Candidate should ensure that he/she enters his/her name and appends signature on the Question paper booklet, leaflet attached to this question paper booklet and also on the OMR Response Sheet in the space provided. Candidate should ensure that the invigilator puts his signature on this question paper booklet, leaflet attached to the question paper booklet and also on the OMR Response Sheet.
- 13. Before leaving the examination hall candidate should return both the OMR Response Sheet and the leaflet attached to this question paper booklet to the invigilator. Failure to return any of the above shall be construed as malpractice in the examination. Question paper booklet may be retained by the candidate.
- 14. This booklet contains a total of 32 pages including Cover page and the pages for Rough Work.

Set Code : T2

Booklet Code : A

Note: (1) Answer all questions.

- (2) Each question carries I mark. There are no negative marks.
- (3) Answer to the questions must be entered only on OMR Response Sheet provided separately by completely shading with H.B. Pencil, only one of the circles 1, 2, 3 or 4 provided against each question, and which is most appropriate to the question.
- (4) The OMR Response Sheet will be invalidated if the circle is shaded using ink / ball pen or if more than one circle is shaded against each question.

MATHEMATICS

1. If
$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
, then $A^4 = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$

- (1) 3I
- (2) 91
- (3) 271
- (4) 811

2. If
$$A = \begin{bmatrix} 0 & 2 & 1 \\ -2 & 0 & -2 \\ -1 & x & 0 \end{bmatrix}$$
 is a skew symmetric matrix, then the value of x is

- (1) 1
- (2) 2
- (3) 3
- (4) 4
- 3. What is the number of all possible matrices with each entry as 0 or 1 if the order of matrices is 3×3
 - (1) 64
- (2) 268
- (3) 512
- (4) 256

4. If
$$A = \begin{bmatrix} 1 & i & -i \\ i & -i & 1 \\ -i & 1 & i \end{bmatrix}$$
, then $|A| = \begin{bmatrix} 1 & i & -i \\ i & -i & 1 \\ -i & 1 & i \end{bmatrix}$

- (1) 1
- (2) 2
- (3) 3
- (4) 4

Set Code : T2 Booklet Code:

- The solution of a system of linear equations 2x y + 3z = 9, x + y + z = 6, x y + z = 2 is
 - (1) x = -1, y = -2, z = -3
- (2) x = 3, y = 2, z = 1
- (3) x = 2, y = 1, z = 3

- (4) x = 1, y = 2, z = 3
- 6. If $\frac{1}{x^2 + a^2} = \frac{A}{x + ai} + \frac{B}{x ai}$ then A = _____, B = _____
- (1) $\frac{1}{2ai}$, $-\frac{1}{2ai}$ (2) $-\frac{1}{2ai}$, $\frac{1}{2ai}$ (3) $\frac{1}{ai}$, $-\frac{1}{ai}$ (4)

- 7. If $\frac{2x+4}{(x-1)^3} = \frac{A_1}{(x-1)} + \frac{A_2}{(x-1)^2} + \frac{A_3}{(x-1)^3}$ then $\sum_{i=1}^3 A_i$ is equal to

 - (1). A, (2) 2A,
- (3) 4A,

- 8. The period of the function $f(x) = |\sin x|$ is
 - (1) π
- (2) 2π
- $(3) 3\pi$

- If A+B=45°, then (1-cotA). (1-cotB) is
 - (1) 1
- $(2) \cdot 0$
- (3)

- 10. The value of $\sin 78^{\circ} + \cos 132^{\circ}$ is

- 11. If $A+B+C=\pi$, then $\sin 2A + \sin 2B + \sin 2C =$
 - (1) 4 cosA sinB cosC

(2) 4 sinA cosB sinC

(3) 4 cosA cosB cosC

- (4) 4 sinA sinB sinC
- 12. The principal solution of Tanx = 0 is
 - (1) $x = n\pi, n \in \mathbb{Z}$

- (2) x=0
- (3) $x=(2n+1) \pi/2, n \in \mathbb{Z}$
- (4) $x = n\pi + \alpha, n \in \mathbb{Z}$

Set Code: **Booklet Code:**

10	The value of Tan-1	(2)	L Ton-I	(2)	ic
13.	The value of fair	(4)	Tan	(3)	1 19

- (1)
- $(3) \frac{\pi}{3}$

- (1) 1:2:3
- (2) 2:3:4
- (3) 3:4:5
- (4) 4:5:6

15. The value of
$$r.r_1.r_2.r_3$$
 is

- $(1) \quad \Delta^2 \qquad \qquad (2) \quad \Delta^{-2}$
- (3) Δ^{-3}
- (4)

16.
$$\frac{1}{r1} + \frac{1}{r2} + \frac{1}{r3} =$$

- (1) $\frac{1}{r}$ (2) $\frac{1}{2r}$

17. If
$$a=6$$
, $b=5$, $c=9$, then the value of angle A is

- (1) $\cos^{-1}(2/9)$
- (2) $\cos^{-1}(2/5)$
- (3) $\cos^{-1}(7/9)$
- $(4) \cos^{-1}(1/3)$

18. The polar form of complex number
$$1-i$$
 is

- $(1) \quad \sqrt{2} e^{-i\pi/4}$
- $(2) \quad \sqrt{2} e^{i\pi/4}$
- (3) $\sqrt{2}e^{i\pi/2}$ (4) $\sqrt{2}e^{-i\pi/2}$

19. If
$$1, \omega, \omega^2$$
 be the cube roots of unity, then the value of $2^{\omega^3} \cdot 2^{\omega^5} \cdot 2^{\omega}$ is

- (1) ω
- (2) ω^2
- (3) 1

20. The intercept made on X-axis by the circle
$$x^2+y^2+2gx+2fy+c=0$$
 is

- (1) $\sqrt{g^2-c}$ (2) $\sqrt{f^2-c}$ (3) $2.\sqrt{g^2-c}$ (4) $2.\sqrt{f^2-c}$

21. If one end of the diameter of the circle
$$x^2+y^2-5x-8y+13=0$$
 is (2, 7), then the other end of the diameter is (1) (3, 1) (2) (1, 3) (3) (-3, -1) (4) (-1, -3)

- (1) (3, 1)

Set Code: T2 Booklet Code :

- 22. The radius of the circle $\sqrt{1+m^2}(x^2+y^2)-2cx-2mcy=0$ is
 - (1) 2c
- (2) 4c

- 23. The parametric equations of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are
 - (1) $x = a \sec \theta, y = b \tan \theta$
- (2) $x = b \sin\theta, y = a \cos\theta$
- (3) $x = a \cos\theta, y = b \sin\theta$
- (4) $x = a \csc\theta, y = b \cot\theta$
- 24. The equation of the directrix of the parabola $2x^2 = -7y$ is
 - (1) 8y+7=0
- (2) 8y-7=0
- (3) 7y+8=0
- . 25. The condition for a straight line y = mx + c to be a tangent to the hyperbola $\frac{x^2}{2}$
 - (1) c = a/m
- (2) $c^2 = a^2m^2 b^2$ (3) $c^2 = a^2m^2 + b^2$ (4) $c^2 = a/m$

- 26. $\lim_{x \to 1} \frac{\sqrt{5x-4} \sqrt{x}}{x-1}$ is
 - (1) 3
- (2) 2
- (3)
- (4) 1

- 27. $\log i =$
 - (1) $\pi/2$
- (2)
- (3) $i\pi/2$
- (4) $i\pi/4$

- $\frac{d}{dx}[\log_7 X] =$

- (2) $X \log_7^{\circ}$ (3) $\frac{1}{x} \log_{\circ}^{7}$ (4) $\frac{1}{x} \log_7^{\circ}$
- 29. $\frac{d}{dx}[2\cosh x] =$
 - $(1) \quad \frac{e^x + e^{-x}}{2}$
- $(2) \quad \frac{e^x e^{-x}}{2}$

Set Code: T2 **Booklet Code:**

$$30. \quad \frac{d}{dx} \left[\cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right) \right] =$$

- (1) $\frac{1}{1+x^2}$ (2) $\frac{-1}{1+x^2}$

31. If
$$x = at^2$$
, $y = 2at$, then $\frac{dy}{dx} =$

- (1) $\sqrt{\frac{y}{x}}$ (2) $\sqrt{\frac{x}{a}}$ (3) $\sqrt{\frac{a}{x}}$

32. The derivative of
$$e^x$$
 with respect to \sqrt{x} is

- $(1) \quad \frac{2\sqrt{x}}{c^x}$
- $(2) \quad 2\sqrt{x}e^x \qquad \qquad (3) \quad \frac{e^x}{2\sqrt{x}}$
- (4) $\sqrt{x}.e$

33. The equation of the normal to the curve
$$y = 5x^4$$
 at the point $(1, 5)$ is

(1)
$$x + 20y = 99$$

(1)
$$x + 20y = 99$$
 (2) $x + 20y = 101$ (3) $x - 20y = 99$ (4) $x - 20y = 101$

(3)
$$x - 20y = 99$$

(4)
$$x - 20y = 10$$

34. The angle between the curves
$$y^2 = 4x$$
 and $x^2 + y^2 = 5$ is

(1)
$$\frac{\pi}{4}$$

(2)
$$tan^{-1}(2)$$

(3)
$$tan^{-1}(3)$$

(4)
$$tan^{-1}(4)$$

35. If
$$u = x^3y^3$$
 then $\frac{\partial^3 u}{\partial x^3} + \frac{\partial^3 u}{\partial y^3} =$

- (1) $6(x^3+y^3)$
- (2) $6x^3y^3$
- (3) $6x^3$

36.
$$\int \csc x dx =$$

- (1) $\log(\csc x + \cot x) + C$
- (2) $\log(\cot x/2) + C$

(3) $\log (\tan x/2) + C$

(4) $-\csc x \cdot \cot x + C$

7-A

Set Code: T2

Booklet Code :

37.
$$\int_0^{\frac{\pi}{2}} \cos^{11} x \, dx =$$

- $(1) \quad \frac{256}{693} \qquad \qquad (2) \quad \frac{256\pi}{693}$

38.
$$\int f^{1}(x) \cdot [f(x)]^{n} dx =$$

(1)
$$\frac{[f(x)]^{n-1}}{n-1} + C$$

(1)
$$\frac{[f(x)]^{n-1}}{n-1} + C$$
 (2)
$$\frac{[f(x)]^{n+1}}{n+1} + C$$
 (3)
$$n[f(x)]^{n-1} + C$$
 (4)
$$(n+1)[f(x)]^{n+1} + C$$

(3)
$$n[f(x)]^{n-1} + C$$

$$(n+1)[f(x)]^{n+1}+C$$

$$39. \quad \int \frac{dx}{(x+7)\sqrt{x+6}} =$$

(1)
$$Tan^{-1}(\sqrt{x+6})+C$$

(2)
$$2Tan^{-1}(\sqrt{x+6})+C$$

(3)
$$Tan^{-1}(x+7)+C$$

(4)
$$2Tan^{-1}(x+7)+C$$

40.
$$\int \tan^{-1} x \, dx =$$

(1)
$$x.Tan^{-1}x + \frac{1}{2}\log(1+x^2) + C$$

(2)
$$\frac{1}{1+r^2}+0$$

(3)
$$x^2 . Tan^{-1}x + C$$

(4)
$$x.Tan^{-1}x - \log \sqrt{1+x^2} + C$$

$$41. \quad \int \frac{dx}{1+e^{-x}} =$$

(1)
$$\log (1+e^{-x}) + C$$

(2)
$$\log(1+e^x) + C$$

(3)
$$e^{-x} + C$$

(4)
$$e^{x} + C$$

42.
$$\int_{-\frac{\pi}{2}}^{\frac{\tau}{2}} \sin|x| \, dx =$$

- (3) 2

Set Code: T2 **Booklet Code:**

- 43. Area under the curve $f(x) = \sin x$ in $[0, \pi]$ is
 - (1) 4 sq. units (2) 2 sq. units
- (3) 6 sq. units
- (4) 8 sq. units
- 44. The order of $x^3 \frac{d^3 y}{dx^3} + 2x^2 \frac{d^2 y}{dx^2} 3y = x$ is
 - (1) 1
- (2) 4
- (4) 2

- 45. The degree of $\left[\frac{d^2 y}{dx^2} + \left(\frac{dy}{dx} \right)^2 \right]^{\frac{3}{2}} = a \frac{d^2 y}{dx^2}$ is
- (2) 2
- (3) 1
- (4) 3
- 46. The family of straight lines passing through the origin is represented by the differential equation
- (1) ydx + xdy = 0 (2) xdy ydx = 0 (3) xdx + ydy = 0 (4) xdx ydy = 0
- 47. The differential equitation $\frac{dy}{dx} + \frac{ax + hy + g}{hx + by + f} = 0$ is called
 - (1) Homogeneous (2) Exact
- (3) Linear
- (4) Legender
- 48. The solution of differential equation $\frac{dy}{dx} = e^{-x^2} 2xy$ is
 - (1) $y e^{-x^2} = x + c$ (2) $y e^x = x + c$ (3) $y e^{x^2} = x + c$ (4) y = x + c

- 49. The complementary function of $(D^3+D^2+D+1)y = 10$ is
 - (1) $C_1 \cos x + C_2 \sin x + C_3 e^{-x}$
- (2) $C_1 \cos x + C_2 \sin x + C_3 e^x$
- (3) $C_1 + C_2 \cos x + C_3 \sin x$
- (4) $(C_1 + C_2 x + C_3 x^2) e^x$
- 50. Particular Integral of $(D-1)^4y = e^x$ is

 - (1) $x^4 e^x$ (2) $\frac{x^4}{24} e^{-x}$ (3) $\frac{x^4}{12} e^x$ (4) $\frac{x^4}{24} e^x$

Set Code :	T2
Booklet Code :	A

PHYSICS

51.	Two quantities A and B are related by the relation $A/B = m$ where m is linear mass density and force. The dimensions of B will be								
	(1) same as that of latent heat (2) same as that of pressure								
	(3) same as that of work (4) same as that of momentum								
52.	The dimensional formula of capacitance in terms of M, L, T and I is								
	(1) $[ML^2T^2I^2]$ (2) $[ML^{-2}T^4I^2]$ (3) $[M^-L^3T^3I]$ (4) $[M^-L^{-2}T^4I^2]$								
53.	If <i>l</i> , <i>m</i> and <i>n</i> are the direction cosines of a vector, then								
	(1) $l+m+n=1$ (2) $l^2+m^2+n^2=1$ (3) $\frac{1}{l}+\frac{1}{m}+\frac{1}{n}=1$ (4) $lmn=1$								
54.	The angle between i+j and j+k is								
	(1) 0° (2) 90° (3) 45° (4) 60°								
55.	A particle is moving eastwards with a velocity of 5 ms ⁻¹ . In 10 seconds the velocity changes to 5 ms ⁻¹ northwards. The average acceleration in this time is								
2	(1) $\frac{1}{\sqrt{2}}$ ms ⁻² towards north-west (2) zero								
	(3) $\frac{1}{2}$ ms ⁻² towards north (4) $\frac{1}{\sqrt{2}}$ ms ⁻² towards north-east								
:.'	C which of the following in								
56.	The linear momentum of a particle varies with time t as $p = a+bt+ct^2$ which of the following is correct?								
	(1) Force varies with time in a quadratic manner.								
	(2) Force is time-dependent.								
	(3) The velocity of the particle is proportional to time.								
	(4) The displacement of the particle is proportional to t.								
57.	A shell of mass m moving with a velocity v suddenly explodes into two pieces. One part of mass $m/4$ remains stationary. The velocity of the other part is								
	(1) ν (2) 2ν (3) $3\nu/4$ (4) $4\nu/3$								

								Booklet Code	e : A
58.	The ve			ng body after 2	s is (3)	18.6 ms ⁻¹	(4)	19.6 ms ⁻¹	
59.	A large	number of bul	lets are	fired in all dire	ections ad is	with the same s	peed u	. The maximu	m area on
	(1) $\frac{\pi}{2}$	$\frac{\pi u^2}{g^2}$	(2)	$\frac{\pi u^4}{g^2}$	(3)	$\frac{\pi u^2}{g^4}$	(4)	$\frac{\pi u}{g^4}$	
60.	The mi	inimum stoppin	ng dista	nce for a car of	mass is and the	n, moving with ne road is μ, wi	a spee	ed v along a lev	el road, if
4	(1)	$\frac{v^2}{2\mu g}$	(2)	$\frac{v^2}{\mu g}$	(3).	$\frac{v^2}{4\mu g}$	(4)	$\frac{v}{2\mu g}$	
61.	such th (1) I (2) I (3) I	nat it acts in the backward in the forward on in the backward	l direct lirectio	ion on the front n on the front w ion on both the	wheel a	and in the forward in the backward the rear when	vard din vard din eels	rection on the	rear wheel
62.	(1) s (3) i	strike and exploimplode and ex	ode plode	sion, the two b	(2) (4)		nove t	ogether	
63.	power (1)	r the action of a r is zero negative	consta	ant force, a part	(2) (4)	•		wh.	n, then the
	(3)	iioguu i	2					i.	

	Set Co	ode: T2
	Booklet Co	de : A
64.	Consider the following two statements: A: Linear momentum of a system of particles is zero. B: Kinetic energy of a system of particles is zero. Then (1) A implies B & B implies A (2) A does not imply B & B does not (3) A implies B but B does not imply A (4) A does not imply B but B implies	imply A
65.	An engine develops 10 kW of power. How much time will it take to lift a mass of height of 40 m ? (Given $g = 10 \text{ ms}^{-2}$)	200 kg to a
	(1) 4s (2) 5s (3) 8s (4) 10s	
66.	If a spring has time period T, and is cut into n equal parts, then the time period will be (1) $T\sqrt{n}$ (2) $\frac{T}{\sqrt{n}}$ (3) n f (4) T	e s
67.	When temperature increases, the frequency of a tuning fork	
	 increases decreases remains same increases or decreases depending on the materials 	
68.	If a simple harmonic motion is represented by $\frac{d^2x}{dy^2} + \alpha x = 0$, its time period is	
	(1) $2\pi\sqrt{\alpha}$ (2) $2\pi\alpha$ (3) $\frac{2\pi}{\sqrt{\alpha}}$ (4) $\frac{2\pi}{\alpha}$	

69. A cinema hall has volume of 7500 m³. It is required to have reverberation time of 1.5 seconds.

(3) 8.250 w-m^2 (4) 0.825 w-m^2

The total absorption in the hall should be
(1) 850 w-m² (2) 82.50 w-m²

Set Code:

Booklet Code:

To a	bsorb the sound in	a hal	I which of the fe	ollowi	owing are used				
(1)	Glasses, stores		(2)	Carpets, curtain	S		:		
(3)	Polished surface	es		(4)	Platforms			7	
IfN	represents avagad	lro's r	number, then the	numt	er of molecules i	n 6 gı	n of hydr	ogen at NTP is	
						(4)	N/6		
The	mean translationa	ıl kine	etic energy of a	perfec	t gas molecule at	the to	emperatu	re T K is	
(1)	$\frac{1}{2}kT$	(2)	kT	(3)	$\frac{3}{2}kT$	(4)	2kT		
The	amount of heat gi	ven to	a body which	aises	its temperature by	ı°C			
(1)						pacity		2 1	
(3)	specific heat		(41)	(4)	temperature gra	dient			
					s is found to be p	ropo	rtional to	the cube of its	
(1)	3 2	(2)	$\frac{4}{3}$	(3)	2	(4)	$\frac{5}{3}$		
Cla	ding in the optica	ıl fibe	r is mainly used	l to					
(1)					es			878	
	(1) (3) If N (1) The (1) (3) Durabso (1)	(1) Glasses, stores (3) Polished surfaces If N represents avagad (1) 2N The mean translational (1) $\frac{1}{2}kT$ The amount of heat given the specific heat During an adiabatic properties absolute temperature. (1) $\frac{3}{2}$ Cladding in the optical	(1) Glasses, stores (3) Polished surfaces If N represents avagadro's r (1) 2N (2) The mean translational kine (1) $\frac{1}{2}kT$ (2) The amount of heat given to (1) water equivalent (3) specific heat During an adiabatic process absolute temperature. The r (1) $\frac{3}{2}$ (2) Cladding in the optical fiber	(1) Glasses, stores (3) Polished surfaces If N represents avagadro's number, then the (1) $2N$ (2) $3N$ The mean translational kinetic energy of a (1) $\frac{1}{2}kT$ (2) kT The amount of heat given to a body which (1) water equivalent (3) specific heat During an adiabatic process, the pressure absolute temperature. The ratio Cp/Cv for (1) $\frac{3}{2}$ (2) $\frac{4}{3}$ Cladding in the optical fiber is mainly used.	(1) Glasses, stores (2) (3) Polished surfaces (4) If N represents avagadro's number, then the number (1) 2N (2) 3N (3) The mean translational kinetic energy of a perfect (1) $\frac{1}{2}kT$ (2) kT (3) The amount of heat given to a body which raises (1) water equivalent (2) (3) specific heat (4) During an adiabatic process, the pressure of a gas absolute temperature. The ratio Cp/Cv for gas is (1) $\frac{3}{2}$ (2) $\frac{4}{3}$ (3) Cladding in the optical fiber is mainly used to	(1) Glasses, stores (2) Carpets, curtain (3) Polished surfaces (4) Platforms If N represents avagadro's number, then the number of molecules i (1) 2N (2) 3N (3) N The mean translational kinetic energy of a perfect gas molecule at (1) $\frac{1}{2}kT$ (2) kT (3) $\frac{3}{2}kT$ The amount of heat given to a body which raises its temperature by (1) water equivalent (2) thermal heat car (3) specific heat (4) temperature gra During an adiabatic process, the pressure of a gas is found to be p absolute temperature. The ratio Cp/Cv for gas is (1) $\frac{3}{2}$ (2) $\frac{4}{3}$ (3) 2 Cladding in the optical fiber is mainly used to	(1) Glasses, stores (2) Carpets, curtains (3) Polished surfaces (4) Platforms If N represents avagadro's number, then the number of molecules in 6 gm (1) 2N (2) 3N (3) N (4) The mean translational kinetic energy of a perfect gas molecule at the to (1) $\frac{1}{2}kT$ (2) kT (3) $\frac{3}{2}kT$ (4) The amount of heat given to a body which raises its temperature by $1^{\circ}C$ (1) water equivalent (2) thermal heat capacity (3) specific heat (4) temperature gradient During an adiabatic process, the pressure of a gas is found to be proposabsolute temperature. The ratio Cp/Cv for gas is (1) $\frac{3}{2}$ (2) $\frac{4}{3}$ (3) 2 (4) Cladding in the optical fiber is mainly used to	(1) Glasses, stores (2) Carpets, curtains (3) Polished surfaces (4) Platforms If N represents avagadro's number, then the number of molecules in 6 gm of hydr (1) 2N (2) 3N (3) N (4) N/6 The mean translational kinetic energy of a perfect gas molecule at the temperatur (1) $\frac{1}{2}kT$ (2) kT (3) $\frac{3}{2}kT$ (4) $2kT$ The amount of heat given to a body which raises its temperature by $1^{\circ}C$ (1) water equivalent (2) thermal heat capacity (3) specific heat (4) temperature gradient During an adiabatic process, the pressure of a gas is found to be proportional to absolute temperature. The ratio Cp/Cv for gas is (1) $\frac{3}{2}$ (2) $\frac{4}{3}$ (3) 2 (4) $\frac{5}{3}$ Cladding in the optical fiber is mainly used to	

(2) to protect the fiber from corrosion

(3) to protect the fiber from mechanical strength

(4) to protect the fiber from electromagnetic guidance

Set Code : T2

Booklet Code : A

CHEMISTRY

76.	The	valency electron	ic con	figuration of	Phospho	orous atom (At.N	lo. 15) is	
	(1)	$3s^2 3p^3$	(2)	3s1 3p3 3d1	(3)	$3s^2 3p^2 3d^1$	(4)	3s1 3p2 3d2	
77.	Ane	element 'A' of At.	No.12	combines wit	h an ele	ment 'B' of At.No	0.17.	The compound formed	is
		covalent AB	(2)			covalent AB ₂	(4)		
78.	The	number of neutro	ons pr	esent in the at	om of	Ba ¹³⁷ is			
	(1)	56	(2)	137	(3)	193	(4)	81	
79.	Hyd	rogen bonding in	water	r molecule is r	esponsi	ble for			
	(1)	decrease in its f	reezir	ng point	(2)	increase in its	legree	e of ionization	
	(3)	increase in its b	oiling	point	(4)	decrease in its	boilin	g point	
							22		
80.	In th	e HCl molecule,	the bo	nding betwee	n hydro	gen and chlorine	is		
		purely covalent				polar covalent		complex coordinate	
81.	Pota	ssium metal and	notano	ium ione			41		
01.		both react with	•	Stuff folis	(2)	have the same r	umba	or of mustons	
		Management of the Colorest			(2)				
	(3)	both react with	CHIOP	ne gas	(4)	nave the same e	electro	onic configuration	
00	5.05	C II		, ,,		1.1		1 100 11	
82.								made upto 100 ml in	
				_				nd made up with distille	d
		r into 100 ml of s							
	(1)	0.1 M	(2)	1.0 M	(3)	0.5 M	(4)	0.25 M	
83.	Cond	centration of a 1.0	0 M so	olution of pho	sphoric	acid in water is			
•	(1)	0.33 N	(2)	1.0 N	(3)	2.0 N	(4)	3.0 N	
84.	Whic	ch of the followin	ng is a	Lewis acid?	ė.				
	(1)	Ammonia	_		(2)	Berylium chlori	ide		
	(3)	Boron trifluorid	е		(4)	Magnesium oxi			
	(-)				14-A	G			

		Set Code : T2 Booklet Code : A
85.	Which of the following constitutes the compone (1) Potassium chloride and potassium hydroxi (2) Sodium acetate and acetic acid (3) Magnesium sulphate and sulphuric acid (4) Calcium chloride and calcium acetate	
86.	Which of the following is an electrolyte? (1) Acetic acid (2) Glucose (3)	Urea (4) Pyridine
87.	$E^0 Cu/Cu^{+2} = (-) 0.34 V.$	2 //Cu ⁺² /Cu given that E ⁰ Cd/Cd ⁺² = 0.44V and (-) 0.78 V (4) 0.78 V
88.	(1) nickel will be deposited on the anode (2)	cl ₂ gas will be liberated at the cathode nickel will be deposited on the cathode
89.	Which of the following metals will undergo oxid (1) Cu (2) Li (3)	dation fastest? Zinc (4) Iron
90.	Which of the following cannot be used for the st (1) Ozone (2)	Calcium Oxychloride
	(3) Potassium Chloride (4)	Chlorine water
91.	A water sample showed it to contain 1.20 mg/litterms of calcium carbonate equivalent is	
	(1) 1.0 ppm (2) 1.20 ppm (3)	0.60 ppm (4) 2.40 ppm
92.	Soda used in the L-S process for softening of war (1) sodium bicarbonate (2) (3) sodium carbonate (4)	sodium carbonate decahydrate
93.	The process of cementation with zinc powder is (1) sherardizing (2) zincing (3)	

					Set Code : T2
					Booklet Code : A
94.	Carr	rosion of a metal is fastest in			3
	(1)	rain-water (2) acidulated water	r(3)	distilled water (4)	de-ionised water
95.	Whi	ich of the following is a thermoset polyn	mer?	1	į.
, ,	(1)	Polystyrene	(2)	PVC	
	(3)	Polythene	(4)	Urea-formaldehyde re	esin
96.	Che	mically, neoprene is		a	9
		polyvinyl benzene	(2)	polyacetylene	2
		polychloroprene	(4)	poly-1,3-butadiene	
				200	
97.	Vulc	canization involves heating of raw rubbe	r with	12	
	(1)	selenium element	(2)	elemental sulphur	
	(3)	a mixture of Se and elemental sulphur	(4)	a mixture of selenium	and sulphur dioxide
98.	Petr	ol largely contains	V		12)
	(1)	a mixture of unsaturated hydrocarbons	s C ₅ -	C_8	*
	(2)	a mixture of benzene, toluene and xyle		9 (3	# 180
	(3)	a mixture of saturated hydrocarbons C	12 - C	14	
	(4)	a mixture of saturated hydrocarbons C	$C_6 - C_8$		
			•		
99.	Whi	ich of the following gases is largely resp			
	(1)	SO ₂ &NO ₂		CO ₂ & water vapour	
	(3)	CO ₂ &N ₂	(4)	N ₂ &CO ₂	
100.	BOI	D stands for			35
	(1)	Biogenetic Oxygen Demand	(2)	Biometric Oxygen De	emand
	(3)	Biological Oxygen Demand	(4)	Biospecific Oxygen I	Demand

Set Code :	T2
Booklet Code :	A

MECHANICAL ENGINEERING

101.	Am	ortise gauge is a	1						
κ.	(1)	planning tool			(2)	striking to	ol		
	(3)	marking tool			(4)	boring too	1		
					E.S.				
102.	A sa	w which cuts w	ood du	ring the retur	n stroke o	f the saw is	known as		
	(1)	push saw	(2)	pull saw	(3)	rip saw	(4)	hand saw	
		62							
103.	In a	shaper, tool hea	d cons	ist of					
	(1)	clapper box			(2)	work holdi	ng device		
	(3)	collet			(4)	four sided	tool post		ti .
							#8		
104.	The	swing diameter	over t	he bed is	tł	ne height of	the centre	measured fi	om the bed
	of th	e lathe.	18						
17.	(1)	equal to		A T	(2)	one and ha	lftimes		
	(3)	twice			(4)	thrice			
					9				1400
105.	The	rake angle requ	ired to	machine bras	ss by HSS	tool is			
	(1)	0°	(2)	10°	(3)	20°	(4)	-10°	
								f .	
106.	The	binding materia	lused	in cemented	carbide to	ol is			
	(1)	tungsten	(2)	chromium	(3)	silicon	(4)	cobalt	
			28		8				
07.	The	relation between	n tool	life(T) and co	utting spe	ed (V) is V	$\Gamma^{\mathbf{n}} = \mathbf{constant}$	ant. In this r	elation, the
	valu	e of n depends u	pon					4	(4)
	(1)	work material			(2)	working co	nditions		
1.	(3)	tool material			(4)	type of chip	p produced		
									i i
					17-A				· (MEC)

								Set Code	e : T2
				8				Booklet Code	e : A
108.	The	usual value of the	e point	angle of a dri	ll is				'
	(1)	60°	(2)	80°	(3)	112°	(4)	118°	
	3			*					
109.	Dril	ling is an example	e of						
	(1)	Orthogonal cutt	ing		(2)	Oblique cutting	g		
	(3)	Simple cutting			(4)	Uniform cutting	g		
							•		
110.	The	top and sides of the	he table	e of a shaper u	isually l	have	g. G		
	(1)	I-type slots	(2) I	L-type slots	(3)	T-type slots	(4)	H-type slots	
						3			
111.	In la	pping operation,	the ame	ount of thickn	ness of r	netal removed i	s		
	(1)	0.005 to 0.01 m	m		(2)	0.01 to 0.1 mn	1		
	(3)	0.05 to 0.1 mm			(4)	0.5 to 1 mm		14.	
112.	The	process of remov	ing me	etal by a cutte	r whic	h is rotated in the	ne sam	e direction of	travel of
		piece is called							
	(1)	up milling	(2)	lown milling	(3)	face milling	(4)	end milling	
							12 121		
113.	CNC	drilling machine	is con	sidered to be					9
		P.T.P controlled			(2)	Continuous pat	h cont	rolled machine	
		Servo controlled	15,710-1,52		(4)	Adaptive contro			
	(3)	Servo controlled	macm	110	(+)	Adaptive conti	oned n	nacimic	
114	Coon	valding is bost	adamta	d for motel thi					
		welding is best					(4)	0. 10	
	(1)	0.025 to 3 mm	(2) 3	to 5 mm	(3)	5 to 8 mm	(4)	8 to 10 mm	
115.	In we	elding, flux is use	d to						
	(1)	improve melting	point o	of metal	(2)	obtain high tem	peratu	ire	
	(3)	mix the metal at	joint		(4)	protect molten	metal	from atmosphe	ere
	(21)	*							
		-			18-A				(MEC)

								Set Code : T2]
]	Booklet Code : A]
116.	Acet	elyne in gas wel	ding p	rocess is obt	ained fron	n			
	(1)	calcium carbona	ate		(2)	potassium carb	onate		
	(3)	potassium carbi	de		(4)	calcium carbide	e		
117.	The	electron beam we	elding	can be carri	ed out in				
	(1)	a shielded gas e	nviror	ment	(2)	open air			
	(3)	vacuum			(4)	a pressurized in	ert gas	schamber	
					5				
118.	Foll	owing is the fusion	on typ	e welding pr	ocess				
100	(1)	submerged are	weldir	ng process	(2)	explosive weld	ing pro	ocess	
	(3)	friction welding	g proc	ess	(4)	diffusion weldi	ng pro	cess	
					*				
119.	In h	ot machining too	l is ma	ide of					
	(1)	tungsten carbid	e		(2)	brass		*	
	(3)	diamond			(4)	stainless steel	54	4	
		1.00				11 9		¥	
120.	The	increase in hardr	ness di	ue to cold wo	orking is c	and the same of th			
	(1)	age hardening			(2)	induction harde	ening		
	(3)	work hardening			(4)	flame hardenin	g	2	
				•					
121.	In di	e casting, machin	ning a	llowance is				4	
	(1)	small	(2)	large	(3)	very large	(4)	not provided	
	100								
122.	The	draft allowance	on cas	ting is genera		14			
	(1)	1 to 2 cm/m	(2)	2 to 5 cm/n	n (3)	5 to 10 cm/m	(4)	10 to 15 cm/m	
					14				
123		asting defect wh wn as	ich oc	curs near the	e ingates	as rough lumps	on the	surface of a casting is	S
	(1)	shift	(2)	sand wash	(3)	swell	(4)	scab	
					19-A			(MEC	(

						Set Code : T2 Booklet Code : A
124.	In sa	nd moulding process,	cores are used to)		
	(1)	directional solidificat	tion	(2)	filling the cavities	with molten metal
	(3)	to create the cavity in	the casting	(4)	to minimize wasta	ge of metal
125.	The	symbol used for butt re	esistance weld is	3		
	(1)		}	(3)		(4)
126.	The	roughness grade symb	ol for the rough	ness va	alue of 6.3 microme	eters is
	(1)	N 9 (2)	N 10	(3)	N11 (4	4) N 12
127.	The	sand used for making o	cores is			
	(1)	green sand	•	(2)	dry sand	
4	(3)	loam sand	*	(4)	oil sand	
128.	Stee	balls for ball bearings	s are generally m	ade o	f	
	(1)	stainless steel		(2)	nodular cast iron	
	(3)	free carbon steel		(4)	carbon chrome ste	eel-
	10.4	8				
129.	The	shock resistance of ste	el is increased b	y addi		*
	(1)	nickel		(2)	chromium	
	(3)	cobalt and molybdenu	ım	(4)	nickel and chromit	um
130.	The	force that cancels the	effect of the force	e syst	em acting on the bo	ody is known as
<u> </u>	(1)	resultant			equilibrant	
		neutral force		(4)	balancing force	
131.		e method of joints for librium equations, which				of the truss, the number of
	(1)	2 (2)	3	(3)	4 (4	1) 5
			* 1	20-A		(MEC)

							Set C	ode : T2
							Booklet C	ode : A
	point in the stress as decreasing is c		s strain diagran	n at whi	ich the cross sect	ional	area of the te	est specimen
(1)	elastic limit			(2)	upper yield poi	nt		
(3)	lower yield poin	nt -		(4)	ultimate stress	point		a.
bear	mply supported be n of the same din as t	nensio	ns carries a cen	eadth b itral loa	and depth d carrad equal to 2W.	ries a σ Γhe de	central load	W. Another beam B will
(1)	one fourth	(2)	half	(3)	double	(4)	four times	
	1.4							
134. The	percentage elong	gations	for a ductile m	aterial	are usually			
(1)	less than 5%	(2)	5 to 10%	(3)	10 to 15%	(4)	more than	15%
135. In a	strained material	subjec	ted to two nor	mal str	resses, the maxin	num s	hear stress i	s equal to
(1)			241	(2)	difference of th		174	
(3)	half the sum of		100.00000000000000000000000000000000000	(4)	half the differe	nce of	f the norma	stresses
()						-		
	strain energy sto n same load is ap			sudden	ly loaded is	1	the strain er	nergy stored
	half	7	equal to	(3)	twice	(4)	four times	
137. In p	owder metallurgy	y the ra	nge of pressur	es to w	hich powdered	metals	s in desired	proportions
	compressed in no						8	
(1)	10 to 50 bar		19	. (2)	50 to 300 bar			
(3)	310 to 650 bar			(4)	690 to 13750 b	ar		
2								
138. The	velocity of the be	elt of m	ass 'm' and ter	sion "	Γ', for maximum	powe	er is	
(1)	T/3	(2)	Tx3	(3)	$\sqrt{T}/3m$	(4)	$\sqrt{(3m/T)}$	18.3
				21-A				(MEC)

									Code:	T2
								Booklet	Code:	A
139	. The	included angle	e for the V-belt i	is usually						
	(1)	10 to 20°			2)	20 to 30°	20			
	(3)	30 to 40°	S 16	(4)	50 to 60°		2 2		
140		en the belt is sta tension is equa		bjected to so	ome	tension known	as initi	al tension	. The va	alue of
	(1)	tension in the	tight side of th	ne belt					9	
	(2)	tension in the	slack side of the	he belt						
	(3)	sum of the ter	nsions on the ti	ght side and	l sla	ck side of the be	elt			
	(4)	average tensi	on of the tight a	and slack sid	les o	of the belt				
141.		relation between by	en the pitch of	the chain (p) ar	nd pitch circle di	amete	r of the sp	rocket	(D) is
	(1)	$p = D \sin(90^\circ)$?/T)	(2	2)	$p = D \sin(120^\circ)$	(T)			
	(3)	$p = D \sin(180$)°/T)	(4	4)	$p = D \sin (360^\circ)$	/T)	*		
						- 62				5
142.		0.0000000000000000000000000000000000000	coller diameter	is approxim	ate	ly	_ of th	e pitch.		
	(1)	5/8	(2) 6/8	(3	3)	7/8	(4)	same as t	hat	
43.	Whe	en spring index	increases, the v	alue of Wal	hl's	stress factor				
	(1)	increases line		. (2		decreases linear	rly			
	(3)	remains same		(4		increases expon	•	y		
44.		en two non inter vn as	secting and nor	n-coplanar s	shaf	is are connected	by gea	ars, the ar	rangem	ent is
	(1)	spur gearing		(2	?)	helical gearing				
	(3)	bevel gearing		. (4)	spiral gearing			9	
				22-A						(MEC)

								Set Co	de : T2
								Booklet Co	de : A
145.	Pitcl	a point of a cam	tch cu		-				
	(2)(3)(4)	a point on the pi any point on the any point on the	pitch	curve	imum	pressure angle			
146.		ratio of hoop stre					277		e y
	(1)	0.5	(2)	1	(3)	2	(4)	3	
147.	inne	shaft A is solid o r diameter 50 mr t B is	n and	both of them ar	d shaf e mad	t B is hollow wi	th outerial. Th	er diameter 1 ne torque tran	00 mm and smitted by
	(1)	1/8	(2)	1/6	(3)	13/12	(4)	15/16	
148.		dy flow energy e $w = h_2 - h_1$	-			$Q = h_1 - h_2$	(4)	h ₁ =h ₂	
140	Wor	k done in a flow	nroce	se is				8 1	N.
142.	(1)			∫pdv ∫	(3)	∫vdp	(4)	− ∫vdp	
150.	The	hyperbolic proce	ss is g	overned by				87	3° a
	(1)	Boyle's law	(2)	Charles' law	(3)	Avogadro's law	(4)	Gay-Lussac	law
151.	Reve	ersed Joule cycle	is kno	own as		*			
	(1)	Rankine cycle	Tigo Al	ž – 5	(2)	Carnot cycle			
	(3)	Bell-Coleman c	ycle		(4)	Stirling cycle			
				×		•			

23-A

(MEC)

								Set (Code : 1	2
								Booklet C	Code :	4
152.		same heat inpu	it and	compression	ratio, the	order of	efficiency of	f Otto, Die	sel and D	ual
	(1)	$\eta_{Otto} > \eta_{Diesel} >$	η_{Dual}	*	(2)	$\eta_{Otto} > \eta$	$_{\rm Dual} > \eta_{\rm Diesel}$			
	(3)	$\eta_{\text{Diesel}}\!>\!\eta_{\text{Dual}}\!>$	η_{Otto}				$_{\rm Otto} > \eta_{\rm Diesel}$	*		
153.	The	condition for a	n irrev	ersible cycle	is		¥ 4			
				$\delta(\delta q/T) < 0$		$\delta(\delta q/T)$	> 0 (4)	$\delta(\delta q/T) =$: 00	
	. ,							(1 - /		
154.	The	isentropic proc	ess me	ans				10		
	(1)	reversible pro	cess		(2)	adiabatio	process	:		
	(3)	reversible adia	abatic p	process	(4)	constant	entropy pro	cess		2
155.	Duri	ing throttling pr	ocess i	n an expansio	on valve o	f a refrige	rator			
	(1)	enthalpy rema	ins cor	stant but pres	ssure deci	reases				
	(2)	pressure rema	ins con	stant but entl	nalpy deci	eases		1		
	(3)	constant entha	lpy pro	ocess	7					
	(4)	both pressure	and ent	halpy remain	s constan	5	2			
				275						
156.		ixture of gas in ess. The change					upplying 10	0 kJ of hea	at during	the
	4000	0 kJ		5 kJ	(3)	100 kJ	. (4)	2000 kJ		
					×					
157.		effective inhibi			1					
	(1)	alcohol	(2)	water	(3)	lead	(4)	diesel		
158.	In th	e expression of	brake j	ower BP = (2	2πnT/60),	for a four	stroke engin	e 'n' shoul	d be taken	as
	(1)	N	(2)	N/2	(3)	2N	(4)	N/4		
	wher	re, N = speed of	the cra	ank shaft in r	om				es	
		•								
					24-A				(MI	EC)

									Set Cod Booklet Cod	le : T2 le : A
150	Hvd	rocarbon fuels of	f Parat	ffin family a	ire be	ing us	sed in S.I. eng	ines, due	e to	
137.	(1)	high cetane nun				(2)	high octane			
	(3)	high heating val				(4)	high specific			
	(3)	ingir nearing var	uc		ů.	(.)	mg. open.			
160.	The	flow ratio in case	e of Fi	ancis turbii	ne vai	ries fr	om			
	(1)	0.15 to 0.3	(2)	0.4 to 0.5		(3)	0.6 to 0.9	(4)	1 to 1.5	
161.		ratio of the norm when the plate is			vater	on a p	late inclined a	at an ang	le of 60° as co	mpared to
	(1)	1	(2)	$\sqrt{3}/2$		(3)	1/2	(4)	0	
				•						
162.	In al	l reaction turbine	es, for	maximum	effici	ency				
	(1)	the velocity of								
	(2)	the velocity of								
	(3)	the velocity of	whirl	at entrance	must	be zer	ro			
	(4)	the velocity of								
-						77				
163.	Cen	trifugal pumps de	ealing	with mud h	ave a	n imp	eller of the typ	oe		
	(1)	open		100			double sucti			
	(3)	one-side shrou	ded			(4)	two-sides sh	rouded		
									1	
164.	Spec	cific speed of im	pulse	turbine rang	ges fr	om				
	(1)	1000 to 2000					60 to 300	(4)	10 to 50	
						· •				
165.	Hyd	raulic ram is a pu	ımp w	hich works	on th	e prin	ciple of			
	(1)	centrifugal acti				(2)	reciprocatin	g action		
	(3)	positive displace		t action		(4)	inertia force	s of wate	er in the suppl	y line
		3								
								+0		# **
					2	25-A				(MEC)

			¥.	2			Set Code : T2
							Booklet Code : A
166 Spa	re Ignition engine	works	on				
(1)			Otto cycle	(3)	Dual cycle	(4)	Ericssion cycle
(1)	2,000, 0,00	(2)		(3)	Buai eyele	(.)	Briession of the
167. Wh	ile drawing a hyd	raulic o	or pneumatic c	ircuit,	it must begin wi	ith	and end with
(1)	pump, actuator		£.	(2)	filter, flow con	ntrol va	lve
(3)	pressure gauge	, pressu	re control val	ve (4)	service units,	signalir	ng elements
168. The	pressure lines in	the we	t region of Mo	ollier cl	hart are straight	becaus	se
(1)	pressure remain	ns cons	tant	(2)	volume remain	ns cons	tant
(3)	temperature rer	nains c	onstant	(4)	enthalpy rema	ins con	stant
169. A sa	afety valve mainly		with locomotive	ve and r	marine boilers is	3	
(1)	•			(2)		100	
(3)	high steam and	low wa	ter safety valv	e (4)	spring loaded	safety v	alve
170. In o take		he capa	city of boilers	, the fee	ed water temper	ature ar	nd working pressure are
(1)	100°C and norr	nal atm	ospheric press	sure	3.		
(2)	100°C and 1.11	oar					
(3)	50°C and norm	al atmo	spheric pressu	ıre			
(4)	50°C and 1 bar	pressur	e	κ.			
74							
171. The	Mach number of	steam	low at exit to	a conve	ergent divergen	t nozzle	should be
(1)	0	(2)	ess than 1	(3)	more than 1	(4)	equal to 1
	en the back pressure is said to be	ire of a	nozzle is belo	w the d	esigned value o	f pressu	are at exit of nozzle, the
(1)	under expanding	g	10	(2)	over expanding	g	
(3)	choked		*	(4)	super saturated	i	1 3, 3,
				26-A			(MEC)

Set Code : T2

								50 53	Booklet (Code : A
173.		available enthalp librium flow	y drop it	a supers	atura	ted flo	w of steam thro	ugh a n	ozzle as c	ompared to an
	(1)	remains same			2	(2)	increases		2.5	
*	(3)	decreases				(4)	unpredictable			
		1								
174.	The	Parson's reaction	n turbine	has						
	(1)	only moving bla	ades						i	
	(2)	only fixed blade	es		:8					
	(3)	different shapes	s of fixed	d and mov	ving!	olades				
	(4)	identical shape	of fixed	and movi	ng b	lades				**
							V 4	8		56
175.	The blad	isentropic entha es of a turbine. T	lpy drop he degre	in movinee of reac	ng bl	ade is	2/3 rd of the ise	ntropic	enthalpy	drop in fixed
	(1)	0.4	(2) 0	.56	,	(3)	0.67	(4)	1.67	
				8				100	7	
176.	The	cooling system u	ised for	superson	ic air	crafts	and rockets is	100		2*0
	(1)	simple air cool	ing syste	em		(2)	boot-strap air	cooling	g system	
	(3)	reduced ambier	nt air coo	oling syst	em	(4)	regenerative a	ir cooli	ng system	1
		As a				34				
177.	The	capacity of a dor	nestic re	efrigerato	r is i	n the r	ange of			
	(1)	0.1 to 0.3 T				(2)	0.5 to 1.0 T			
	(3)	1 to 3 T				(4)	3 to 5 T			
				n.						
178.	The	capillary tube is	not used	l in large	capa	city re	frigeration syst	ems be	cause	
	(1)	It is made of co	pper							14
	(2)	Capacity contro	ol is not	possible			97			
	(3)	required pressu	re drop	cannot be	achi	eved		,		
	(4)	cost is too high					4			0 2
					:	27-A				(MEC)

Set Code : T2

Booklet Code : A

	In aqua-ammonia and lithium bromide - wa are respectively	ter ab	sorption refrigeration systems, the refrigerants
((1) water and water	(2)	water and lithium bromide
((3) ammonia and lithium bromide	(4)	ammonia and water
			F Aug
180. (Queuing theory is associated with		
. ((1) inventory (2) sales	(3)	waiting time (4) production time
181.	The routing function in a production system	ı desig	gn is concerned with
.((1) manpower utilization	(2)	machine utilization
.((3) quality assurance of the product	(4)	optimizing material flow through the plant
	The value engineering technique in which development is called	h exp	erts of the same rank assemble for product
((1) brain storming	(2)	Delphi
((3) morphological analysis	(4)	direct expert comparison
183. 7	The type of organization preferred for an au	tomol	bile industry
((1) line organization	(2)	functional organization
((3) line and staff organization	(4)	line, staff and functional organization
	The mathematical technique for finding the maximum manner is known as	e best	use of limited resources of a company in the
(1) value analysis	(2)	network analysis
(3) queuing theory	(4)	linear programming
	For a small scale industry the fixed cost per Rs. 20/- and sales price is Rs. 30/- per piece.		n is Rs.5000/ The variable cost per product is break even production per month will be
2	1) 300 (2) 400	(3)	7.07
	. 2:	8-A	(MEC)

								Set Code:	T2
								Booklet Code:	A
186.	Binc	ards are used in							
	(1)	machine loading (2) quality control	(3)	store	s	(4)	inventory	
187.			estimate about the	amou	nt of n	naterials ha	ndling	g between variou	is work
		ons is known as					(1)		
	(1).	flow chart (2	2) process chart	(3)	trave	l chart	(4)	operation chart	
188.			ole for manufacturing	ng too				2	
	(1)	product layout			(2)	process la			
	(3)	combination of pro	oduct and process la	ayout	(4)	fixed posi	ition l	ayout	
			80 343						
189.	The	forecasting techniq	ue used for new pro	ducts					
	(1)	Box Jenkins	140	(2)	Sing	le exponent	tial sn	noothing	
	(3)	Delphi type		(4)	simp	le regressi	on		
		100	*						
190.	Sixs	igma level of quali	ty control means			9 8 8 6 8			
	(1)		llion opportunities	(2)	3.4 d	lefects per	millio	on opportunities	
	(3)	4.3 defects per mi	llion opportunities	(4)	5.7 d	lefects per	millic	on opportunities	
									**
191.	In in	ventory control the	ory, the economic o	rder c	quanti	ty is			
8		average level of in		(2)		num lot siz	ze		
		capacity of a ware		(4)	lot si	ze correspo	onding	g to break-even a	malysis
	. ,								
192.	Inas	single dry plate clut	ch, torsional vibrati	ions a	re abso	orbed by			
	(1)	coil springs (2) cushion springs	(3)	centi	ral hub	(4)	clutch pedal	25
	(*)	con springs (,	,			0.00		
103	The	torque converter u	ses to tr	ansfe	r torgi	ie.			
175.	(1)			(2)	auto	matic trans	missi	on fluid	
				(4)		belt			6
	(3)	gears	,	29-A	2.001	3-11			(MEC)
			,	-/-rx					

							Set Code : []	[2]
194.	In a	four wheel drive, the r	number of gear b	oxes a	re			
	(1)		2	(3)		(4) 4	2	
195.	In a	hydraulic power steeri	ing system, the p	ower s	teering pump is	driven by a	,	
	(1)	belt driven by camsh	aft	(2)	chain driven by	crankshaft		
	(3)	belt driven by drivesh	naft	(4)	belt driven by c	rankshaft		
196.	Whi	ch of the following pa	rameter can be a	djuste	d by modifying th	he tie-rod at	tachment leng	th?
	(1)	camber (2)	caster	(3)	toe	(4) steer	ring gear ratio	
						2		
197.	The	gudgeon pin connects						,
	(1)	crankshaft and conne	ecting rod	(2)	connecting rod	and piston		
	(3)	connecting rod and c	am shaft	(4)	piston and cran	k shaft		
			(9)					
198.	The	function of antilock b	rake system is th	at it		•		
	(1)	reduces the stopping	distance		3	74		
	(2)	minimizes the brake	fade		150		K. 27	
	(3)	maintains directional	control during b	oraking	g by preventing the	he wheels fr	om locking	
	(4)	prevents nose dives of	luring braking a	nd ther	e by postpones lo	ocking of the	e wheels	
			9,63					
199.	Odo	meter is an instrument	t used for measu	remen	t of	EV.		
	(1)	power		(2)	fuel consumption	on		
	(3)	engine rpm		(4)	distance			
						10		
200.	The	problem caused by the	wheel imbalance	ce is				
	(1)	hard steering and har	d ride		14			
	(2)	poor acceleration and	d hard steering					
	(3)	steering wheel vibrat	ions and uneven	tyre w	ear			
	(4)	poor acceleration and	d reduced fuel e	fficien	су			
				30-A			. (0	1EC)