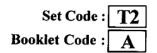
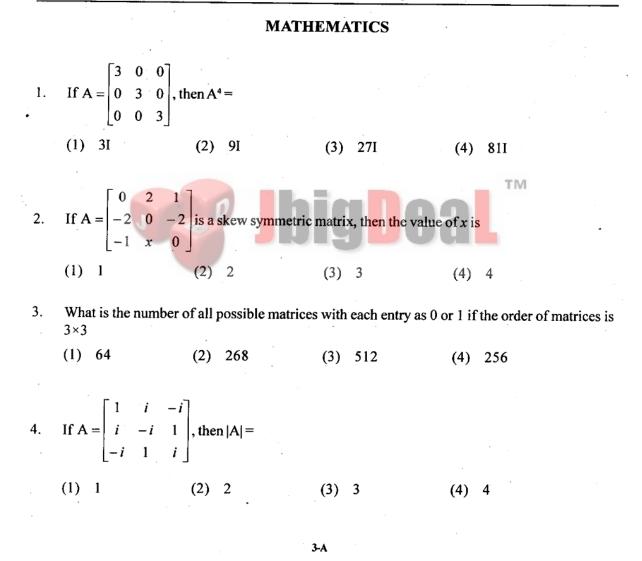

Download from www.JbigDeaL.com bioDeal

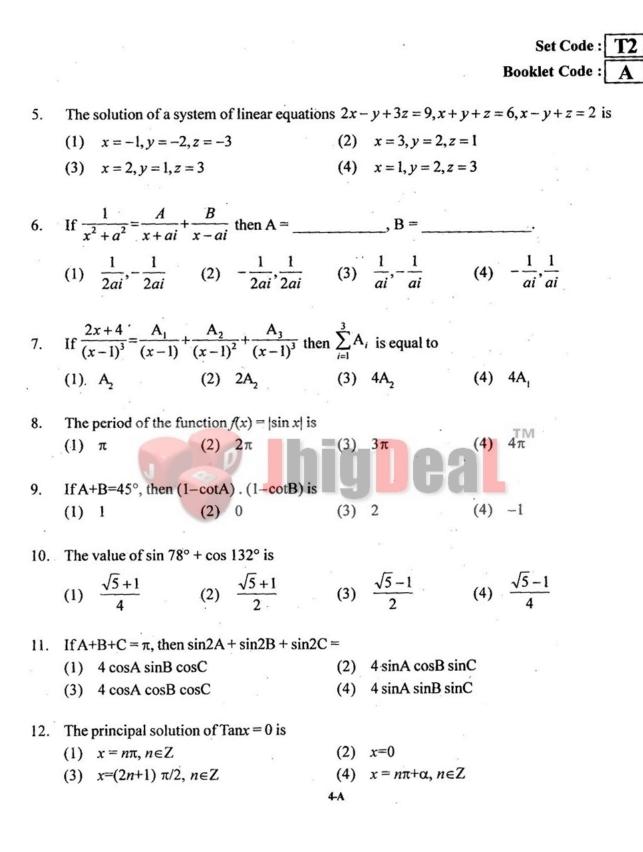
Note: (1) Answer all questions.

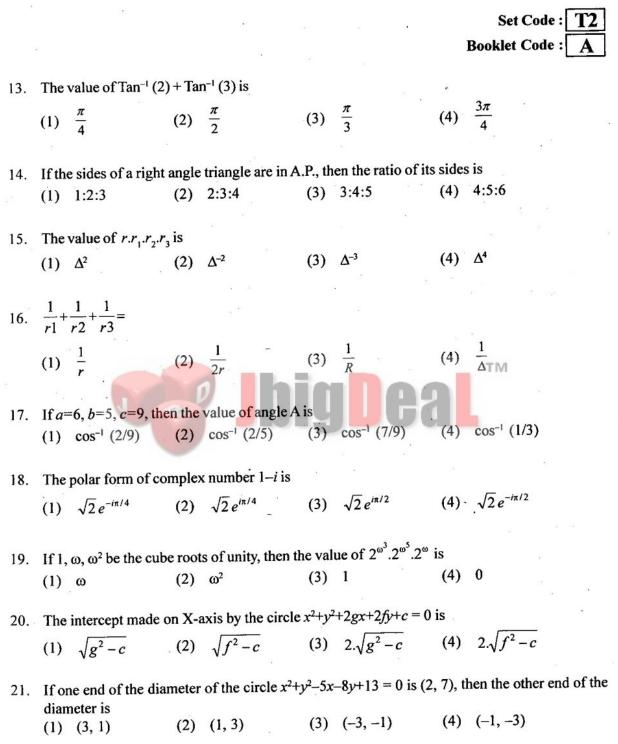

- (2) Each question carries 1 mark. There are no negative marks.
- (3) Answer to the questions must be entered only on OMR Response Sheet provided separately by completely shading with H.B. Pencil, only one of the circles 1, 2, 3 or 4 provided against each question, and which is most appropriate to the question.

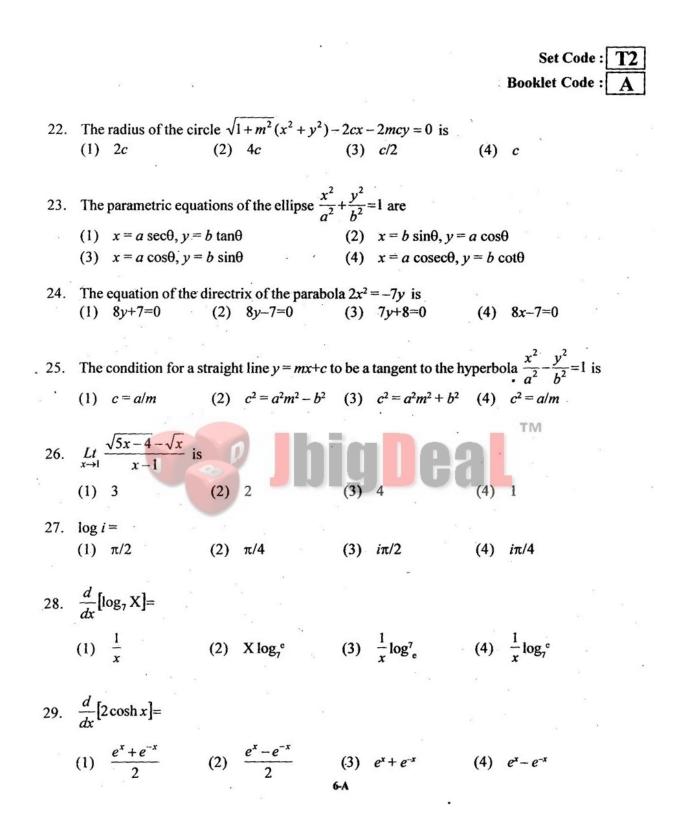
(MEC)

MECHANICAL ENGINEERING INSTRUCTIONS TO CANDIDATES

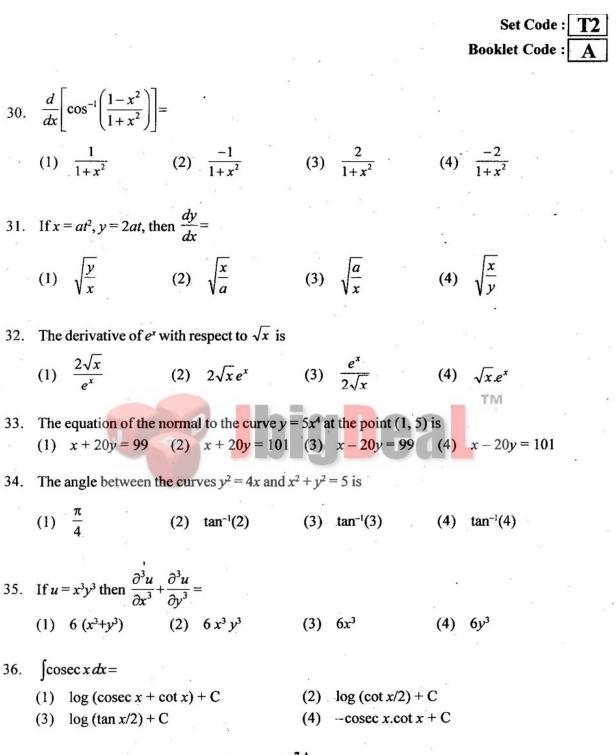

- Candidates should write their Hall Ticket Number only in the space provided at the top left hand corner of this page, on 1. the leaflet attached to this booklet and also in the space provided on the OMR Response Sheet. BESIDES WRITING, THE CANDIDATE SHOULD ENSURE THAT THE APPROPRIATE CIRCLES PROVIDED FOR THE HALL TICKET NUMBERS ARE SHADED USING H.B. PENCIL ONLY ON THE OMR RESPONSE. SHEET. DO NOT WRITE HALL TICKET NUMBER ANY WHERE ELSE.
- 2. Immediately on opening this Question Paper Booklet, check:
- - Whether 200 multiple choice questions are printed (50 questions in Mathematics, 25 questions in Physics, 25 questions in Chemistry and 100 questions in Engineering)
 - In case of any discrepancy immediately exchange the Question paper Booklet of same code by bringing (b) the error to the notice of invigilator.
- 3. Use of Calculators, Mathematical Tables and Log books is not permitted.
- Candidate must ensure that he/she has received the Correct Question Booklet, corresponding to 4. his/her branch of Engineering.
- 5. Candidate should ensure that the booklet Code and the Booklet Serial Number, as it appears on this page is entered at the appropriate place on the OMR Response Sheet by shading the appropriate circles provided therein using H.B. pencil only. Candidate should note that if they fail to enter the Booklet Serial Number and the Booklet Code on the OMR Response Sheet, their Answer Sheet will not be valued.
- Candidate shall shade one of the circles 1, 2, 3 or 4 corresponding question on the OMR Response 6. Sheet using H.B. Pencil only. Candidate should note that their OMR Response Sheet will be invalidated if the circles against the question are shaded using Black / Blue ink pen / Ball pen / any other pencil other than H.B. Pencil or if more than one circle is shaded against any question.
- 7. One mark will be awarded for every correct answer. There are no negative marks.
- 8 The OMR Response Sheet will not be valued if the candidate :
 - Writes the Hall Ticket Number in any part of the OMR Response Sheet except in the space provided for (a) the purpose.
 - Writes any irrelevant matter including religious symbols, words, prayers or any communication whatsoever (b) in any part of the OMR Response Sheet.
 - (c) Adopts any other malpractice.
- 9. Rough work should be done only in the space provided in the Question Paper Booklet.
- 10. No loose sheets or papers will be allowed in the examination hall.
- 11. Timings of Test: 10.00 A.M. to 1.00 P.M.
- Candidate should ensure that he / she enters his / her name and appends signature on the Question paper booklet, 12. leaflet attached to this question paper booklet and also on the OMR Response Sheet in the space provided. Candidate should ensure that the invigilator puts his signature on this question paper booklet, leaflet attached to the question paper booklet and also on the OMR Response Sheet.
- 13. Before leaving the examination hall candidate should return both the OMR Response Sheet and the leaflet attached to this question paper booklet to the invigilator. Failure to return any of the above shall be construed as malpractice in the examination. Question paper booklet may be retained by the candidate.
- 14. This booklet contains a total of 32 pages including Cover page and the pages for Rough Work.


1-A




Note: (1) Answer all questions.

- (2) Each question carries I mark. There are no negative marks.
- (3) Answer to the questions must be entered only on OMR Response Sheet provided separately by completely shading with H.B. Pencil, only one of the circles 1, 2, 3 or 4 provided against each question, and which is most appropriate to the question.
- (4) The OMR Response Sheet will be invalidated if the circle is shaded using ink / ball pen or if more than one circle is shaded against each question.



Download from www.JbigDeaL.com JbidDea

7-A

Set Code : T2
Booklet Code : A
37.
$$\int_{0}^{\frac{\pi}{2}} \cos^{11} x \, dx =$$

(1) $\frac{256}{693}$ (2) $\frac{256\pi}{693}$ (3) $\frac{\pi}{4}$ (4) $\frac{128}{693}$
38. $\int f^{4}(x) [f(x)]^{p} \, dx =$
(1) $\frac{[f(x)]^{p-1}}{n-1} + C$ (2) $\frac{[f(x)]^{p+1}}{n+1} + C$ (3) $n[f(x)]^{p-1} + C$ (4) $(n+1)[f(x)]^{p+1} + C$
39. $\int \frac{dx}{(x+7)\sqrt{x+6}} =$
(1) $Tan^{-1}(\sqrt{x+6}) + C$ (2) $2Tan^{-1}(\sqrt{x+6}) + C$
(3) $Tan^{-1}(x+7) + C$ (4) $2Tan^{-1}(x+7) + C$
40. $\int \tan^{-1}x \, dx =$
(1) $x.Tan^{-1}x + \frac{1}{2}\log(1+x^{2}) + C$ (2) $\frac{1}{1+x^{2}} + C$
(3) $x^{2}Tan^{-1}x + C$ (4) $x.Tan^{-1}x - \log\sqrt{1+x^{2}} + C$
41. $\int \frac{dx}{1+e^{-x}} =$
(1) $\log(1+e^{x}) + C$ (2) $\log(1+e^{x}) + C$
(3) $e^{-x} + C$ (4) $e^{x} + C$
42. $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin|x| \, dx =$
(1) 0 (2) 1 (3) 2 (4) -1
BA

Set Code :
Booklet Code :
A
43. Area under the curve
$$f(x) = \sin x \ln [0, \pi]$$
 is
(1) 4 sq. units
(2) 2 sq. units
(3) 6 sq. units
(4) 8 sq. units
44. The order of $x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2} - 3y = x$ is
(1) 1
(2) 4
(3) 3
(4) 2
45. The degree of $\left[\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}} = a \frac{d^2y}{dx^2}$ is
(1) 4
(2) 2
(3) 1
(4) 3
46. The family of straight lines passing through the origin is represented by the differential equation
(1) $ydx + xdy = 0$
(2) $xdy - ydx = 0$
(3) $xdx + ydy = 0$
(4) $xdx - ydy = 0$
TM
47. The differential equitation $\frac{dy}{dx} + \frac{ax + by + g}{bx + by + f} = 0$ is called
(1) Homogeneous
(2) Exact
(3) Linear
(4) Legender
48. The solution of differential equation $\frac{dy}{dx} = e^{-x^2} - 2xy$ is
(1) $ye^{-x^2} = x + c^{-x}$
(2) $ye^x = x + c$
(3) $ye^{x^2} = x + c$
(4) $y = x + c$
(5) $Particular Integral of (D^{-1})^2y = e^x$ is
(1) $x^4 e^x$
(2) $\frac{x^4}{24}e^{-x}$
(3) $\frac{x^4}{12}e^x$
(4) $\frac{x^4}{24}e^x$

Set Code :	
Booklet Code :	A

PHYSICS

51.	. Two quantities A and B are related by the relation A force. The dimensions of B will be	B = m where m is linear mass density and A is
ä.,	(1) same as that of latent heat (2)	same as that of pressure
		same as that of momentum
52.		
	(1) $[ML^2T^2I^2]$ (2) $[ML^{-2}T^4I^2]$ (3)	$[M^{1}L^{3}T^{3}I] \qquad (4) [M^{-1}L^{-2}T^{4}I^{2}]$
53.	If l , m and n are the direction cosines of a vector, t	hen
	(1) $l+m+n=1$ (2) $l^2+m^2+n^2=1$ (3)	$\frac{1}{l} + \frac{1}{m} + \frac{1}{n} = 1 \qquad (4) lmn = 1$
54.	The angle between $i+j$ and $j+k$ is	1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a 1 a
51.	(1) 0° (2) 90° (3)	45° (4) 60°
55.	A particle is moving eastwards with a velocity of 5 ms ⁻¹ northwards. The average acceleration in thi	5 ms ⁻¹ . In 10 seconds the velocity changes to s time is
	(1) $\frac{1}{\sqrt{2}}$ ms ⁻² towards north-west (2)	zero
•	(3) $\frac{1}{2}$ ms ⁻² towards north (4)	$\frac{1}{\sqrt{2}}$ ms ⁻² towards north-east
56.	The linear momentum of a particle varies with tim correct?	e t as $p = a+bt+ct^2$ which of the following is
	(1) Force varies with time in a quadratic manner.	
	(2) Force is time-dependent.	
	(3) The velocity of the particle is proportional to	
	(4) The displacement of the particle is proportio	nal to t.
57	A shell of mass m moving with a velocity v sudden	ly explodes into two pieces. One part of mass

57. A shell of mass m moving with a velocity v suddenly explodes into two pieces. One part of mass m/4 remains stationary. The velocity of the other part is

(2) 2v (3) 3v/4 10-A (4) 4v/3(1) v

Set Code : T2 Booklet Code : A

- 58. The velocity of a freely falling body after 2s is (1) 9.8 ms^{-1} (2) 10.2 ms^{-1} (3) 18.6 ms^{-1} (4) 19.6 ms^{-1}
- 59. A large number of bullets are fired in all directions with the same speed u. The maximum area on the ground on which these bullets will spread is
 - (1) $\frac{\pi u^2}{g^2}$ (2) $\frac{\pi u^4}{g^2}$ (3) $\frac{\pi u^2}{g^4}$ (4) $\frac{\pi u}{g^4}$
- 60. The minimum stopping distance for a car of mass m, moving with a speed v along a level road, if the coefficient of friction between the tyres and the road is μ , will be

(1) $\frac{v^2}{2\mu g}$ (2) $\frac{v^2}{\mu g}$ (3) $\frac{v^2}{4\mu g}$ (4) $\frac{v}{2\mu g}$

- 61. When a bicycle is in motion, the force of friction excreted by the ground on the two wheels is such that it acts
 - (1) In the backward direction on the front wheel and in the forward direction on the rear wheel
 - (2) In the forward direction on the front wheel and in the backward direction on the rear wheel
 - (3) In the backward direction on both the front and the rear wheels
 - (4) In the forward direction on both the front and the rear wheels
- 62. In a perfectly inelastic collision, the two bodies
 - (1) strike and explode (2) explode without striking
 - (3) implode and explode (4) combine and move together
- 63. Under the action of a constant force, a particle is experiencing a constant acceleration, then the power is
 - (1) zero

(2) positive

(4) increasing uniformly with time

(3) negative

11-A

Set Code : **Booklet Code :** 64. Consider the following two statements: A: Linear momentum of a system of particles is zero. B: Kinetic energy of a system of particles is zero. Then (1) A implies B & B implies A (2) A does not imply B & B does not imply A (3) A implies B but B does not imply A (4) A does not imply B but B implies A 65. An engine develops 10 kW of power. How much time will it take to lift a mass of 200 kg to a height of 40 m? (Given $g = 10 \text{ ms}^{-2}$) (3) 8s (1) 4s (2) 5s (4) 10s 66. If a spring has time period T, and is cut into n equal parts, then the time period will be (2) $\frac{\mathrm{T}}{\sqrt{n}}$ (3) $n\mathrm{T}$ (1) $T\sqrt{n}$ (4) T_{TM} 67. When temperature increases, the frequency of a tuning fork (1) increases (2) decreases (3) remains same (4) increases or decreases depending on the materials 68. If a simple harmonic motion is represented by $\frac{d^2x}{dy^2} + \alpha x = 0$, its time period is (3) $\frac{2\pi}{\sqrt{\alpha}}$ (4) $\frac{2\pi}{\alpha}$ (1) $2\pi\sqrt{\alpha}$ (2) 2πα 69. A cinema hall has volume of 7500 m³. It is required to have reverberation time of 1.5 seconds. The total absorption in the hall should be (4) 0.825 w-m^2 (2) 82.50 w-m² (3) 8.250 w-m^2 (1) 850 w-m^2

				Set Code : T2
			Во	ooklet Code : A
70.	To absorb the sound in a hall which of the	he followi	ing are used	
	(1) Glasses, stores	(2)	Carpets, curtains	÷
	(3) Polished surfaces	(4)	Platforms	÷
71.	If N represents avagadro's number, ther	the numb	per of molecules in 6 gm o	of hydrogen at NTP is
	(1) 2N (2) 3N	(3)		
72.	The mean translational kinetic energy of	of a perfec	t gas molecule at the tem	perature T K is
	(1) $\frac{1}{2}kT$ (2) kT	(3)	$\frac{3}{2}kT$ (4) 2	kT
	The amount of heat given to a body whi	ich raises	its temperature by 1°C	
73.		(2)	The second	
	 (1) water equivalent (3) specific heat 	(4)		
74.	During an adiabatic process, the pressu absolute temperature. The ratio Cp/Cv	ire of a ga for gas is	as i <mark>s foun</mark> d to be prop <mark>or</mark> tion	TM onal to the cube of its
	(1) $\frac{3}{2}$ (2) $\frac{4}{3}$	(3)	2 (4)	53
75.	Cladding in the optical fiber is mainly u	used to	a	
	(1) to protect the fiber from mechan		es	
	(2) to protect the fiber from corrosic			14. I.A.

- (3) to protect the fiber from mechanical strength
- (4) to protect the fiber from electromagnetic guidance

Set Code :	T2
Set Code : Booklet Code :	A

CHEMISTRY

76.	The	valency electron	ic cor	figuration of	Phospho	orous atom (At.)	No. 15) is
	(1)	3s ² 3p ³	(2)	3s1 3p3 3d1	(3)	3s ² 3p ² 3d ¹	(4)	3s ¹ 3p ² 3d ²
77.	Ane	element 'A' of At.	No.12	combines wit	h an eler	ment 'B' of At.N	0.17.7	The compound formed is
	(1)	covalent AB	(2)	ionic AB ₂	(3)	covalent AB ₂	(4)	ionic AB
78.	The	number of neutro	ons pr	esent in the at	om of s	Ba ¹³⁷ is		
		56			20	193	.(4)	81
79.	Hyd	rogen bonding in	wate	r molecule is r	esponsi	ble for		х а
	(1)	decrease in its f	reezi	ng point	(2)	increase in its	degree	e of ionization
	(3)	increase in its b	oiling	point	(4)	decrease in its	boilin	g point
					_			TM
80.	In th	e HCl molecule,	the bo	onding betwee	n hydrog	gen and chlorine	is	
	(1)	purely covalent	(2)	purely ionic	(3)	polar covalent	(4)	complex coordinate
81.	Pota	ssium metal and	potas	sium ions				
	(1)	both react with	water		(2)	have the same	numbe	er of protons
	(3)	both react with	chlori	ne gas				onic configuration
82.	stand	dard flask. 10 ml o er into 100 ml of s	f this olution	solution were p on. The concen	pipetted of tration of	out into another f	lask ar loride	
	(1)	0.1 M	(2)	1.0 M	(3)	0.5 M	(4)	0.25 M
83.	Con	centration of a 1.0	0 M s	olution of pho	sphoric	acid in water is		
	(1)	0.33 N	(2)	1.0 N	(3)	2.0 N	(4)	3.0 N
84.	Whi	ch of the followin	ng is a	Lewis acid?				
1	(1)	Ammonia		÷	(2)	Berylium chlor	ide	
	(3)	Boron trifluorid	e		(4)	Magnesium ox	ide	
					14-A			

								Set Cod	e : T2
								Booklet Cod	e : A
85.	 (1) (2) (3) 	h of the followi Potassium chlo Sodium acetate Magnesium sul Calcium chlori	ride ar and ac phate a	d potassium hy cetic acid and sulphuric a	ydroxid cid		er solution	1?	ж С
86.	Whick	h of the follow	ing is a	in electrolyte?	-				
	(1) ·	Acetic acid	(2)	Glucose	(3)	Urea	(4)	Pyridine	
87.		late the Standa $/Cu^{+2} = (-) 0.34$		f of the cell, C	cd/Cd+2/	/Cu ⁺² /Cu gi	ven that E	$C^0 Cd/Cd^{+2} = 0$).44V and
	(1)	(-) 1.0 V	(2)	1.0 V	(3)	(-) 0.78 V	(4)	0.78 V	
88.	(1)	ution of nickel nickel will be d H ₂ gas will be l	leposit	ed on the anod	e (2)	Cl ₂ gas wil	l be libera	ted at the cath	ode
89.	Whic	h of the followi	ing me	tals will under	go oxida	ation fastest	?		
	(1)		(2)		(3)	Zinc	(4)	Iron	
90.	Whic	h of the follow	ing car	not be used for	r the ste	rilization of	fdrinking	water?	
		Ozone	U			Calcium O			
	(3)	Potassium Chl	oride		(4)	Chlorine w	vater		•
91.	A was terms	ter sample show of calcium car	ved it t bonate	o contain 1.20 equivalent is	8) - B		•		ardness in
	(1)	1.0 ppm	(2)	1.20 ppm	(3)	0.60 ppm	(4)	2.40 ppm	
92.	Soda	used in the L-S	proce	ss for softenin	g of wa	ter is, Chem	ically.		
	(1)	sodium bicarbo	onate		(2)				
	(3)	sodium carbon	ate	· .	(4)	sodium hy	droxide (4	.0%)	· ·
93.	Thep	process of ceme	ntation	n with zinc pow	vder is k	nown as			
		sherardizing	(2)	zincing			ding (4)	electroplatin	ng
					15-A	÷			

Set Code : **Booklet Code :** 94. Carrosion of a metal is fastest in (2) acidulated water (3) distilled water (4) de-ionised water (1) rain-water 95. Which of the following is a thermoset polymer? (1) Polystyrene (2) PVC (4) Urea-formaldehyde resin (3) Polythene 96. Chemically, neoprene is (2) polyacetylene (1) polyvinyl benzene poly-1,3-butadiene (3) polychloroprene (4) 97. Vulcanization involves heating of raw rubber with (2) elemental sulphur (1) selenium element (3) a mixture of Se and elemental sulphur (4) a mixture of selenium and sulphur dioxide 98. Petrol largely contains (1) a mixture of unsaturated hydrocarbons $C_{s} - C_{s}$ (2) a mixture of benzene, toluene and xylene (3) a mixture of saturated hydrocarbons $C_{12} - C_{14}$ (4) a mixture of saturated hydrocarbons $C_6 - C_8$ Which of the following gases is largely responsible for acid-rain? 99. (2) CO₂ & water vapour (1) SO, & NO, (4) N, & CO, (3) $CO_{2} \& N_{2}$ 100. BOD stands for (2) Biometric Oxygen Demand (1) Biogenetic Oxygen Demand (4) Biospecific Oxygen Demand (3) Biological Oxygen Demand

16-A

						Set Code : T2 Booklet Code : A
		MI	CHANICAI	L ENG	GINEERING	
101. An	ortise gauge is a					
· (1)	planning tool			(2)	striking tool	
(3)	marking tool			(4)	boring tool	
		1				. 1.
102. A sa	aw which cuts wo	od during	, the return str	oke o	f the saw is known	as .
(1)	push saw	(2) pu	ll saw	(3)	rip saw (*	4) hand saw
103. In a	shaper, tool head	l consist o	of			
(1)	clapper box			(2)	work holding devi	ce
(3)	collet			(4)	four sided tool po	st
	swing diameter ne lathe.	over the b	ed is	th	he h <mark>eight</mark> of the cen	tre measured from the bed
(1)	equal to			(2)	one and half times	
(3)	twice		ř.	(4)	thrice	
105. The	rake angle requi	red to mad	chine brass by	HSS	tool is	· ·
(1)	0°	(2) 10	0	(3)	20° (4	4) -10°
106. The	binding material	used in c	emented carb	ide to	olis	
	tungsten) cobalt
	relation betweer e of n depends up		T) and cuttin	g spee	ed (V) is $VT^n = co$	nstant. In this relation, the
(1)	work material			(2)	working condition	S
(3)	tool material			(4)	type of chip produ	ced
			13	7-A	61 ge	(MEC)

			÷				Set Code : Booklet Code :	T2 A
108.	The	usual value of th	e point angle of a	drill is				
	(1)	60°	(2) 80°	(3)	112°	(4)	118°	
			· .		2			
109.	Dril	ling is an exampl	le of					
•	(1)	Orthogonal cutt	ting	(2)	Oblique cuttin	ng		
	(3)	Simple cutting		(4)	Uniform cutti	ing		
110.	The	top and sides of t	he table of a shape	er usually	have	4	13 13	
	(1)	I-type slots	(2) L-type slot	s (3)	T-type slots	. (4)	H-type slots	
111.	In la	pping operation,	the amount of thic	kness of	metal removed	is		
	(1)	0.005 to 0.01 m		(2)	0.01 to 0.1 m	m.		
	(3)	0.05 to 0.1 mm		(4)	0.5 to 1 mm		TM	
			0	1 i c				а. -
112.			ving metal by a cu	atter which	h is rotated in	the sam	ne direction of tra	vel of
		c piece is called	(2) dave willing	(2)	for a willing	(4)		24
	(1)	up milling	(2) down millin	ng (3)	face milling	(4)	end milling	10
113	CNIC	drilling machin	e is considered to	ha				
	(1)	P.T.P controlled		(2)	Continuous	th cont	trolled machine	
	(3)	Servo controlled		(2)	Adaptive cont			
	(5)	Servo controlled	umachine	(4)	Adaptive coin	Ioneu I	nachnic	
114	Sean	welding is hest	adopted for metal	thickness	ranging from			
	(1)		(2) $3 \text{ to } 5 \text{ mm}$	(3)	5 to 8 mm	(4)	8 to 10 mm	
		0.025 to 5 mm	(2) 5105100	(3)	5 to 6 mm	(4)	010101111	
115.	Inwe	elding, flux is use	ed to		45		* ⁵	
	(1)	improve melting	g point of metal	(2)	obtain high ter	nperati	ire	
	(3)	mix the metal at	joint	(4)	protect molter	i metal	from atmosphere	
	2							
				18-A		2		(MEC)

							Set Code : T2
							Booklet Code : A
116.	Acet	elyne in gas weld	ling p	rocess is obtain	ed from	n	
	(1)	calcium carbona			(2)	potassium carbonate	6 ×
	(3)	potassium carbi	de		(4)	calcium carbide	2 P P
117.	The	electron beam we	lding	can be carried	out in		
	(1)	a shielded gas er	nviror	nment	(2)	open air	
	(3)	vacuum			(4)	a pressurized inert ga	as chamber
					2		1
118.	Folle	owing is the fusic	on typ	e welding proce	ess		
	(1)	submerged are v	veldi	ng process	(2)	explosive welding pr	ocess
	(3)	friction welding	proc	ess	(4)	diffusion welding pr	ocess
				2		•	
119.	Inho	ot machining tool	is ma	ade of			TM
	(1)	tungsten carbide		0 h	(2)	brass	
2	(3)	diamond			(4)	stainless steel	
120.	The	increase in hardn	ess d	ue to cold work	ing is c		
	(1)	age hardening			(2)	induction hardening	
	(3)	work hardening			(4)	flame hardening	
						5 S S	
121.	In di	e casting, machin	ing a	llowance is			
	(1)	small	(2)	large	(3)	very large (4)	not provided
122.	The	draft allowance of	on cas	ting is generally			
	(1)	1 to 2 cm/m	(2)	2 to 5 cm/m	(3)	5 to 10 cm/m (4)	10 to 15 cm/m
					S.		
123.		asting defect whi	ch oc	curs near the in	ngates	as rough lumps on th	e surface of a casting is
	(1)	shift	(2)	sand wash	(3)	swell (4)	scab
					19-A		(MEC)

		В	Set Code : T2 ooklet Code : A
124. In sand moulding process, co	ores are used to		
(1) directional solidification		filling the cavities with	molten metal
(3) to create the cavity in t	the casting (4)	to minimize wastage of	metal
125. The symbol used for butt res	sistance weld is		
(1) (2)	(3)		4)
126. The roughness grade symbo	I for the roughness va	alue of 6.3 micrometers	is
	N 10 (3)		
127. The sand used for making co	ores is		
(1) green sand	• (2)	dry sand	
(3) loam sand	(4)	oil sand •	14
 128. Steel balls for ball bearings a (1) stainless steel (3) free carbon steel 		f n <mark>odular cast iron</mark> carbon chrome steel	тм
129. The shock resistance of stee	l is increased by addi	ng	
(1) nickel	(2)	chromium	
(3) cobalt and molybdenun	m (4)	nickel and chromium	
130. The force that cancels the ef	ffect of the force syst	em acting on the body is	known as
(1) resultant		equilibrant	
(3) neutral force	(4)	balancing force	
131. In the method of joints for a equilibrium equations, which	the analysis of force h are available at each	s in the members of the i joint are	truss, the number of
(1) 2 (2) 3	22.27		
	20-A		(MEC)

Download from www<mark>.JbigDeaL.com Powered By © JbigDeaL</mark>

								Set Code : T2 Booklet Code : A
132.		point in the stress s decreasing is c		ıs strain diagram	at whi	ich the cross sec	tional a	area of the test specimen
	(1)	elastic limit			(2)	upper yield poi	int	
	(3)	lower yield poin	nt .		(4)	ultimate stress	point	5 e a
133.	bean	mply supported b n of the same din as t	nensio	ons carries a cent	adth b ral loa	and depth d car ad equal to 2W.	ries a o The de	central load W. Another flection of beam B will
	(1)	one fourth	(2)	half	(3)	double	(4)	four times
		1						а. К. А. С.
134.	The	percentage elong	gation	s for a ductile ma	terial	are usually		
	(1)	less than 5%	(2)	5 to 10%	(3)	10 to 15%	(4)	more than 15%
135.	Ina	strained material	subje	cted to two norn	nal str	esses, the maxin	num sl	hear stress is equal to
	(1)					difference of t		
	(3)	half the sum of	the no	ormal stresses	(4)	half the differe	ence of	the normal stresses
136.		strain energy sto n same load is ap			ıdden	ly loaded is	1	he strain energy stored
×.	(1).	half	(2)	equal to	(3)	twice	(4)	four times
137.		owder metallurgy compressed in no			s to w	hich powdered	metals	s in desired proportions
	(1)	10 to 50 bar		.e	(2)	50 to 300 bar		
2	(3)	310 to 650 bar			(4)	690 to 13750 l	bar .	
138.	The	velocity of the be	eltofr	nass 'm' and tens	sion "	Γ', for maximun	n powe	eris
	(1)	T/3	(2)	Tx3	(3)	$\sqrt{T}/3m$	(4)	$\sqrt{(3m/T)}$

21-A

Set Code :	
Booklet Code :	A

139. The included angle for the V-belt is usually

- (1) $10 \text{ to } 20^{\circ}$ (2) $20 \text{ to } 30^{\circ}$
- (3) $30 \text{ to } 40^{\circ}$ (4) $50 \text{ to } 60^{\circ}$

140. When the belt is stationary, it is subjected to some tension known as initial tension. The value of this tension is equal to the

- (1) tension in the tight side of the belt
- (2) tension in the slack side of the belt
- (3) sum of the tensions on the tight side and slack side of the belt
- (4) average tension of the tight and slack sides of the belt
- 141. The relation between the pitch of the chain (p) and pitch circle diameter of the sprocket (D) is given by
 TM

 $p = D \sin (120^{\circ}/T)$

 $p = D \sin (360^{\circ}/T)$

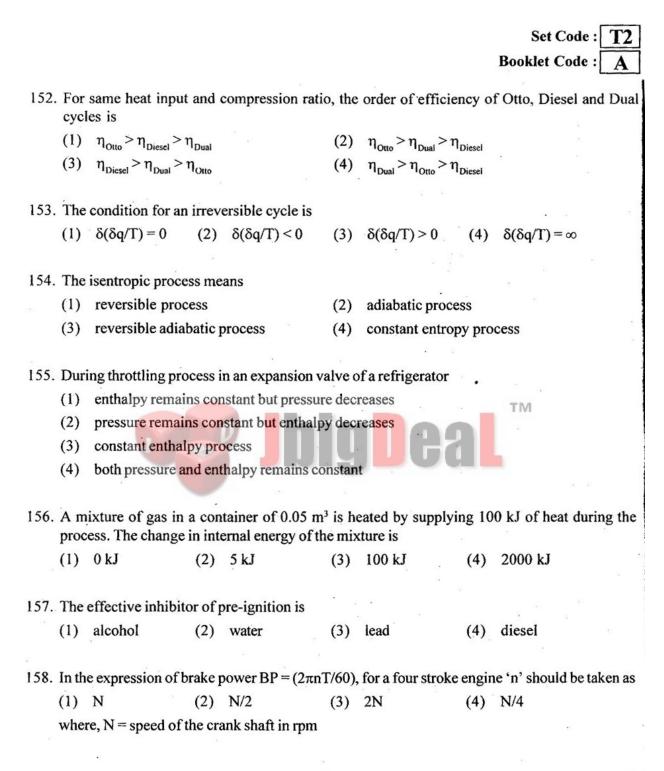
(1) $p = D \sin (90^{\circ}/T)$ (3) $p = D \sin (180^{\circ}/T)$

142. In roller chain the roller diameter is approximately ______ of the pitch.(1) 5/8(2) 6/8(3) 7/8(4) same as that

143. When spring index increases, the value of Wahl's stress factor

- (1) increases linearly (2) decreases linearly
- (3) remains same (4) increases exponentially

44. When two non intersecting and non-coplanar shafts are connected by gears, the arrangement is known as


(1)	spur gearing	(2)	helical gearing

(3) bevel gearing

(4) spiral gearing

22-A

							2	Set Co	ode : T2
								Booklet Co	de: A
145.	Pitc	h point of a can	n is					de ¹⁸	2
	(1)	a point on the		urve having mi	inimum	pressure ang	le		
	(2)	a point on the						8	
	(3)	any point on th							
	(4)	any point on the							
	X-7		1			1975) 10			
146.	The	ratio of hoop st	ress to	longitudinal s	stress is	27 20			e - 4
	(1)	0.5	(2)	1	(3)	2	(4)	3	
	inne	shaft A is solid r diameter 50 n t B is	nm and as t	both of them that of shaft A	are mad	e of same ma	aterial. Th	e torque tra	
	(1)	1/8	(2)	1/6	(3)	13/12	(4)	15/16	
					_		in .	TM	
		dy flow energy							
·	(1)	$w = h_2 - h_1$	(2)	$w = h_1 - h_2$	(3)	$\mathbf{Q} = \mathbf{h}_1 - \mathbf{h}_2$	(4)	h ₁ =h ₂	
1.40									
149.	Wor	k done in a flov							
	(1)	pv	(2)	∫pdv	(3)	∫vdp	(4)	– ∫vdp	
					10				
150.	The	hyperbolic proc	cess is g	governed by				64	•
	(1)	Boyle's law	(2)	Charles' law	(3)	Avogadro's	law (4)	Gay-Lussa	c law
151.	Reve	ersed Joule cycl	e is kn	own as					е. 1951
	(1)	Rankine cycle	a N	: :	(2)	Carnot cycl	le		
	(3)	Bell-Coleman	cycle		(4)	Stirling cyc	ele		
		1							
				3					
					•••			2	(MEC)
					23-A				(MILL)

24-A

					Set Co Booklet Co	
159. Hyd	rocarbon fuels of Paraffin family	are being us	sed in S.I. engin	nes, due	eto	
(1)	high cetane number	(2)	high octane nu		ο.	50 20
(3)	high heating value	(4)	high specific	heat		
	flow ratio in case of Francis turbi					
(1)	0.15 to 0.3 (2) 0.4 to 0.5	(3)	0.6 to 0.9	(4)	1 to 1.5	
					0.000	
	ratio of the normal force of jet of		late inclined at	an ang	le of 60° as c	ompared to
	when the plate is normal to jet, is		1/2	(A)	0	*
(1)	1 (2) $\sqrt{3}/2$	(3)	1/2	(4)	0	
						2
	l reaction turbines, for maximum			×	7.1.4	
(1)	the velocity of flow at outlet mu			-	тм	
. (2)	the velocity of flow at inlet mus			2		
(3)	the velocity of whirl at entrance		ro 🗾 🕛			
(4)	the velocity of whirl at outlet m	ust be zero			*	
÷.		. 1	1204201		2	ά.
163. Cen	trifugal pumps dealing with mud l					
(1)	open	(2)	double suction			
(3)	one-side shrouded	(4)	two-sides shre	ouded	35	
164. Spe	cific speed of impulse turbine ran	ges from				
(1)	1000 to 2000 (2) 300 to 10)00 (3)	60 to 300	(4)	10 to 50	
165. Hyd	raulic ram is a pump which works	s on the prin	ciple of			3
(1)	centrifugal action	(2)	reciprocating			
(3)	positive displacement action	(4)	inertia forces	of wate	er in the supp	ly line
			<u>e</u>			
				-		MEC
		25-A			3 A.	(MEC)

				2			-	Set Code	
							В	ooklet Code	•: <u>A</u>
166.	Spa	re Ignition engine	work	s on					21
	(1)	Diesel cycle	(2)	Otto cycle	(3)	Dual cycle	(4) 1	Ericssion cyc	le
167.	Whi	le drawing a hydr	raulic	or pneumatic c	ircuit,	it must begin with	1	and end w	vith
	(1)	pump, actuator		6	(2)	filter, flow contr	rol valv	e	
	(3)	pressure gauge,	press	ure control valv	re (4)	service units, sig	gnaling	elements	
							5		
168.	The	pressure lines in	the w	et region of Mo	ollier c	hart are straight b	ecause		241
	(1)	pressure remain	s con	stant	(2)	volume remains	consta	nt	
	(3)	temperature rem	nains	constant	(4)	enthalpy remain	s const	ant	
169.		fety valve mainly		with locomotiv			,		
Υ.	(1)	lever safety valv			(2)	0			
	(3)	high steam and I	oww	ater safety valve	e (4)	spring loaded sa	fety val	vevi	
170									
170.	In or take		le cap	acity of boilers,	the ree	ed water temperat	ure and	working pre	ssure are
	(1)	100°C and norm	nal atr	nospheric press	ure				
tie.	(2)	100°C and 1.1 b			1	dini.	100		
	(3)	50°C and norma		ospheric pressu	re				2
	(4)	50°C and 1 bar j			×				
171.	The	Mach number of	steam	flow at exit to a	aconv	ergent divergent r	nozzle s	hould be	
	(1)	0	(2)	less than 1	(3)	more than 1	(4) e	qual to 1	
						en l			
		n the back pressu le is said to be	reofa	a nozzle is below	w the d	esigned value of j	pressur	e at exit of no	zzle, the
Ω	(1)	under expanding		×.	(2)	over expanding			
	(3)	choked			(4)	super saturated			
					26-A				(MEC)

Download from www<mark>.JbigDeaL.com Powered By © JbigDeaL</mark>

Set Code :	T2
Booklet Code :	A

173.		available enthalpy drop in a supersatura librium flow	ated flo	ow of steam through a nozzle as compared to an
	(1)	remains same	(2)	increases
	(3)	decreases	(4)	unpredictable
174.	The	Parson's reaction turbine has		
	(1)	only moving blades		
	(2)	only fixed blades		* 3
	(3)	different shapes of fixed and moving	blades	5
	(4)	identical shape of fixed and moving b	lades	
				a a S a
175.	The blad	isentropic enthalpy drop in moving b es of a turbine. The degree of reaction	lade is will b	s 2/3 rd of the isentropic enthalpy drop in fixed e
	(1)	0.4 (2) 0.56	(3)	0.67 (4) 1.67
176.	The	cooling system used for supersonic ai	r craft	s and rockets is
	(1)	simple air cooling system	(2)	boot-strap air cooling system
	(3)	reduced ambient air cooling system	(4)	regenerative air cooling system
		at a star	34	
177.	The	capacity of a domestic refrigerator is i	n the i	range of
	(1)	0.1 to 0.3 T	(2)	0.5 to 1.0 T
	(3)	1 to 3 T	(4)	3 to 5 T
		6		
178.	The	capillary tube is not used in large capa	city re	frigeration systems because
	(1)	It is made of copper		
	(2)	Capacity control is not possible		а
	(3)	required pressure drop cannot be achi	ieved	
	(4)	cost is too high		4

			x			Set Code : T2	
		253			*1	Booklet Code : A	I
179.		qua-ammonia and lithius espectively	m bromide - wa	ater ab	sorption refrigeratio	n systems, the refrigerants	
	(1)	water and water		(2)	water and lithium b	promide	
	(3)	ammonia and lithium b	oromide	(4)	ammonia and water	t	
					·		
180.	Que	uing theory is associated	d with			× .	
. *	(1)	inventory (2)	sales	(3)	waiting time (4) production time	
					6		ł
181.	The	routing function in a pro	oduction system	n desig	gn is concerned with		
	(1)	manpower utilization		(2)	machine utilization	1	
	(3)	quality assurance of th	e product	(4)	optimizing materia	l flow through the plant	
		2 2 12	e		3853 . •	0	
		value engineering tech lopment is called	nique in whic	ch exp	erts of the same ra	nk assemble for product	
	(1)	brain storming		(2)	Delphi	TM	
	(3)	morphological analysis		(4)	direct expert comp	arison	
183.	The	type of organization pre	ferred for an au	utomol	bile industry		
	(1)	line organization		(2)	functional organiza	tion	
	(3)	line and staff organizat	ion	(4)	line, staff and funct		
184.		mathematical technique mum manner is known a		e best	use of limited resou	arces of a company in the	2
		value analysis		(2)	network analysis		
	(3)	queuing theory		(4)	linear programming	g	
	. ,	1 .0 .		. ,	1000		
		small scale industry the 0/- and sales price is Rs				ariable cost per product is on per month will be	
2		•	400		500 (4)		
	. /						
			2	28-A		(MEC)	

							P	Set Code	
							Du	JORIEL COUL	• A
186.	Bing	cards are used in							
	(1)	machine loading(2)	quality control	(3)	stores	(4) in	iventory	
187.		chart which gives an e	stimate about the	amou	nt of mat	erials hand			
	(1).	flow chart (2)	process chart	(3)	travel c	hart (4) 0]	peration cha	irt
188	The	type of layout suitable	for manufacturir	ng too	ls and ga	uges			
100.	(1)	product layout				rocess layo	ut		
	(3)	combination of prod	uct and process la	ayout		xed positio		out	*
	(3)	comonanton or pro-							ί <u></u> .
189.	The	forecasting technique	used for new pro	ducts	is				
	(1)	Box Jenkins		(2)	Single	exponential	smo	othing	
	(3)	Delphi type		(4)	simple	regression			
190.	Sixs	sigma level of quality	control means	_					
		2.1 defects per milli		(2)	3.4 def	ects per mi	llion	opportunitie	es
		4.3 defects per milli			5.7 def	ects per mi	llion	opportunitie	es
191.	In in	ventory control theor	y, the economic of	order d	uantity i	S			
19	(1)	average level of inve	ntory	(2)	-	m lot size			10 10
	(3)	capacity of a wareho	use	(4)	lot size	correspond	ling to	o break-ever	n analysis
									100
192.		single dry plate clutch							
	(1)	coil springs (2)	cushion springs	s (3)	central	hub (4	4) c	lutch pedal	
100				onefe	r torque				
193.		torque converter uses	s io u			tic transmi	ecion	fluid	
	(1)	air	τ.	(2)	steel be	•	331011	IIUIU	
	(3)	gears		(4)	SICCI D				(MEC)
			:	29-A					(1120)

				Set Code : T2
				Booklet Code : A
194.	Ina	four wheel drive, the number of gear bo	oxes a	re
	(1)		(3)	60000 M
195.	Ina	hydraulic power steering system, the po	ower s	teering pump is driven by a
	(1)	belt driven by camshaft	(2)	chain driven by crankshaft
	(3)	belt driven by driveshaft	(4)	belt driven by crankshaft
				· ·
196.	Whi	ch of the following parameter can be ac		d by modifying the tie-rod attachment length?
	(1)	camber (2) caster	(3)	toe (4) steering gear ratio
				*
197.		gudgeon pin connects		and the design of the second se
	3 1	crankshaft and connecting rod	(2)	connecting rod and piston
	(3)	connecting rod and cam shaft	(4)	piston and crank shaft
100	The	function of antilook broke system is the		
190.		function of antilock brake system is the		IUGAL
	(1)	reduces the stopping distance	_	
	(2)	minimizes the brake fade	roking	by preventing the wheels from locking
	(3)			g by preventing the wheels from locking
	(4)	prevents nose dives during braking an	u thei	e by postpones locking of the wheels
199	Odo	meter is an instrument used for measur	emen	tof
.,,,	(1)	power	(2)	fuel consumption
	(3)	engine rpm	(4)	distance
	(-)	engine i Fini		
200.	The	problem caused by the wheel imbalance	e is	
	(1)	hard steering and hard ride		14
	(2)	poor acceleration and hard steering		· ·
	(3)	steering wheel vibrations and uneven t	yre w	ear
	(4)	poor acceleration and reduced fuel ef		
			0-A	(MEC)