Jbig<mark>D</mark>eaL

Download from www.JbigDeaL.in Powered By © JbigDeaL™

Mechanical paper 2013

Set A

A concentrated load P is applied at the end of a cantilever as shown in Fig. The cross section of the beam is a square of side 'a' with a hole of dia 'a/2'. The deflection at the tip of the cantilever is given by

A cantilever beam is subjected to a UDL. The cross section of the beam is a H-Section placed as shown in Fig. The bending stress distribution across the cross section will be

A thick cylinder of inner dia 'D', wall thickness t_2 and length 'L' is sealed at its both ends with caps. The thickness of the cap is t_1 . Allowable tensile yield stress = σ_{γ} and allowable shear stress = τ_{y} . A gas is pumped into this cylinder at pressure 'p'. The cap will yield in shear at circumference of diameter 'D' when the gas pressure applied is more than

Mechanical paper 2013

Set A

- (a)
- (b) $8t_1\tau_y$
- (c)
- (d)
- An 'SS' tube is inserted into an 'Al' tube. They are permanently fixed at one end. The other end is attached to a rigid plate. A torque 'T' is applied to the rigid plate. The circumference of the 'Al' tube at dia 'D' at the plate end with respect to the fixed end rotates by a distancemm due to torque T'. The polar MOI & Rigidity modulus of AI & SS are $\,J_{Al}$, $\,G_{Al}$ and J_{ss} , G_{ss} respectively.

DLT
$2(G_{AI}J_{AI}-G_{SS}J_{SS})$

(a)

(b) DLT 2GAIJAI (c) DLT $2(G_{AI}J_{AI}+G_{SS}J_{SS})$ (d) 2 DLT $G_{SS}J_{SS}$

Mechanical paper 2013

A solid block 'A' wéighing 'Q' kg is resting on a flat floor. A smooth cylinder 'B' weighing 'P' kg. is placed between the solid A and the vertical wall as shown in fig. The friction between the cylinder, wall and the block A is negligible. The co-efficient of friction between the block A and floor is μ . The minimum weight P required to disturb the block A is

(a) (b) (d) $\overline{Cos\theta}$ $\mu Q Tan\theta$ $Q(1-Tan\theta)$ $\mu Q Cos\theta$ $\overline{(1-\mu \, Tan \, \theta)}$ μ Ταηθ

A hydraulic jack is used to compress a spring as shown in fig. Stiffness of spring is 10^5 N/m. By applying a pressure 'p' in the hydraulic cylinder, the spring gets compressed by 10mm. The cross sectional area of the piston is 25 cm^2 . The applied pressure 'p is

10

Mechanical paper 2013

	(a) 4 x 10 ⁵ Pascals	(b) 40 Pascals	(c) 250 Pascals	(d) 25 Pascals			
11			steel rods is floating in a to float empty, the water le	bath tub. If the cargo is evel in the tub will			
	(a) Rise	(b) Fall	(c) Remains the same	(d) Rise and then fall			
12							
	(a) higher	(b) lower	(c) same	(d) unpredictable			
13	Froude number is sign	ificant in:					
	(a) Supersonics, as wit	h projectile and jet p	ropulsion				
			low, as with pipes, air craf				
	1 * *	_		liscontinuity, gravity forces			
	and wave making effe	ct, as with ship's hull	S				
,	(d) All of these						
14	The purpose of surge			in nino			
	(a) smoothen the flow		(b) minimize friction losses in pipe (d) relieve pressure due to water hammer				
<u></u>	(c) prevent occurrence	e or nyaraunc jump	(u) relieve pressure at	ie to water nammer			
15.	Head loss in turbulent	flow in a pipe					
	(a) varies directly as v	elocity	(b) varies inversely as	square of velocity			
	(c) varies approximate	ely as square of veloc	ity (d) varies inversely as	velocity			
16.	from the bottom of t	he tank. If the orific		of diameter 0.1m at 0.3m coefficient of discharge of			
	(a) 69.37 N	(b) 67.39 N	(c) 63.79 N	(d) 65.39 N			
17.							
	(a) N/4	(b) N/2	(c) N	(d) 2N			
18	where the diameter upstream of the redu	is reduced from 20 Icer is 150 kPa . Th Neglecting frictional (cm to 10 cm. The press e fluid has a vapour pressu effects, the maximum disch	educer in a horizontal pipe, ure in the 20 cm pipe just are of 50 kPa and a specific marge (in m³/sec) that can			

Mechanical paper 2013

1	(a) 0.05	(b) 0.16	(c) 0.27	(d) 0.3		
19	For the stability of true?	f a floating body, under th		y alone, which	of the following is	
	(a) Metacentre sl	nould be below the centre	of gravity			
	(b) Metacentre sh	ould be above the centre	of gravity			
		d centre of gravity must				
	(d) Metacentre ar	nd centre of gravity must	lie on the same ver	tical line		
20	A smooth pipe ((elevation: 10m) velocity is 2 m/se	of diameter 200mm carr	ies water. The pre	ssure in the	e is 20 KPa and	
	(a) Flow is from 0.53m	n S1 to S2 and head loss			head loss is 0.53m	
		n S1 to S2 and head loss	s is (d) Flow is from	S2 to S1 and I	nead loss is 1.06m	
21.	The 2-D flow wit	h velocity $\overline{v} = (x + 2y + 2$	2) I + (4 – y) j is			
	(a) compressible and irrotational (b) compressible and not irrotational					
	(a) compressible	and irrotational				
	(a) compressible	and irrotational le and irrotational		ole and not irr sible and not		
22.	(c) incompressib A venturimeter horizontal pipe	le and irrotational of 20mm throat diame of 40mm diameter. If t	(d) incompreseter is used to mea the pressure differerecting frictional losse	sible and not sure the velo nce between t s, the flow velo	irrotational ocity of water in a he pipe and throat ocity is	
22.	(c) incompressib A venturimeter horizontal pipe	le and irrotational of 20mm throat diame of 40mm diameter. If t	(d) incomprese eter is used to mean the pressure differer	sible and not sure the velo nce between t s, the flow velo	irrotational ocity of water in a he pipe and throat	
22.	A venturimeter horizontal pipe sections is found (a) 0.2 m/sec A room contai (the refrigerate electric resistathat the refrigerations from the pipe sections is found (a) 0.2 m/sec	of 20mm throat diame of 40mm diameter. If the stoke 30 kPa, then, negle (b) 1.0 m/sec and a 50-gerator, the TV, the factor that day is	(d) incompres eter is used to mea the pressure differer ecting frictional losse (c) 1.4 m/sec Pa and 15°C. The f electricity when r W fan. During a en, and the electric	sible and not sure the veloce between to so, the flow veloce (d) room has a 2 running), a 1 cold winter of resistance hains constant	irrotational ocity of water in a che pipe and throat ocity is 2.0 m/sec 50-W refrigerator 20-W TV, a 1-kW lay, it is observed leater are running t. The rate of heat	
	A room contain the refrigerate electric resistat that the refrigerations in contain the refrigeration of the refrigerate electric resistation of the refrigeration of the refrige	of 20mm throat diame of 40mm diameter. If the tobe 30 kPa, then, negles (b) 1.0 m/sec and a 50-gerator, the TV, the fabut the air temperatur	(d) incompres eter is used to mea the pressure differer ecting frictional losse (c) 1.4 m/sec Pa and 15°C. The f electricity when r W fan. During a en, and the electric	sible and not sure the veloce between to the flow veloce (d) room has a 2 running), a 1 cold winter of the resistance has a 2 r	irrotational ocity of water in a che pipe and throat ocity is 2.0 m/sec 50-W refrigerator 20-W TV, a 1-kW lay, it is observed leater are running t. The rate of heat	
	A venturimeter horizontal pipe sections is found (a) 0.2 m/sec A room contain (the refrigerant electric resists that the refrigerant continuously loss from the section (a) 3312 kJ/h Efficiency of 6	of 20mm throat diame of 40mm diameter. If the stoke 30 kPa, then, negle (b) 1.0 m/sec and a 50-gerator, the TV, the factor that day is	(d) incompres eter is used to mea the pressure differer ecting frictional losse (c) 1.4 m/sec Pa and 15°C. The f electricity when r W fan. During a n, and the electric e in the room rem as 80 %. If the cycle	sible and not sure the veloce between to so, the flow veloce (d) room has a 2 running), a 1 cold winter of resistance hains constant (c) 5112 kJ/	irrotational ocity of water in a che pipe and throat ocity is 2.0 m/sec 50-W refrigerator 20-W TV, a 1-kW day, it is observed eater are running t. The rate of heat	

Mechanical paper 2013

25.	An adiabatic heat of kg/s by hot air at 9 is 20°C, the exit ter	0°C enterin	g also at i	rate of 5 k			
	(a) 27°C	(b) 32°C			(c) 52°C	(d) 85°C
26.	For given combine thermal conductiving given as	d radiative ity k,*Critic	and conv al thickne	ective hea ess of insu	t transfe lation fo	er coefficie r cylinder	nt 'h _t ' and given and sphere is
	(a) $\frac{k}{h_t}$ and $\frac{k}{h_t^2}$	(b) $\frac{k}{h_t}$ and	$\frac{2k}{h_t}$	(c) $\frac{2k}{h_t}$	and $\frac{k}{h_t^2}$	(d) $\frac{2k}{h_t}$	and $\frac{k}{h_t}$
27.	Match the following	ng					
	P:Compressil	ole flow	U: Reyr	olds num	ber		•
	Q: Free surfa	ce flow	V: Nuss	elt numb	er		
	R: Boundary	layer flow	W: Wel	er numb	er		
	S: Pipe flow		X: Frou	de numb	er		
	T: Heat conv	Y: Mac	h number	•			
			Z: Skin	friction c	oefficien	t	
	(a) P-U; Q-X; R-V	; S-Z; T-W		(b) P-	W; Q-X;	R-Z; S-U;	; T-V
	(c) P-Y; Q-W; R-Z	; S-U; T-X		(d) P-	Y; Q-W:	; R-Z; S-U;	; T-V
28.	measurement of is on the bead surf material are k = 2	emperature ace is 400 20 W/mK, C	of a gas s $W/m^2K.$ $C = 400 J$	tream. Tl Thermo- /kg K and	ne conve physical 1 r = 850	ctive heat t propertie 00 kg/m³. I	o be used for the transfer co-efficient is of thermocouple of the thermocouple ken by the bead to
	a) 2.35 s	b) 4.9 s				c) 14.7 s	d) 29.4 s
29.							ailable for lagging a the same.
	(a) material with	higher theri	nal condi	uctivity sh	ould be	used for th	e inner layer and
	one with lower the						
	(b) material with					used for the	e inner layer and
	one with higher th			-			- -
	(c) it is immateria					erials are u	ısed
	(d) it is not possib						

Mechanical paper 2013

30.	The definition of 1 K as per the internationally accepted temperature scale is								
	(a) 1/100th the difference between normal boiling point and normal freezing point of water.								
	(b) 1/273.15th th	e normal f	reezing poi	int of v	water				
	(c) 100 times the point of water.	difference	e between tl	he trip	le point of wat	er and	the norr	mal freezing	
	(d) 1/273.16th of	the triple	noint of we	tor					
	(u) 1/2/3.10th 01	the triple	point of wa	iter.					
	For a perfect gas			II:					
31.		$\overline{\mathbf{L}}$	<u>ist I</u>		<u>List II</u>				
	(A) Isobai coefficie		l expansion	ı	(1) 0				
			pressibility		(2) ∞				
		opic comp			(3) 1/v			,	
			n coefficien	ıt	(4) 1/T				
	(2) 00410				(5) 1/p				
		· .				p			
		() A A D 5 C		(4) A	2 D 4 C 6 D 5				
	(a) A-4,B-3,C-2, D-1 (b) A-1,B-2,C-4, D-6 (c) A-4,B-5,C-6, D-1 (d) A-3,B-4,C-6, D-5								
32.	For a given heat	t flow and	for the sam						
32.	For a given heat material will be	t flow and maximum	for the sam 1 for	ie thic	kness, the tem	peratur	e drop a	icross the	
32.	For a given heat	t flow and	for the sam 1 for	ie thic		peratur		icross the	
32.	For a given heat material will be (a) copper	t flow and maximum (b) stee	for the sam 1 for el	(c) g	kness, the tem	peratur (d) re	e drop a	cross the	
	For a given heat material will be (a) copper	t flow and maximum (b) stee	for the sam i for el st II matchi	(c) g	kness, the tem lass-wool e processes in I	eratur (d) re	e drop a	cross the	
	For a given heat material will be (a) copper Select statement A, B if the corre	t flow and maximum (b) stee ts from Lisect choice t	for the sam i for el st II matchi	(c) g	kness, the tem lass-wool e processes in I	eratur (d) re	e drop a	cross the	
	For a given heat material will be (a) copper Select statement A, B if the corre	t flow and maximum (b) steed ts from Lisect choice the List I	for the sam n for el st II match for (1) is (A	(c) ging the	lass-wool c processes in I that for (2) is (eratur (d) re	e drop a	cross the	
	For a given heat material will be (a) copper Select statement A, B if the correct (A) Fourth	t flow and maximum (b) steed ts from Lisect choice for List I ier number	for the sam a for el st II matchi for (1) is (A	(c) ging the and	lass-wool e processes in I that for (2) is (List II	eratur (d) re	e drop a	cross the	
	For a given heat material will be (a) copper Select statement A, B if the correct (A) Four (B) Webe	t flow and maximum (b) steed ts from Lisect choice for List I iter number	for the same for t	(c) g ing the) and Surface	lass-wool e processes in I that for (2) is (List II e tension	eratur (d) re	e drop a	cross the	
	For a given heat material will be (a) copper Select statement A, B if the correct (A) Four (B) Webe (C) Grass	t flow and maximum (b) steed ts from Lisect choice for List I ier number hoff numb	for the same of for the same o	(c) g ing the) and Surface Natura	lass-wool e processes in I that for (2) is (List II e tension l convection al convection	eratur (d) re	e drop a	cross the	
	For a given heat material will be (a) copper Select statement A, B if the correct (A) Four (B) Webe (C) Grass	t flow and maximum (b) steed ts from Lisect choice for List I iter number	for the same a for set II matching for (1) is (A (2) I	(c) g ing the) and Surface Forced Natura	lass-wool e processes in I that for (2) is (List II e tension l convection al convection	(d) re List I. E B)	e drop a	cross the	
	For a given heat material will be (a) copper Select statement A, B if the correct (A) Four (B) Webe (C) Grass	t flow and maximum (b) steed ts from Lisect choice for List I ier number hoff numb	for the same a for set II matches for (1) is (A (2)) for (3) for (4) (5)	(c) ging the and surface Natura Radia	lass-wool e processes in I that for (2) is (List II te tension I convection al convection tion	(d) re List I. E B)	e drop a	cross the	
	For a given heat material will be (a) copper Select statement A, B if the correct (A) Four (B) Webe (C) Grass	t flow and maximum (b) steed ts from Lisect choice for List I ier number hoff numb	for the same a for set II matches for (1) is (A (2)) for (3) for (4) (5)	(c) g ing the) and Surfac Forceo Natur: Radiat Transi	lass-wool e processes in I that for (2) is (List II e tension I convection al convection tion tient heat condu	(d) re List I. E B)	e drop a	ocross the v brick ur answer as	
	For a given heat material will be (a) copper Select statement A, B if the correct (A) Four (B) Webe (C) Grass	t flow and maximum (b) steed ts from List I ier number number hoff number idt number id	for the same a for set II matches for (1) is (A (2)) for (3) for (4) (5)	(c) g ing the) and Surfac Forceo Natur: Radiat Transi	lass-wool e processes in I that for (2) is (List II te tension convection al convection tion tion	(d) re List I. E B)	e drop a	cross the	
	For a given heat material will be (a) copper Select statement A, B if the corres (A) Four (B) Webe (C) Gras (D) Schm	t flow and maximum (b) steed ts from Lisect choice for the choice for the choice for number hoff numb	for the same of th	(c) ging the and surface Natura Radia Transi	lass-wool e processes in I that for (2) is (List II the tension cl convection al convection tion tient heat conduction diffusion c) A-5, B-2, C-3, I	(d) re List I. E B)	e drop a	ocross the v brick ur answer as	
33.	For a given heat material will be (a) copper Select statement A, B if the corre (A) Fouri (B) Webe (C) Gras (D) Schm (a) A-2, B-1, C-3, I	t flow and maximum (b) stee ts from Lise ect choice for the choice for number hoff numbe	for the same a for sell set II matched for (1) is (A r (1) (2) (3) (6) (6) (6) (6) (6) (7) (7) (8) (8) (8) (8) (8) (8) (8) (8) (8) (8	(c) ging the and surface Natura Radia Transi	lass-wool e processes in I that for (2) is (List II the tension convection tion tient heat conduction diffusion c) A-5, B-2, C-3, I	(d) re List I. E B)	e drop a	ocross the v brick ur answer as	

<u>JbigDeaL</u>

Download from www.JbigDeaLin Powered By © JbigDeaL™

Mechanical paper 2013

	·	nes a state change from for the process to be fea	_	
	(a) is positive or z	ero (b) is r	negative or zero	
	(c) is zero		ı be positive, negati	ve or zero
36.	In descending or		ermal conductivity	of (a) pure iron, (b) liquid
	(a) a b c d	(b) b c a d	(c) dabc	(d) d c b a
37.	For the same inle	t and outlet temperatur ference (LMTD) is	res of hot and cold f	luids, the Log Mean
	(a) greater for pa	rallel flow heat exchang	ger than for counter	flow heat exchanger.
		unter flow heat exchang		
		parallel and counter flo		
	(d) dependent on	the properties of the flu	ıids.	
38.	A positive value of	of Joule-Thomson coeffi	cient of a fluid mea	ns
	(a) temperature	drops during throttling	(b) temperature throttling	remains constant during
	(c) temperature 1	rises during throttling	(d) none of these	
39.	A Carnot engine the heat source is	rejects 30% of absorbes	ed heat to a sink at	30°C. The temperature of
39.			(c) 737 °C	(d) 1010 °C
39. 40.	the heat source is (a) 100 °C An engine opera	(b) 433 °C	(c) 737 °C e limits of 900 K an	
	the heat source is (a) 100 °C An engine opera	(b) 433 °C	(c) 737 °C e limits of 900 K an	(d) 1010 °C
	the heat source is (a) 100 °C An engine operate both to be equalled (a) 700 K In a heat exchange of the source is the source	tes between temperaturly efficient, the values of (b) 600 K nger, the hot liquid enteing fluid enters at 30°C	(c) 737 °C e limits of 900 K and T will be (c) 750 K	(d) 1010 °C d T and T and 400 K. For
40.	the heat source is (a) 100 °C An engine operate both to be equalled (a) 700 K In a heat excharation 160°C. The cooling the source is the s	tes between temperaturly efficient, the values of (b) 600 K nger, the hot liquid enteing fluid enters at 30°C	(c) 737 °C e limits of 900 K and T will be (c) 750 K	(d) 1010 °C d T and T and 400 K. For (d) 650 K

Mechanical paper 2013

	(a) Resultant force is zero	(b) resultant couple is zero
	(c) resultant force is numerically	(d) resultant force and the resultant couple,
	equal to resultant couple	both are equal to zero.
43	A torsion bar with a spring constant constant for each portion would be	nt `k' is cut into `n' equal lengths. The spring
	(a) nk	(b) k ⁿ
	(c) k/n	
44	Logarithmic decrement of a dampe of the spring is doubled and mass is system will be equal to	ed single degree of freedom system is δ. If stiffness s made half, then logarithmic decrement of the new
	(a) 1/2δ	(b) δ
	(c) 28	(d) ¹ / ₄ δ
45	To ensure self locking in a screw ja	(b) smaller than friction angle
	(a) larger than friction angle (c) equal to friction angle	(d) such as to give maximum efficiency in lifting
	For a particular load distribution a	and support condition in a beam of length `L',
46	bending moment at any section `x' and B are constants. The shear for	$f'(O < x < L)$ is given by $M(x) = Ax - Bx^2$, where A rcc in the beam will be zero at 'x' equal to
46	bending moment at any section `x' and B are constants. The shear for (a) A/2B (b) A/B	$(O < x < L)$ is given by $M(x) = Ax - Bx^2$, where A rcc in the beam will be zero at 'x' equal to $(c) 2A/B \qquad (d) A^2/B$
46	and B are constants. The shear for	(c) 2A/B (d) A ² /B
	and B are constants. The shear for (a) $A/2B$ (b) A/B If A is $\begin{bmatrix} 8 & 5 \\ 7 & 6 \end{bmatrix}$ then $\begin{vmatrix} A^{121} - A^{120} \end{vmatrix}$	(c) 2A/B (d) A ² /B
	and B are constants. The shear for (a) $A/2B$ (b) A/B If A is $\begin{bmatrix} 8 & 5 \\ 7 & 6 \end{bmatrix}$ then $\begin{vmatrix} A^{121} - A^{120} \end{vmatrix}$ (a) 0 (b) 1	rcc in the beam will be zero at 'x' equal to
47	and B are constants. The shear for (a) $A/2B$ (b) A/B If A is $\begin{bmatrix} 8 & 5 \\ 7 & 6 \end{bmatrix}$ then $\begin{vmatrix} A^{121} - A^{120} \end{vmatrix}$ (a) 0 (b) 1 If A is Square Matrix of order 3, 1	(c) 2A/B (d) A ² /B is (c) 120 (d) 121
47	and B are constants. The shear for (a) $A/2B$ (b) A/B If A is $\begin{bmatrix} 8 & 5 \\ 7 & 6 \end{bmatrix}$ then $\begin{vmatrix} A^{121} - A^{120} \end{vmatrix}$ (a) 0 (b) 1	rcc in the beam will be zero at 'x' equal to

Mechanical paper 2013

	(a) Orthogonal Ma	otrix	(b) Skew Sy	mmetric
	(c) Symmetric		(d) Idempor	
50		6k, vector b= 4i - 3j + k	, angle between above ve	
	(a) 90°	(b) 0°	(c) 45°	(d) 60°
51	If the probability f probability that eit		on is 0.2 and that for B is	s 0.3, then
	(a) 0.5	(b) 0.06	(c) 0.44	(d) 0.1
52	Area bounded by	the parabola 2y= x² and	the line x = y-4 is equal t	o
	(a) 4.5	(b) 9	(c) 18	(d) 36
53	Chance that a leap	year selected at random	n will contain 53 Sundays	is
	(a) 3/7	(b) 7/2	(c) 7/3	(d) 2/7
54	$\lim_{x \to 0} \frac{x^2 + x - \sin}{x^2}$			
	(a) 0	(b) ∞	(c) 1	(d) None of these
55	left to right. They kg and 5 kg. lf-t Q after impact and to initial positioning	are separated by a dista be coefficient of restituti d when (seconds) and wh ng of Q. The correspond	ally with velocity of 8 m/s ince of 15 m. The mass of ion is 0.7 what is the velonere (metres) will they in ling answers are respecti	f the objects are 3 city (m/s) of P and appact with respect vely
	a) 7.6, 5.4, 2.1	(1, 15 b) 8, 6, 2.5, 7.5	c) 7.6, 6.2, 7.5, 45	l) None of these
56			ong is as shown in figure the stresses (in N/mm ²) is	
	steel	40 — 60	5 10 5 copper	

<u>JbigDeal</u>

<u>JbigDeaL</u>

Download from www.JbigDeal.in Powered By © JbigDeal.™

Mechanical paper 2013

	a) $\sigma_c = 20$ (Compressive),	b)	$\sigma_{c} = 30$ (Compressive),
	$\sigma_{ss} = 30 \text{ (Tensile)}$		$\sigma_{\rm SS} = 20 \; (Tensile)$
	c) $\sigma_{c} = 30$ (Tensile),	d)	$\sigma_{\rm c} = 30$ (Tensile),
	$\sigma_{ss} = 20$ (Compressive)		$\sigma_{ss} = 20$ (Tensile)
57	A short column of external diameter L compressive load P acting with an ecce extreme fibre is zero then the eccentric	entricity 'e	2. If the stresses at one of the
	D	р	
	→ d ←	1	
		+ e →	
		1111	
	(a) $\frac{D^2 + d^2}{8\pi D}$ b) $\frac{D^2 + d^2}{8D}$	c) <u>D</u>	$\frac{^{2}-d^{2}}{8D}$ d) $\frac{D^{3}-d^{3}}{8D^{2}}$
58	The number of degrees of freedom in	the 3 link	mechanism shown below is given by

<u>JbigDeal</u>

Mechanical paper 2013

Set A

	(a) 1	(b) 2	(c) 3	(d) 0	
59	The equation of a	notion for a damped vill be	l vibration is giv	$en by 6 \ddot{x} + 9 \ddot{x}$	$\dot{x} + 27 x = 0$. The
	(a) 0.25	(b) 0.5	(c) 0.35	(d) 0.75	
60	in the figure. If	ith 400 mm diameter the coefficient friction lied at the end of the	n is 0.25 at the l	e a torque of 1 brake surface w	00 Nm as shown hat is the value of
	50	20	00	225	F
	(a) 559.4 N	(b) 579.4 N	(c) 43	39.4 N	(d) 1000 N
61	In the gear train	of 1:10 as shown in the tangential load on	the figure the p		
	Gear1 N ₁ = 14 teet	+ h		Gear2 N ₂ = 14	0 teeth
			}		

(d) 251 kN

(a) 221 kN

(c) 25.1 kN

Mechanical paper 2013

62	Spring back in m	etal for	ming depends	on					
	(a) Modulus of El		(b) Load Applied						
				(d) None of					
63	Which of the follo	owing p	rocesses induc	ce m	ore stress in	the m	etal ?		
	(a) Hot rolling	(b) Fo	rging		(c) Swaging				(d) Turning
64	The essential ingr	edient	of any harden	ied si	teel is				
	(a) Austenite	(b) Pe	arlite		(c) Martens	ite			(d) Cementite
65	Following is a pro	ocess us	ed to form po	wde	r metal to sh:	ape			
	(a) Sintering (b) Explo	sive Compacti	ing	(c) Isostatic	Mold	ing	(d) A	All of these
66	A titanium sheet of diameter. A unifor cutting operation. removal rate(in mi	m spark If the fe	gap of 0.5 mm ed rate of the w	ont	ooth sides of th	ie wire	e is ma	intair	ned during
	(a) 150	(b) 200			(c) 3	00		(d) 400
67	Diamond cutting to	ools are	not recommen	ded f	or machining	of feri	ous m	etals	due to
	hardness of	•	ical affinity aterial with		Poor tool ghness			ctivi	hermal ty of work
68	During the executi tool motion will be		CNC part prog	ram	block N020 G	02 X45	5.0 Y2:	5.0 R	5.0 the type of
	(a) circular Interp	olation	(b) Circular Counter clos		-	1 ' '	inear rpolat		(d) Rapid Feed
69	Projection Weldi	ing is a							
-	(a) Continuous S Welding Process		(b) multi-spo process	ot we	elding	(c) A Wel Proc	ding		Process used joining round s
70	In a single point to Taylor exponent o	_	-						-

Mechanical paper 2013

	(a) half	(b) sixt	een times	(c)	Two 3	Times	(d) Eight	times		
							<u>,, , , , , , , , , , , , , , , , , , ,</u>			
71	An oxidising p	rocess used	sium articles							
	(a) galvanising (b) Anodising (c) I					Parkerising	(d) She	eradising		
72.	One of the ch	One of the characteristics of Polymer is								
	(a) high Temperature (b) High Mechanical					(c)High Ele	ongation	(d) Low		
	Stability		Strengtl	h				Hardness		
73	Usually Mate	rials with	the following	g crysta	al stru	cture fail in	ductile m	ode		
	(a) FCC	(b) B	CC		(c) H	CP	(d	None of these		
74	Work harden	ing streng	thens an allo	by by						
	(a) Removing	g Internal	defects in th	e crys	tal			slocation density		
	(c) Decreasin	g the grain	n size of the a	alloy			sing the late	ttice resistance ion		
	solid cylinder of vertical wall at position withouthan	point 'A' a	nd hinged at p	point B o	on the	floor. The ob	ject stays in			
			6-)							
	ļ <u></u>									
		(10 D/9h) Tan ⁻¹ (10 D				b) π/2 - Sin ⁻¹ d) Tan ⁻¹ (20	(10 D/h)			

Mechanical paper 2013

