MATHEMATICAL SCIENCES
 PAPER-I (PART-B)

41. Let $\left\{x_{n}\right\}$ be a sequence of non-zero real numbers. Then
42. If $x_{n} \rightarrow a$, then $a=\sup x_{n}$.
43. If $\frac{x_{n+1}}{x_{n}}<1 \forall n$, then $\mathrm{x}_{\mathrm{n}} \rightarrow 0$.
44. If $\mathrm{x}_{\mathrm{n}}<\mathrm{n} \forall n$, then $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ diverges.
45. If $\mathrm{n} \leq \mathrm{x}_{\mathrm{n}} \forall \mathrm{n}$, then $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ diverges.
46. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be two sequences of real numbers such that $x_{n} \leq y_{n} \leq x_{n+2}$, $\mathrm{n}=1,2,3, \mathrm{~L}$
47. $\left\{y_{n}\right\}$ is an bounded sequence.
48. $\left\{x_{n}\right\}$ is an increasing sequence.
49. $\left\{\mathrm{x}_{\mathrm{n}}\right\}$ and $\left\{\mathrm{y}_{\mathrm{n}}\right\}$ converge together
50. $\left\{y_{n}\right\}$ is an increasing sequence.
51. Let $\mathrm{f}:[0,1] \rightarrow(0, \infty)$ be a continuous function. Suppose $f(0)=1$ and $f(1)=7$. Then
52. f is uniformly continuous and is not onto.
53. $\quad \mathrm{f}$ is increasing and $\mathrm{f}([0,1])=[1,7]$.
54. f is not uniformly continuous.
55. $\quad \mathrm{f}$ is not bounded.
56. Let $\mathrm{f}:[\mathrm{a}, \mathrm{b}] \rightarrow[\mathrm{c}, \mathrm{d}]$ be a monotone and bijective function. then
57. f is continuous, but f^{-1} need not be.
58. $\quad f$ and f^{-1} are both continuous.
59. If $b-a>d-f c$, then f is a decreasing function.
60. f is not uniformly continuous.
61. Let $\sum_{n=1}^{\infty} x_{n}$ be a series of real numbers. Which of the following is true?
62. If $\sum_{1}^{\infty} x_{n}$ is divergent, then $\left\{x_{n}\right\}$ does not converge to 0 .
63. If $\sum_{1}^{\infty} x_{n}$ is convergent, then $\sum_{1}^{\infty} x_{n}$ is absolutely convergent.
64. If $\sum_{1}^{\infty} x_{n}$ is convergent, then $x_{n}^{2} \rightarrow 0$, as $\mathrm{n} \rightarrow \infty$.
65. If $x_{n} \rightarrow 0$, then $\sum_{1}^{\infty} x_{n}$ is convergent.
66. Let $\mathrm{f}: ~ \mathrm{i} \rightarrow \mathrm{i}$ be differentiable with $0<\mathrm{f}^{\prime}(\mathrm{x})<1$ for all x . Then
67. f is increasing and f is bounded.
68. f is increasing and f is Riemann integrable on i.
69. f is increasing and f is uniformly continuous.
70. f is of bounded variation.
71. Let $f_{n}:[0,1] \rightarrow$ i be a sequence of differentiable functions. Assume that (f_{n}) converges uniformly on $[0,1]$ to a function f . Then
72. f is differentiable and Riemann integrable on $[0,1]$.
73. f is uniformly continuous and Riemann integrable on $[0,1]$.
74. f is continuous, f need not be differentiable on $(0,1)$ and need not be Riemann integrable on $[0,1]$.
75. $\quad f$ need not be uniformly continuous on $[0,1]$.
76. Let, if possible, $\alpha=\lim _{(x, y) \rightarrow(0,0)} \frac{\sin \left(x^{2}+y^{2}\right)}{x^{2}+y^{2}}, \beta=\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}$. Then
77. α exists but β does not.
78. α does not exists but β exists.
79. α, β do not exist.
80. Both α, β exist.
81. Let $f: i \rightarrow i$ be a non-negative Lebesgue integrable function. Then
82. f is finite almost everywhere.
83. f is a continuous function.
84. f has at most countably many discontinuities.
85. $\quad f^{2}$ is Lebesgue integrable.
86. Let $S=\left\{(x, y) \in i^{2}: x y=1\right\}$. then
87. S is not connected but compact.
88. S is neither connected nor compact.
89. $\quad \mathrm{S}$ is bounded but not connected.
90. $\quad \mathrm{S}$ is unbounded but connected.
91. Consider the linear space
$\mathrm{X}=\mathrm{C}[0,1]$ with the norm $\|f\|=\sup \{|f(t)|: 0 \leq t \leq 1\}$.
Let $\mathrm{F}=\left\{f \in X: f\left(\frac{1}{2}\right)=0\right\}$ and $\mathrm{G}=\left\{g \in X: g\left(\frac{1}{2}\right) \neq 0\right\}$.
Then
92. F is not closed and G is open.
93. F is closed but G is not open.
94. F is not closed and G is not open.
95. F is closed and G is open.
96. Let V be the vector space of all $\mathrm{n} x \mathrm{n}$ real matrices, $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ such that $\mathrm{a}_{\mathrm{ij}}=-\mathrm{a}_{\mathrm{ji}}$ for all i, j. Then the dimension of V is:
97. $\frac{n^{2}+n}{2}$.
98. $\frac{n^{2}-n}{2}$.
99. $n^{2}-n$.
100. n.
101. Let $\mathrm{n}=\mathrm{mk}$ where m and k are integers ≥ 2. Let $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ be a matrix given by $\mathrm{a}_{\mathrm{ij}}=1$ if for some $\mathrm{r}=0,1, \ldots, \mathrm{~m}-1, \mathrm{rk}<\mathrm{i}, \mathrm{j} \leq(\mathrm{r}+1) \mathrm{k}$ and $\mathrm{a}_{\mathrm{ij}}=0$, otherwise. Then the null space of A has dimension :
102. $\mathrm{m}(\mathrm{k}-1)$.
103. $\mathrm{mk}-1$.
104. $\mathrm{k}(\mathrm{m}-1)$.
105. zero.
106. The set of all solutions to the system of equation

$$
\begin{aligned}
& (1-\mathrm{i}) \mathrm{x}_{1}-\mathrm{i} \mathrm{x}_{2}=0 \\
& 2 \mathrm{x}_{1}+(1-\mathrm{i}) \mathrm{x}_{2}=0
\end{aligned}
$$

is given by:

1. $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=(0,0)$.
2. $\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=(1,1)$.
3. $\quad\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=c\left(1, \cos \frac{5 \pi}{4}+i \sin \frac{5 \pi}{4}\right)$ where c is any complex number.
4. $\left(x_{1}, x_{2}\right)=c\left(\cos \frac{3 \pi}{4}, i \sin \frac{3 \pi}{4}\right)$ where c is any complex number.
5. Let A be an mx n matrix where $\mathrm{m}<\mathrm{n}$. Consider the system of linear equations
$\mathrm{A} \underline{\mathrm{x}}=\underline{\mathrm{b}}$ where $\underline{\mathrm{b}}$ is an $\mathrm{n} \times 1$ column vector and $\underline{\mathrm{b}} \neq \underline{0}$. Which of the following is always true?
6. The system of equations has no solution.
7. The system of equations has a solution if and only if it has infinitely many solutions.
The system of equations has a unique solution.
The system of equations has at least one solution.
8. Let T be a normal operator on a complex inner product space. Then T is selfadjoint if and only if :
9. All eigenvalues of T are distinct.
10. All eigenvalues of T are real.
11. T has repeated eigenvalues.
12. $\quad \mathrm{T}$ has at least one real eigenvalue.
13. A 2×2 real matrix A is diagonalizable if and only if :
14. $(\operatorname{trA})^{2}<4 \operatorname{Det} \mathrm{~A}$.
15. $(\operatorname{tr} \mathrm{A})^{2}>4 \operatorname{Det} \mathrm{~A}$.
16. $(\operatorname{tr} A)^{2}=4$ Det A.
17. $\operatorname{Tr} \mathrm{A}=\operatorname{Det} \mathrm{A}$.
18. Let A be a 3×3 complex matrix such that $A^{3}=1$ (= the 3×3 identity matrix). Then :
19. A is diagnonalizable.
20. A is not diagonalizable.
21. The minimal polynomial of A has a repeated root.
22. All eigenvalues of A are real.
23. Let V be the real vector space of real polynomials of degree <3 and let $\mathrm{T}: \mathrm{V} \rightarrow$ V be the linear transformation defined by $\mathrm{P}(\mathrm{t})$ a $\mathrm{Q}(\mathrm{t})$ where $\mathrm{Q}(\mathrm{t})=\mathrm{P}(\mathrm{at}+\mathrm{b})$. Then the matrix of T with respect to the basis $1, \mathrm{t}, \mathrm{t}^{2}$ of V is:

24. The minimal polynomial of the 3×3 real matrix $\left(\begin{array}{ccc}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b\end{array}\right)$ is:
25. $(X-a)(X-b)$.
26. $(X-a)^{2}(X-b)$.
27. $(X-a)^{2}(X-b)^{2}$.
28. $(X-a)(X-b)^{2}$.
29. The characteristic polynomial of the 3×3 real matrix $\mathrm{A}=\left(\begin{array}{lll}0 & 0 & -c \\ 1 & 0 & -b \\ 0 & 1 & -a\end{array}\right)$ is:
30. $\quad \mathrm{X}^{3}+\mathrm{a} \mathrm{X}^{2}+\mathrm{bX}+\mathrm{c}$.
31. $\quad(\mathrm{X}-\mathrm{a})(\mathrm{X}-\mathrm{b})(\mathrm{X}-\mathrm{c})$.
32. $(\mathrm{X}-1)(\mathrm{X}-\mathrm{abc})^{2}$.
33. $(\mathrm{X}-1)^{2}(\mathrm{X}-\mathrm{abc})$.
34. Let e_{1}, e_{2}, e_{3} denote the standard basis of i^{3}. Then $a e_{1}+b e_{2}+c e_{3}, e_{2}, e_{3}$ is an orthonormal basis of i^{3} if and only if
35. $\quad \mathrm{a} \neq 0, \mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}=1$.
36. $\quad a= \pm 1, \mathrm{~b}=\mathrm{c}=0$.
37. $\mathrm{a}=\mathrm{b}=\mathrm{c}=1$.
38. $\mathrm{a}=\mathrm{b}=\mathrm{c}$.
39. Let $\mathrm{E}=\left\{\mathrm{z} \in £: \mathrm{e}^{\mathrm{z}}=\mathrm{i}\right\}$. Then E is :
40. a singleton.
41. E is a set of 4 elements.
42. E is an infinite set.
43. E is an infinite group under addition.
44. Suppose $\left\{\hat{a}_{n}\right\}$ is a sequence of complex numbers such that $\sum_{0}^{\infty} a_{n}$ diverges. Then the radius of convergence R of the power series $\sum_{n=0}^{\infty} \frac{a_{n}}{2^{n}}(z-1)^{n}$ satisfies :
45. $\mathrm{R}=3$.
46. $R \leq 2$.
47. $\quad \mathrm{R}>2$.
48. Let f , g be two entire functions. Suppose $\left|f^{2}(z)+g^{2}(z)\right|=1$, then
49. $f(z) f^{\prime}(z)+g(z) g^{\prime}(z)=0$.
50. f and g must be constant.
51. fand g are both bounded functions.
52. $\quad f$ and g have no zeros on the unit circle.
53. The integral $\int_{|z|=2 \pi} \frac{\sin z}{(z-\pi)^{2}}$ where the curve is taken anti-clockwise, equals :
54. $-2 \pi \mathrm{i}$.
55. $2 \pi \mathrm{i}$.
56. 0 .
57. $4 \pi \mathrm{i}$.
58. Suppose $\left\{z_{n}\right\}$ is a sequence of complex numbers and $\sum_{0}^{\infty} z_{n}$ converges.

Let $\mathrm{f}: £ \rightarrow £$ be an entire function with $\mathrm{f}\left(\mathrm{z}_{\mathrm{n}}\right)=\mathrm{n}, \forall \mathrm{n}=0,1,2, \ldots$ Then

1. $\mathrm{f} \equiv 0$.
2. f is unbounded.
3. no such function exists.
4. f has no zeros.
5. Let $f(z)=\cos z$ and $g(z)=\cos z^{2}$, for $z \in £$. Then
6. $\quad f$ and g are both bounded on $£$.
7. $\quad f$ is bounded, but g is not bounded on $£$.
8. g is bounded, but f is not bounded on $£$.
9. fand g are both bounded on the x-axis.
10. Let f be an analytic function and let $f(z)=\sum_{n=0}^{\infty} a_{n}(z-2)^{2 n}$ be its Taylor series in some disc. Then
11. $\quad f^{(n)}(0)=(2 n)!a_{n}$
12. $\quad f^{(n)}(2)=n!a_{n}$
13. $\quad f^{(2 n)}(2)=(2 n)!a_{n}$
14. $\quad f^{(2 n)}(2)=n!a_{n}$
15. The signature of the permutation

$$
\sigma=\left(\begin{array}{lllll}
1 & 2 & 3 & \mathrm{~L} & n \\
n & n-1 & n-2 & & 1
\end{array}\right) \text { is }
$$

1. $(-1)^{\left(\frac{n}{2}\right)}$.
2. $(-1)^{n}$.
3. $(-1)^{n+1}$.
4. $(-1)^{n-1}$.
5. Let α be a permutation written as a product of disjoint cycles, k of which are cycles of odd size and m of which are cycles of even size, where $4 \leq k \leq 6$ and $6 \leq \mathrm{m} \leq 8$. It is also known that α is an odd permutation. Then which one of the following is true?
6. $\mathrm{k}=4$ and $\mathrm{m}=6$.
7. $\mathrm{m}=7$.
8. $\mathrm{k}=6$.
9. $\mathrm{m}=8$.

10. $1 \bmod \mathrm{pq}$.
11. $2 \bmod \mathrm{pq}$.
12. $\mathrm{p}-1 \bmod \mathrm{pq}$.
13. $\quad \mathrm{q}-1 \bmod \mathrm{pq}$.
14. What is the total number of groups (upto isomorphism) of order 8 ?

15. Which ones of the following three statements are correct?
(A) Every group of order 15 is cyclic.
(B) Every group of order 21 is cyclic.
(C) Every group of order 35 is cyclic.
16. (A) and (C).
17. (B) and (C).
18. (A) and (B).
19. (B) only.
20. Let p be a prime number and consider the natural action of the group $G L_{2}\left(\phi_{p}\right)$ on $\phi_{p} \times \phi_{p}$. Then the index of the isotropy subgroup at $(1,1)$ is
21. $\mathrm{p}^{2}-1$.
22. $\mathrm{p}(\mathrm{p}-1)$.
23. $\mathrm{p}-1$.
24. p^{2}.
25. The quadratic polynomial $\mathrm{X}^{2}+\mathrm{bX}+\mathrm{c}$ is irreducible over the finite field ϕ_{5} if and only if
26. $\mathrm{b}^{2}-4 \mathrm{c}=1$.
27. $b^{2}-4 c=4$.
28. either $b^{2}-4 c=2$ or $b^{2}-4 c=3$.
29. either $b^{2}-4 c=1$ or $b^{2}-4 c=4$.
30. Let K denote a proper subfield of the field $\mathrm{F}={ }^{0} \mathrm{GF}\left(2^{12}\right)$ a finite field with 2^{12} elements. Then the number of elements of K must be equal to
31. $\quad 2^{\mathrm{m}}$ where $\mathrm{m}=1,2,3,4$ or 6 .
32. $\quad 2^{\mathrm{m}}$ where $\mathrm{m}=1,2, \mathrm{~L}, 11$.
33. $\quad 2^{12}$.
34. $\quad 2^{\mathrm{m}}$ where m and 12 are coprime to each other.
35. The general and singular solutions of the differential equation
$y=\frac{9}{2} x p^{-1}+\frac{1}{2} p x$, where $p=\frac{d y}{d x}$, are given by
36. $2 c y-x^{2}-9 c^{2}=0,3 y=2 x$.
37. $2 c y-x^{2}+9 c^{2}=0, \quad y= \pm 3 x$.
38. $2 c y+x^{2}+9 c^{2}=0, \quad y= \pm 3 x$.
39. $\quad 2 c y+x^{2}+9 c^{2}=0,3 y=4 x$.
40. A homogenous linear differential equation with real constant coefficients, which has $y=x e^{-3 x} \cos 2 x+e^{-3 x} \sin 2 x$, as one of its solutions, is given by:
41. $\left(D^{2}+6 D+13\right) y=0$.
42. $\left(D^{2}-6 D+13\right) y=0$.
43. $\left(D^{2}-6 D+13\right)^{2} y=0$.
44. $\quad\left(D^{2}+6 D+13\right)^{2} y=0$.
45. The particular integral $y_{p}(x)$ of the differential equation

$$
x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=\frac{1}{x+1}, x>0
$$

is given by
$y_{p}(x)=x v_{1}(x)+\frac{1}{x} \nu_{2}(x)$
where $v_{1}(x)$ and $v_{2}(x)$ are given by

1. $\quad x v_{1}^{\prime}(x)-\frac{1}{x^{2}} v_{2}^{\prime}(x)=0, \quad v_{1}^{\prime}(x)-\frac{1}{x^{2}} v_{2}^{\prime}(x)=\frac{1}{x+1}$.
2. $\quad x v_{1}^{\prime}(x)+\frac{1}{x^{2}} v_{2}^{\prime}(x)=0, \quad v_{1}^{\prime}(x)-\frac{1}{x^{2}} v_{2}^{\prime}(x)=\frac{1}{x+1}$.
3. $x v_{1}^{\prime}(x)-\frac{1}{x^{2}} v_{2}^{\prime}(x)=0, \quad v_{1}^{\prime}(x)+\frac{1}{x^{2}} v_{2}^{\prime}(x)=\frac{1}{x+1}$.
4.

$$
x v_{1}^{\prime}(x)+\frac{1}{x^{2}} v_{2}^{\prime}(x)=0, \quad v_{1}^{\prime}(x)+\frac{1}{x^{2}} v_{2}^{\prime}(x)=\frac{1}{x+1}
$$

81. The boundary value problem $y^{\prime \prime}+\lambda y=0, y(0)=0, y(\pi)+k y^{\prime}(\pi)=0$, is self-adjoint
82. only for $\mathrm{k} \in\{0,1\}$.
83. for all $k \in(-\infty, \infty)$.
84. only for $\mathrm{k} \in[0,1]$.
85. only for $\mathrm{k} \in(-\infty, 1) \mathrm{U}(1, \infty)$.
86. The general integral of $z(x p-y q)=y^{2}-x^{2}$ is
87. $\mathrm{z}^{2}-\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{f}(\mathrm{xy})$.
88. $\quad z^{2}=x^{2}-y^{2}+f(x y)$.
89. $\quad z^{2}=-x^{2}-y^{2}+f(x y)$.
90. $\quad z^{2}=y^{2}-x^{2}+f(x y)$.
91. A singular solution of the partial differential equation $z+x p-x^{2} y q^{2}-x^{3} p q=0$ is
92. $z=\frac{x^{2}}{y}$.
93. $z=\frac{x}{y^{2}}$.
94. $z=\frac{y}{x^{2}}$.
95. $z=\frac{y^{2}}{x}$.
96. The characteristics of the partial differential equation $36 \frac{\partial^{2} z}{\partial x^{2}}-y^{14} \frac{\partial^{2} z}{\partial y^{2}}-7 y^{13} \frac{\partial z}{\partial y}=0$, are given
97. $x+\frac{1}{y^{6}}=c_{1}, x-\frac{1}{y^{6}}=c_{2}$.

98. $x+\frac{36}{y^{6}}=c_{1}, x-\frac{36}{y^{6}}=c_{2}, 1<$
99. $6 x+\frac{7}{y^{6}}=c_{1}, 6 x-\frac{7}{y^{6}}=c_{2}$.
100. $\quad 6 x+\frac{7}{y^{8}}=c_{1}, 6 x-\frac{7}{y^{8}}=c_{2}$.
101. The Lagrange interpolation polynomial through $(1,10),(2,-2),(3,8)$, is
102. $11 x^{2}-45 x+38$.
103. $\quad 11 x^{2}-45 x+36$.
104. $1 x^{2}-45 x+30$.
105. $\quad 11 x^{2}-45 x+44$.
106. Newton's method for finding the positive square root of a >0 gives, assuming $\mathrm{x}_{0}>0, \mathrm{x}_{0} \neq \sqrt{a}$,
107. $x_{n+1}=\frac{x_{n}}{2}+\frac{a}{x_{n}}$.
108. $\quad x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{a}{x_{n}}\right)$.
109. $x_{n+1}=\frac{1}{\sqrt{2}}\left(x_{n}-\frac{a}{x_{n}}\right)$.
110. $\quad x_{n+1}=\frac{1}{\sqrt{2}}\left(x_{n}+\frac{a}{x_{n}}\right)$.
111. The extremal problem
$J[y(x)]=\int_{0}^{\pi}\left\{\left(y^{\prime}\right)^{2}-y^{2}\right\} d x$
$y(0)=1, y(\pi)=\lambda$, has
112. a unique extremal if $\lambda=1$.
113. infinitely many extremals if $\lambda=1$.
114. a unique extremal if $\lambda=-1$.
115. infinitely many exttemal if $\lambda=-1$.
116. The functional
$J[y]=\int_{0}^{1} e^{x}\left(y^{2}+\frac{1}{2} y^{\prime 2}\right) d x ; y(0)=1, y(1)=e$
attains
117. A weak, but not a strong minimum on e^{x}.
118. Astrong minimum on e^{x}.
119. A weak, but not a strong maximum on e^{x}.
120. A strong maximum on e^{x}.
121. A solution of the integral equation
$\int_{0}^{x} e^{x-t} \phi(t) d t=\sinh x$, is
122. $\phi(x)=e^{-x}$.
123. $\phi(x)=e^{x}$.
124. $\phi(x)=\sinh x$.
125. $\phi(x)=\cosh x$.
126. If $\bar{\varphi}(p)$ denotes the Laplace transform of $\varphi(x)$ then for the integral equation of convolution type
$\varphi(x)=1+2 \int_{0}^{x} \cos (x-t) \varphi(t) d t$,
$\bar{\varphi}(p)$ is given by
127. $\frac{p^{2}+1}{(p-1)^{2}}$.
128. $\frac{p^{2}+1}{(p+1)^{2}}$.
129. $\frac{\left(p^{2}+1\right)}{p(p-1)^{2}}$.
130. $\frac{p^{2}+1}{p(p+1)^{2}}$.
131. The Lagrangian of a dynamical system is $L=\&_{2}^{2}+k_{1} q_{1}^{2}$, then the Hamiltonian is given by
132. $H=p_{1}^{2}+p_{2}^{2}-k q_{1}^{2}$.
133. $H=\frac{1}{4}\left(p_{1}^{2}+p_{2}^{2}\right)+k q_{1}^{2}$.
134. $H=p_{1}^{2}+p_{2}^{2}+\overline{k q_{1}^{2}}$.
135. $H=\frac{1}{4}\left(p_{1}^{2}+p_{2}^{2}\right)-k q_{1}^{2}$.
136. The kinetic energy T and potential energy V of a dynamical system are given respectively, under usual notations, by
$T=\frac{1}{2}\left[A\left(\& \&^{2} \sin ^{2} \theta\right)+B\left(y \& \cos \theta+y^{2}\right]\right.$
and $\mathrm{V}=\mathrm{Mgl} \cos \theta$. The generalized momentum p_{ϕ} is
137. $p_{\phi}=2 B \phi \&<\cos \theta+2 \phi^{2}$.
138. $p_{\phi}=\frac{B}{2}\left(\psi \& \cos \theta+\phi \phi^{2}\right.$.
139. $p_{\phi}=B(\psi<\cos \theta+\phi)^{2}$.
140. $p_{\phi}=B(\psi \& \cos \theta+\phi)$.
141. Consider repeated tosses of a coin with probability p for head in any toss. Let $\mathrm{NB}(\mathrm{k}, \mathrm{p})$ be the random variable denoting the number of tails before the $\mathrm{k}^{\text {th }}$ head.
Then $P\left(N B(10, p)=j \quad 3^{\text {rd }}\right.$ head occurred in $15^{\text {th }}$ toss) is equal to
142. $\quad P(N B(7, p)=j-15)$, for $j=15,16, L$
143. $\quad P(N B(7, p)=j-12)$, for $j=12,13, L$
144. $\quad P(N B(10, p)=j-15)$, for $j=15,16, L$
145. $\quad P(N B(10, p)=j-12)$, for $j=12,13, L$
146. Suppose X and Y are standard normal random variables. Then which of the following statements is correct?
147. (X, Y) has a bivariate normal distribution.
148. $\quad \operatorname{Cov}(X, Y)=0$.
149. The given information does not determine the joint distribution of X and Y.
150. $\mathrm{X}+\mathrm{Y}$ is normal.
151. Let F be the distribution function of a strictly positiye random variable with finite expectation μ. Define
$\mathrm{G}(\mathrm{x})=\left\{\begin{array}{cc}\frac{1}{\mu} \int_{0}^{x}(1-F(y)) d y, & \text { if } x>0 \\ 0, & \text { otherwise }\end{array}\right.$
Which of the following statements is correct?
152. G is a decreasing function.
153. G is a probability density function.
154. $\mathrm{G}(\mathrm{x}) \rightarrow+\infty$ as $\mathrm{x} \rightarrow+\infty$.
155. G is a distribution function.
156. Let $X_{1}, X_{2} L$ be an irreducible Markov chain on the state space $\{1,2, L\}$. Then $\mathrm{P}\left(\mathrm{X}_{\mathrm{n}}=5\right.$ for infinitely many n) can equal
157. Only 0 or 1 .
158. Only 0 .
159. Any number in $[0,1]$.
160. Only 1.
161. $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{~L}, \mathrm{X}_{\mathrm{n}}$ is a random sample from a normal population with mean zero and variance σ^{2}. Let $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$. Then the distribution of $T=\sum_{i=1}^{n-1}\left(X_{i}-\bar{X}\right)$ is
162. $\mathrm{t}_{\mathrm{n}-1}$
163. $\mathrm{N}\left(0,(n-1) \sigma^{2}\right)$
164. $N\left(0, \frac{n+1}{n} \sigma^{2}\right)$
165. $\quad N\left(0, \frac{n-1}{n} \sigma^{2}\right)$
166. Let $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{~L}, \mathrm{X}_{\mathrm{n}}$ be independent exponential random variables with parameters $\lambda_{1}, \mathrm{~L}, \lambda_{n}$ respectively. Let $\mathrm{Y}=\min \left(\mathrm{X}_{1}, \mathrm{~L}, \mathrm{X}_{\mathrm{n}}\right)$. Then Y has an exponential distribution with parameter
167. $\quad \sum_{i=1}^{n} \lambda_{i}$
168. $\prod_{i=1}^{n} \lambda_{i}$
169. $\min \left\{\lambda_{1}, \mathrm{~K}, \lambda_{n}\right\}$
170. $\max \left\{\lambda_{1}, \mathrm{~K}, \lambda_{n}\right\}$
171. Suppose $\mathrm{x}_{1}, \mathrm{x}_{2} \mathrm{~L}, \mathrm{x}_{\mathrm{n}}$ aren observations on a variable X . Then the value of A which minimizes $\sum_{i=1}^{n}\left(x_{i}-A\right)^{2}$ is
172. median of $x_{1}, x_{2} L, x_{n}$
173. mode of $\mathrm{x}_{1}, \mathrm{x}_{2} \mathrm{~L}, \mathrm{x}_{\mathrm{n}}$
174. mean of $\mathrm{x}_{1}, \mathrm{x}_{2} \mathrm{~L}, \mathrm{x}_{\mathrm{n}}$
$\frac{\min \left(x_{1}, \mathrm{~L}, x_{n}\right)+\max \left(x_{1}, \mathrm{~L}, x_{n}\right)}{2}$
175. Suppose $\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{~L}, \mathrm{X}_{\mathrm{n}}$ are i.i.d. with density function $\mathrm{f}(\mathrm{x})=\frac{\theta}{x^{2}}, \theta<x, \theta>0$.

Then

1. $\quad \sum_{i=1}^{0} \frac{1}{X_{i}^{2}}$ is sufficient for θ
2. $\min _{1 \leq i \leq n} X_{i}$ is sufficient for θ.
3. $\prod_{i=1}^{n} \frac{1}{X_{i}{ }^{2}}$ is sufficient for θ
4. $\quad\left(\max _{1 \leq i \leq n} X_{i}, \min _{1 \leq i \leq n} X_{i}\right)$ is not sufficient for θ.
5. Suppose X is a random variable with density function $\mathrm{f}(\mathrm{x})$.

To test $\mathrm{H}_{0}: \mathrm{f}(\mathrm{x})=1,0<\mathrm{x}<1$, vs $\mathrm{H}_{1}: \mathrm{f}(\mathrm{x})=2 \mathrm{x}, 0<\mathrm{x}<1$, the UMP test at level $\alpha=0.05$

1. Does not exist
2. Rejects H_{0} if $\mathrm{X}>0.95$
3. Rejects H_{0} if $\mathrm{X}>0.05$
4. Rejects H_{0} for $\mathrm{X}<\mathrm{C}_{1}$ or $\mathrm{X}>\mathrm{C}_{2}$ where $\mathrm{C}_{1}, \mathrm{C}_{2}$ have to be determined.
5. Suppose the distribution of X is known to be one of the following:
$f_{1}(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2},-\infty<x<\infty ;$
$f_{2}(x)=\frac{1}{2} e^{-|x|},-\infty<x<\infty$;
$f_{3}(x)=\frac{1}{4},-2<x<2$.
If $\mathrm{X}=0$ is observed, then the maximum likelihood estimate of the distribution of X is
6. $\mathrm{f}_{1}(\mathrm{x})$
7. $f_{2}(x)$
8. $f_{3}(x)$
9. Does not exist.
10. Suppose $X_{i}, i=1,2, \mathrm{~L}, \mathrm{n}$, are independently and identically distributed random variables/with common distribution function $F(\cdot)$. Suppose $F(\cdot)$ is absolutely continuous and the hypothesis to be tested is $\mathrm{p}^{\text {th }}(0<\mathrm{p}<1 / 2)$ quantile is ξ_{0}. An appropriate test is
11. Sign Test
12. Mann-Whitney Wilcoxon rank sum test
13. Wilcoxon Signed rank test
14. Kolmogorov Smirnov test
15. Suppose $\mathrm{Y} \sim \mathrm{N}\left(\theta, \sigma^{2}\right)$ and suppose the prior distribution on θ is $N\left(\mu, \tau^{2}\right)$. The posterior distribution of θ is also $N\left(\frac{\tau^{2}}{\tau^{2}+\sigma^{2}} y+\frac{\sigma^{2}}{\tau^{2}+\sigma^{2}} \mu, \frac{\sigma^{2} \tau^{2}}{\tau^{2}+\sigma^{2}}\right)$
The Bayes' estimator of θ under squared error loss is given by
16. $\frac{\tau^{2}}{\tau^{2}+\sigma^{2}} y$
17. $\frac{\tau^{2} y}{\tau^{2}+\sigma^{2}}$
18. $\frac{\tau^{2}}{\tau^{2}+\sigma^{2}} y+\frac{\sigma^{2}}{\tau^{2}+\sigma^{2}} \mu$
19. y .
20. Consider the model
$y_{i j}=\mu+\theta(i-1)+\beta(2-j)+\varepsilon_{i j}, \quad i=1,2 ;$
where $y_{i j}$ is the observation under $i^{\text {th }}$ treatment and $j^{\text {th }}$ block, μ is the general effect, θ and β are treatment and block parameters respectively and $\varepsilon_{\mathrm{ij}}$ are random errors with mean 0 and common variance σ^{2}. Then
21. $\quad \mu, \theta$ and β are all estimable
22. $\quad \theta$ and β are estimable, μ is not estimable
23. μ and θ are estimable, β is not estimable
24. $\quad \mu$ and β are estimable, θ is not estimable
25. Consider a multiple linear regression model $\underline{y}=X \quad \underline{\beta}+\underline{\varepsilon}$
where \underline{y} is a $\mathrm{n} \times 1$ vector of response variables, X is a $\mathrm{n} \times \mathrm{p}$ regression matrix, $\underline{\beta}$ is a $\mathrm{p} \times 1$ vector of unknown parameters and $\underline{\varepsilon}$ is a $\mathrm{n} \times 1$ vector of uncorrelated random variables with mean 0 and common variance σ^{2}. Let $\underline{\hat{y}}$ be the vector of least squares fitted values of \underline{y} and $\underline{e}=\left(e_{1} \mathrm{~L} e_{n}\right)^{T}$ be the vector of residuals. Then
26. $\sum_{i=1}^{n} e_{i}=0$ always
27.

$$
\sum_{i=1}^{n} e_{i}=0 \text { if one column of } \mathrm{X} \text { is }(1, \mathrm{~L}, 1)^{\mathrm{T}}
$$

3. $\sum_{i=1}^{n} e_{i}=0$ only if one column of X is $(1 \mathrm{~L}, 1)^{\mathrm{T}}$
4. nothing can be said about $\sum_{i=1}^{n} e_{i}$
5. Suppose $\underset{0}{X} \underset{p \times 1}{ } \sim N_{p}(0, \Sigma)$ where

$$
\sum=\left(\begin{array}{ccccc}
1 & -1 / 2 & 0 & \mathrm{~L} & 0 \\
-1 / 2 & 1 & 0 & \mathrm{~L} & 0 \\
0 & 0 & & & \\
\mathrm{M} & \mathrm{M} & & \Sigma_{22} & \\
0 & 0 & & &
\end{array}\right)
$$

and Σ_{22} is positive definite. Then
$\mathrm{P}\left(\mathrm{X}_{1}-\mathrm{X}_{2}<0, \mathrm{X}_{1}+\mathrm{X}_{2} \neq 0 \mid \mathrm{X}_{\mathrm{P}}>0\right)$ is equal to

1. $1 / 8$
2. $1 / 4$
3. $1 / 2$
4. 1
5. Suppose the variance-covariance matrix of a random vector $\underline{X}_{(3 \times 1)}$ is

$$
\sum=\left(\begin{array}{lll}
4 & 0 & 0 \\
0 & 8 & 2 \\
0 & 2 & 8
\end{array}\right)
$$

The percentage of variation explained by the firs principal component is

1. 50
2. 45
3. 60
4. 40
5. A population consists of 10 students. The marks obtained by one student is 10 less than the average of the marks obtained by the remaining 9 students. Then the variance of the population of marks $\left(\sigma^{2}\right)$ will always satisfy
6.
7. $\quad \begin{aligned} \sigma^{2} & \geq 10 \\ \sigma^{2} & =10\end{aligned}$
8. $\sigma^{2} \leq 10$
9.
10. For what value of λ, the following will be the incidence matrix of a BIBD?

$$
\mathrm{N}=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & \lambda \\
0 & 1 & 1
\end{array}\right)
$$

1. $\lambda=0$
2. $\lambda=1$
3. $\lambda=4$
4. $\lambda=3$
5. With reference to a 2^{2} - factorial experiment, consider the factorial effects A, B and AB . Then the estimates of
6. Only A and B are orthogonal
7. Only A and C are orthogonal
8. Only B and C are orthogonal
9. A, B and C are orthogonal
10. Let X be a r.v. denoting failure time of a component. Failure rate of the component is constant if and only if p.d.f. of X is
11. Consider the problem
12. exponential
13. negative binomial
14. weibull
15. normal

This problem has

1. unbounded solution space but unique optimal solution with finite optimum objective value
2. unbounded solution space as well as unbounded objective value 3. no feasible solution
3. unbounded solution space but infinite optimal solutions with finite optimum objective value
4. Consider an $\mathrm{M} / \mathrm{M} / 1 / \mathrm{K}$ queuing system in which at most K customers are allowed in the system with parameters λ and μ, respectively $(\rho=\lambda / \mu)$. The expected steady state number of customers in the queueing system is $\mathrm{K} / 2$ for
5. $\rho=1$
6. $\quad \rho<1$
7. $\quad \rho>1$
8. any ρ
9. Consider the system of equations
$\mathrm{P}_{1} \mathrm{x}_{1}+\mathrm{P}_{2} \mathrm{X}_{2}+\mathrm{P}_{3} \mathrm{X}_{3}+\mathrm{P}_{4} \mathrm{X}_{4}=\mathrm{b}$, where

$$
P_{1}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right), \quad P_{2}=\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right), \quad P_{3}=\left(\begin{array}{l}
1 \\
4 \\
2
\end{array}\right), \quad P_{4}=\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right), \quad b=\left(\begin{array}{l}
3 \\
4 \\
2
\end{array}\right)
$$

The following vector combination does not form a basis:

1. $\left(\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}\right)$
2. $\left(\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{4}\right)$
3. $\left(\mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{4}\right)$
4. $\left(\mathrm{P}_{1}, \mathrm{P}_{3}, \mathrm{P}_{4}\right)$.

