PDF brought to you by ResPaper.com

GATE 2007: Mechanical Engineering

Answer key / correct responses on:

Click link: http://www.respaper.com/gate/661/1250.pdf

Other papers by GATE: http://www.respaper.com/gate/

Upload and share your papers and class notes on ResPaper.com. It is FREE!

ResPaper.com has a large collection of board papers, competitive exams and entrance tests.

GATE 2007: Mechanical Engineering

ME: Mechanical Engineering

Duration: Three Hours

Maximum Marks :150

Read the following instructions carefully.

- 1. This question paper contains 85 objective type questions. Q.1 to Q.20 carry one mark each and Q.21 to Q.85 carry two marks each.
- 2. Attempt all the questions.
- 3. Questions must be answered on Objective Response Sheet (ORS) by darkening the appropriate bubble (marked A, B, C, D) using HB pencil against the question number on the left hand side of the ORS. Each question has only one correct answer. In case you wish to change an answer, erase the old answer completely.
- 4. Wrong answers will carry NEGATIVE marks. In Q.1 to Q.20, 0.25 mark will be deducted for each wrong answer. In Q.21 to Q.76, Q.78, Q.80, Q.82 and in Q.84, 0.5 mark will be deducted for each wrong answer. However, there is no negative marking in Q.77, Q.79, Q.81, Q.83 and in Q.85. More than one answer bubbled against a question will be taken as an incorrect response. Unattempted questions will not carry any marks.
- 5. Write your registration number, your name and name of the examination centre at the specified locations on the right half of the ORS.
- Using HB pencil, darken the appropriate bubble under each digit of your registration number and the letters corresponding to your paper code.
- 7. Calculator is allowed in the examination hall.
- 8. Charts, graph sheets or tables are NOT allowed in the examination hall.
- Rough work can be done on the question paper itself. Additionally blank pages are given at the end of the question paper for rough work.
- 10. This question paper contains 24 printed pages including pages for rough work. Please check all pages and report, if there is any discrepancy.

ME 1/24

Q. Q. 20 carry one mark each.

- Q.1 The minimum value of function $y = x^2$ in the interval [1,5] is
 - (A) 0
- (B) 1
- (C) 25
- (D) undefined
- Q.2 If a square matrix A is real and symmetric, then the eigenvalues
 - (A) are always real
 - (B) are always real and positive
 - (C) are always real and non-negative
 - (D) occur in complex conjugate pairs
- Q.3 If $\varphi(x, y)$ and $\psi(x, y)$ are functions with continuous second derivatives, then $\varphi(x, y) + i\psi(x, y)$ can be expressed as an analytic function of x + iy ($i = \sqrt{-1}$), when

(A)
$$\frac{\partial \varphi}{\partial x} = -\frac{\partial \psi}{\partial x}$$
; $\frac{\partial \varphi}{\partial y} = \frac{\partial \psi}{\partial y}$

(B)
$$\frac{\partial \varphi}{\partial y} = -\frac{\partial \psi}{\partial x}; \frac{\partial \varphi}{\partial x} = \frac{\partial \psi}{\partial y}$$

(C)
$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = \frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} = 1$$

(D)
$$\frac{\partial \varphi}{\partial x} + \frac{\partial \varphi}{\partial y} = \frac{\partial \psi}{\partial x} + \frac{\partial \psi}{\partial y} = 0$$

Q.4 The partial differential equation

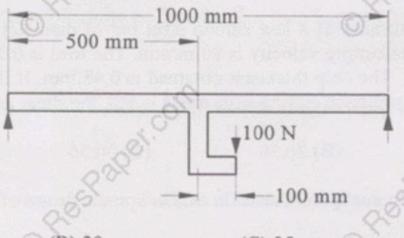
$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \left(\frac{\partial \varphi}{\partial x}\right) + \left(\frac{\partial \varphi}{\partial y}\right) = 0$$

has

(A) degree 1 order 2

- (B) degree 1 order 1
- (C) degree 2 order 1 (D) degree 2 order 2
- Q.5 Which of the following relationships is valid only for reversible processes undergone by a closed system of simple compressible substance (neglect changes in kinetic and potential energy)?
 - $(A) \delta Q = dU + \delta W$

(B) T dS = dU +p dV


(C) T $dS = dU \pm \delta W$

- (D) $\delta Q = dU + p dV$
- Q.6 Water has a critical specific volume of 0.003155 m³/kg. A closed and rigid steel tank of volume 0.025 m³ contains a mixture of water and steam at 0.1 MPa. The mass of the mixture is 10 kg. The tank is now slowly heated. The liquid level inside the tank
 - (A) will rise
 - (B) will fall
 - (C) will remain constant
 - (D) may rise or fall depending on the amount of heat transferred

ME 2/24 ©

S/121 Food/06-ME-1B

- Consider an incompressible laminar boundary layer flow over a flat plate of length L, aligned with the direction of an oncoming uniform free stream. If F is the ratio of the drag force on the front half of the plate to the drag force on the rear half, then
 - (A) F < 1/2
- (B) F = 1/2
- (C) F = 1
- In a steady flow through a nozzle, the flow velocity on the nozzle axis is given by Q.8 $v = u_0(1+3x/L)i$, where x is the distance along the axis of the nozzle from its inlet plane and L is the length of the nozzle. The time required for a fluid particle on the axis to travel from the inlet to the exit plane of the nozzle is
- (B) $\frac{L}{3u_o} \ln 4$ (C) $\frac{L}{4u_o}$
- (D) $\frac{L}{2.5u_{o}}$
- Consider steady laminar incompressible axi-symmetric fully developed viscous flow Q.9 through a straight circular pipe of constant cross-sectional area at a Reynolds number of 5. The ratio of inertia force to viscous force on a fluid particle is
 - (A) 5
- (C) 0
- In a simply-supported beam loaded as shown below, the maximum bending moment in Nm is

- (A) 25
- (C) 35
- (D) 60
- A ball bearing operating at a load F has 8000 hours of life. The life of the bearing, in Q.11 hours, when the load is doubled to 2F is
 - (A) 8000
- (B) 6000
- (C) 4000
- (D) 1000
- During inelastic collision of two particles, which one of the following is conserved?
 - (A) total linear momentum only
 - (B) total kinetic energy only
 - (C) both linear momentum and kinetic energy
 - (D) neither linear momentum nor kinetic energy
- A steel rod of length L and diameter D, fixed at both ends, is uniformly heated to a temperature rise of ΔT . The Young's modulus is E and the coefficient of linear expansion is a. The thermal stress in the rod is
 - (A) 0
- \bigcirc (B) $\alpha \Delta T$
- (C) Ε αΔΤ
- (D) E αΔΤ L

Ö	1.	1 or air anderdampe	a narmonic oscinato	or, resonance	of the second	
Ros Park		(B) occurs when e	xcitation frequency i xcitation frequency i xcitation frequency i	s less than undamped	d natural frequency natural frequency	
	Q.15	If a particular Fe-C	alloy contains less t	han 0.83% carbon, it	is called	
	CON .	(A) high speed stee (C) hypereutectoid		(B) hypoeutecto (D) cast iron	id steel	
See S.o.	Q.16	Which of the follo	wing engineering mg?	aterials is the most	suitable candidate for hot	
		(A) low carbon stee	el	(B) titanium		
	Tag	(C) copper		(D) tin		
	Q.17	Which one of the fo	ollowing is a solid sta	ate joining process?	er.com	
YOU LAND		(A) gas tungsten are (C) friction welding		(B) resistance sp (D) submerged a		
	Q.18	In orthogonal turning of a low carbon steel bar of diameter 150 mm with uncoated carbide tool, the cutting velocity is 90 m/min. The feed is 0.24 mm/rev and the depth of cut is 2 mm. The chip thickness obtained is 0.48 mm. If the orthogonal rake angle is zero and the principal cutting edge angle is 90°, the shear angle in degree is				
0300		(A) 20.56	(B) 26.56	(C) 30.56	(D) 36.56	
205	Q.19	Which type of moto	is NOT used in ax	is or spindle drives o	f CNC machine tools?	
		(A) induction motor (C) stepper motor	(C) 35 (C)	(B) de servo mot (D) linear servo		
0.300	Q:20	the solidification tin	are solid and of san	ne material. They are same of the sphere is		
Siag,		$(A) \left(\frac{4\pi}{6}\right)^3 \left(\frac{r}{l}\right)^6$	(B) $\left(\frac{4\pi}{6}\right)\left(\frac{r}{l}\right)^2$	$(C) \left(\frac{4\pi}{6}\right)^2 \left(\frac{r}{l}\right)^3$	(D) $\left(\frac{4\pi}{6}\right)^2 \left(\frac{r}{l}\right)^4$	
	com		COLL		com	
			30.7		RT	

Q. 21 to Q. 75 carry two marks each.

- If $y = x + \sqrt{x + \sqrt{x + \sqrt{x + \cos x}}}$, then y(2) =
- (A) 4 or 1 (B) 4 only (C) 1 only
- (D) undefined
- The area of a triangle formed by the tips of vectors \overline{a} , \overline{b} and \overline{c} is
 - (A) $\frac{1}{2}(\overline{a}-\overline{b})\cdot(\overline{a}-\overline{c})$
 - $(B)\frac{1}{2}\left|(\overline{a}-\overline{b})\times(\overline{a}-\overline{e})\right|$
 - (C) $\frac{1}{2} | \overline{a} \times \overline{b} \times \overline{c} |$
- $(D)\frac{1}{2}(\overline{a}\times\overline{b})\cdot\overline{c}$
- Q.23 The solution of $\frac{dy}{dx} = y^2$ with initial value y(0) = 1 is bounded in the interval
 - (A) $-\infty \le x \le \infty$ (B) $-\infty \le x \le 1$ (C) x < 1, x > 1

- If F(s) is the Laplace transform of function f(t), then Laplace transform of $\int f(\tau) d\tau$ is
- (A) $\frac{1}{s}F(s)$ (B) $\frac{1}{s}F(s)-f(0)$ (C) sF(s)-f(0) (D) $\int F(s)ds$
- A calculator has accuracy up to 8 digits after decimal place. The value of $\int \sin x dx$ when evaluated using this calculator by trapezoidal method with 8 equal intervals, to 5 significant digits is
- (A) 0.00000
- (B) 1.0000
- (C) 0.00500
- (D) 0.00025
- Let X and Y be two independent random variables. Which one of the relations between expectation (E), variance (Var) and covariance (Cov) given below is FALSE?
 - (A) E(XY) = E(X)E(Y)

- (B) Cov(X,Y)=0
- (C) Var(X + Y) = Var(X) + Var(Y)
- (D) $E(X^2Y^2) = (E(X))^2 (E(Y))^2$
- - (A) 0
- (C) 1/3

Q.28	The number of l	inearly independent of	eigenvectors of $\begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$	is		
2	(A) 0	(B) 1	(C) 2 (C) 2	(D) infinite		
Q.29	that the tangenti	ial component of ve at throughout the bl	Francis turbine is 90°. locity at blade outlet is ade passage and is equiciency of the runner is	zero. The flow vel ual to half of the	locity	
Say	(A) 25%	(B) 50%	(C) 80%	(D) 89%		
Q.30	The temperature	e distribution withi	n the thermal bounda	ry layer over a h	eated	
	isothermal flat p	late is given by $\frac{T-T}{T_{\infty}}$	$\frac{T_{w}}{T_{w}} = \frac{3}{2} \left(\frac{y}{\delta_{t}} \right) - \frac{1}{2} \left(\frac{y}{\delta_{t}} \right)^{3}$	where T_w and T_∞ as	re the	
Cabar com		the plate. The local	am respectively, and Nusselt number based			
3	(A) 1.33	(B) 1.50	(C) 2.0 (S)	(D) 4.64		
Q.31	30°C. Mass flow Specific heat of	w rate of the hot flu the hot fluid is 10 k.	ot fluid enters at 60°C id is 1 kg/s and that of the column (LMTD) for the heat exc	the cold fluid is 2 old fluid is 5 kJ/kgK	kg/s.	
o apar.	(A) 15	(B) 30	(C) 35	(D) 45		
Q.32	can be determin it cools. Assum	ed from observations ne the plate tempera	on a thin hot vertical part of the change in plate ture to be uniform at roundings negligible. The	temperature with tin	me as	
O aper com	of the plate many W/m ² K, at the i	aterial is 2.5 kJ/kgl	ca of 0.1 m ² and a mass K. The convective here te temperature is 225°C K/s, is	at transfer coefficie	ent in	
	(A) 200	(B) 20	(C) 15 C	(D) 10		
Q.33	A model of a hydraulic turbine is tested at a head of 1/4 th of that under which the scale turbine works. The diameter of the model is half of that of the full scale turb If N is the RPM of the full scale turbine, then the RPM of the model will be					
OK.CO.	(A) N/4	(B) N/2	(C) N	(D) 2N		
Say		og Pak	ag Sta	X		

0.34	The stroke and bore of a four stroke spark ignition engine are 250 mm and 200 mm respectively. The clearance volume is 0.001 m^3 . If the specific heat ratio $\gamma = 1.4$, the air-standard cycle efficiency of the engine is					
)	(A) 46.40%	©(B) 56.10%	(C) 58.20% ©	(D) 62.80%		
Q.35	point temperatu -23°C (dry bulb 8 W/m ² K and 23	o) and the internal and W/m ² K respectively.	tions is 10.17°C. The l external surface heat to If the building wall has	C (wet bulb). The dew outside temperature is transfer coefficients are a thermal conductivity all required to prevent		
	(A) 0.471	©(B) 0.407	(C) 0.321	(D) 0.125		
Q.36	dehumidifying of 19 grams/kg of of and a humidity of	oil with an enthalpy of air. The air leaves atio of 8 grams/kg of	of 85 kJ/kg of dry air a the coil with an enthalp	enters a cooling and and a humidity ratio of y of 43 kJ/kg of dry air te water leaves the coil he coil in kW is		
Sec.	(A) 75.0	(B) 123.8	(C) 128.2	(D) 159.0		
Q.37	remaining part to heat is supplied	nperature, to a high o a low temperature h	temperature reservoi eat sink. In such a heat am amount of heat in kJ	eat, supplied to it at an r while rejecting the transformer, 100 kJ of that can be transferred (D) 57.14		
Q.38	Which combination of the following statements is correct?					
	The incorporation of reheater in a steam power plant:					
Aeglaber.	P: always increases the thermal efficiency of the plant. Q: always increases the dryness fraction of steam at condenser inlet. R: always increases the mean temperature of heat addition. S: always increases the specific work output.					
	(A) P and S	(B) Q and S	(C) P,R and S	(D) P,Q,R and S		
Res Pager	50ff	© Restablication		S Aper Con		

- Q.39 Which combination of the following statements is correct?
 - P: A gas cools upon expansion only when its Joule-Thomson coefficient is positive in the temperature range of expansion.
 - Q: For a system undergoing a process, its entropy remains constant only when the process is reversible.
 - R: The work done by a closed system in an adiabatic process is a point function.
 - S: A liquid expands upon freezing when the slope of its fusion curve on Pressure-Temperature diagram is negative.
 - (A) R and S

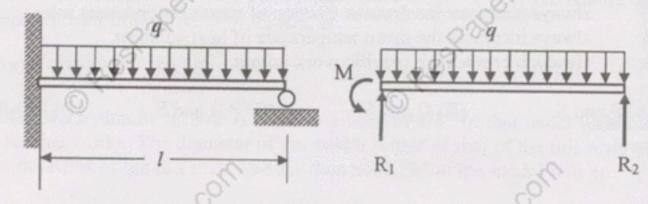
(B) P and Q

(C) Q, R and S

- (D) P, Q and R
- Q.40 Which combination of the following statements about steady incompressible forced vortex flow is correct?
 - P: Shear stress is zero at all points in the flow.
 - Q: Vorticity is zero at all points in the flow.
 - R: Velocity is directly proportional to the radius from the centre of the vortex.
 - S: Total mechanical energy per unit mass is constant in the entire flow field.
 - (A) P and Q
- (B) R and S
- (C) P and R
- (D) P and S

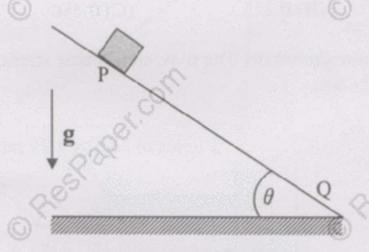
Q.41 Match the items in columns I and II.

Column I


Column II

- P: Centrifugal compressor
- Q: Centrifugal pump
- R: Pelton wheel
- S: Kaplan turbine

- : Axial flow
- 2: Surging
- 30 Priming
- A Pure impulse


- (A) P-2, Q-3, R-4, S-1
- (C) P-3, Q-4, R-1, S-2

- (B) P-2, Q-3, R-1, S-4
- (D) P-1, Q-2, R-3, S-4
- Q.42 A uniformly loaded propped cantilever beam and its free body diagram are shown below. The reactions are

- (A) $R_1 = \frac{5ql}{8}$, $R_2 = \frac{3ql}{8}$, $M = \frac{ql^2}{8}$
- (C) $R_1 = \frac{5ql}{8}$, $R_2 = \frac{3ql}{8}$, M = 0
- (B) $R_1 = \frac{3ql}{8}, R_2 = \frac{5ql}{8}, M = \frac{ql^2}{8}$
- (D) $R_1 = \frac{3ql}{8}$, $R_2 = \frac{5ql}{8}$, M = 0

A block of mass M is released from point P on a rough inclined plane with inclination angle θ , shown in the figure below. The coefficient of friction is μ . If $\mu < \tan \theta$, then the time taken by the block to reach another point Q on the inclined plane, where PQ = s, is

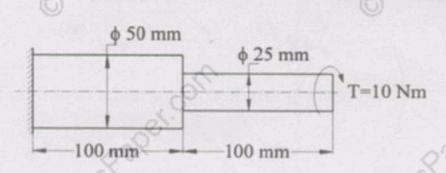
(A)
$$\sqrt{\frac{2s}{g\cos\theta(\tan\theta-\mu)}}$$

(C)
$$\sqrt{\frac{2s}{g\sin\theta(\tan\theta-\mu)}}$$

(B)
$$\sqrt{\frac{2s}{g\cos\theta(\tan\theta+\mu)}}$$

(D)
$$\sqrt{\frac{2s}{g\sin\theta(\tan\theta+\mu)}}$$

Q.44 A 200 x 100 x 50 mm steel block is subjected to a hydrostatic pressure of 15 MPa. The Young's modulus and Poisson's ratio of the material are 200 GPa and 0.3 respectively. The change in the volume of the block in mm³ is


(A) 85

(B) 90

(C) 100

(D) 110

Q.45 A stepped steel shaft shown below is subjected to 10 Nm torque. If the modulus of rigidity is 80 GPa, the strain energy in the shaft in N mm is

(A) 4.12

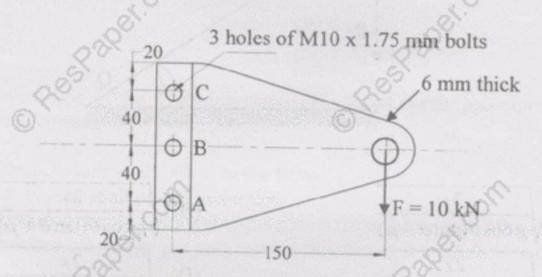
(B) 3.46

(C) 1.73

(D) 0.86

Q.46 A thin spherical pressure vessel of 200 mm diameter and 1 mm thickness is subjected to an internal pressure varying from 4 to 8 MPa. Assume that the yield, ultimate, and endurance strength of material are 600, 800 and 400 MPa respectively. The factor of safety as per Goodman's relation is

(A) 2.0

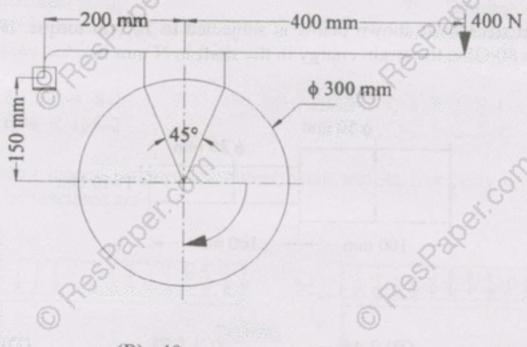

(B) 1.6

(C) 1.4

(D) 1.2

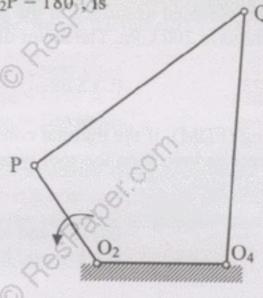
ME 9/24

- Q.47 A natural feed journal bearing of diameter 50 mm and length 50 mm operating at 20 revolution/second earries a load of 2.0 kN. The lubricant used has a viscosity of 20 mPa s. The radial clearance is 50 µm. The Sommerfeld number for the bearing is
 - (A) 0.062 (C)
- (B) 0.125
- (C) 0.250
- (D) 0.785
- Q.48 A bolted joint is shown below. The maximum shear stress, in MPa, in the bolts at A and B, respectively are

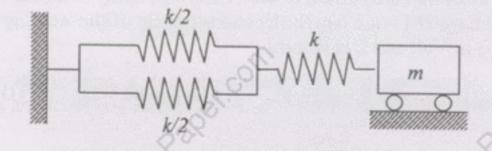

(all dimensions in the figure are in mm)

(A) 242.6, 42.5

(B) 42,5, 242.6

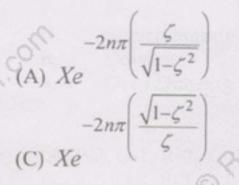

(C) 42.5, 42.5

- (D) 242.6, 242.6
- A block-brake shown below has a face width of 300 mm and a mean coefficient of friction of 0.25. For an activating force of 400 N, the braking torque in Nm is


- (A) 30
- (B) 40
- (C) 45
- (D) 60

Q.50 The input link O_2P of a four bar linkage is rotated at 2 rad/s in counter clockwise direction as shown below. The angular velocity of the coupler PO in rad/s, at an instant when $\angle O_4O_2P = 180^{\circ}$ is

 $PQ = O_4Q = \sqrt{2} a$ $O_2P = O_2O_4 = a$


- (A) 4
- (B) 2√2
- (C) 1
- (D) $1/\sqrt{2}$
- Q.51 The speed of an engine varies from 210 rad/s to 190 rad/s. During a cycle the change in kinetic energy is found to be 400 Nm. The inertia of the flywheel in kgm² is
 - (A) 0.10
- (B) 0.20
- (C) 0.30
- (D) 0.40
- Q.52 The natural frequency of the system shown below is

- (A) $\sqrt{\frac{k}{2m}}$
- (B) $\sqrt{\frac{k}{m}}$
- (C) $\sqrt{\frac{2k}{m}}$
- (D) $\sqrt{\frac{3k}{m}}$
- Q.53 The equation of motion of a harmonic oscillator is given by

$$\frac{d^2x}{dt^2} + 2\zeta\omega_n \frac{dx}{dt} + \omega_n^2 x = 0,$$

and the initial conditions at t = 0 are x(0) = X, $\frac{dx}{dt}(0) = 0$. The amplitude of x(t) after n complete cycles is

- $2n\pi \left(\frac{\zeta}{\sqrt{1-\zeta^2}}\right)$ (B) $Xe^{-\frac{\zeta}{2}}$
- (D) X

subjected to a cor conditions for the	The piston rod of diameter 20 mm and length 700 mm in a hydraulic cylinder is subjected to a compressive force of 10 kN due to the internal pressure. The end conditions for the rod may be assumed as guided at the piston end and hinged at the other end. The Young's modulus is 200 GPa. The factor of safety for the piston rod is					
(A) 0.68	(B) 2.75	(C) 5.62	(D) 11.0			
the specific heat o	f work piece is lo), if the thermal cond w, then the tool wear	rate and material re	h and noval		
(A) high and high (C) high and low	Sag.			4		
In orthogonal turning of medium carbon steel, the specific machining energy is 2.0 J/mm ³ . The cutting velocity, feed and depth of cut are 120 m/min, 0.2 mm/rev and 2 mm respectively. The main cutting force in N is						
(A) 40	(B) 80	(C) 400	(D) 800			
open circuit voltage the machine, the r mm and the meast The linear voltage	ge of 80 V and sho neasured arc current ured arc current is e (E) – arc length (ort circuit current of 8 nt is 500 A correspond 460 A corresponding L) characteristic of the	00 A. During welding to an arc length to an arc length of 7.	g with of 5.0 0 mm.		
(A) $E = 20 + 2L$	(B) $\hat{E} = 20 + 8$	L (C) $E = 80 + 2$	L (D) E = 80 +	8L		
(A) 0.04	(B) 0.05	(C) 0.10	(D) 0.11			
90°, the main cutt 25° and orthogon	ting force is 1000 land rake angle is z	N and the feed force is ero. Employing Men	s 800 N. The shear a	ngle is		
(A) 1.56 ©	(B) 1.25	(C) 6.80	(D) 0.64	0		
	Tor con		ost con			
	Sax	- ES?				
© C						
	subjected to a conconditions for the other end. The You (A) 0.68 In electrodischarge the specific heat or rate are expected to (A) high and high (C) high and low. In orthogonal tur 2.0 J/mm³. The cur 2 mm respectively. (A) 40 A direct current wo open circuit voltage the machine, the ram and the measurement of the ram and the ram and the measurement of the ram and the ram and the measurement of the ram and the r	subjected to a compressive force of conditions for the rod may be assume other end. The Young's modulus is 20 (A) 0.68 (B) 2.75 In electrodischarge machining (EDM the specific heat of work piece is lorate are expected to be respectively (A) high and high (C) high and low In orthogonal turning of medium of 2.0 J/mm ³ . The cutting velocity, feed 2 mm respectively. The main cutting (A) 40 (B) 80 A direct current welding machine wopen circuit voltage of 80 V and shother machine, the measured arc current mm and the measured arc current is The linear voltage (E) – arc length (as (where E is in Volt and L is in mm (A) E = 20 + 2L (B) E = 20 + 8 A hole is specified as 400.000 mm minimum clearance of 0.01 mm. maximum clearance in mm between (A) 0.04 (B) 0.05 In orthogonal turning of low carbon 90°, the main cutting force is 1000 mm maximum clearance in mm between (A) 1.56 (B) 1.25	subjected to a compressive force of 10 kN due to the inconditions for the rod may be assumed as guided at the pis other end. The Young's modulus is 200 GPa. The factor of (A) 0.68 (B) 2.75 (C) 5.62 In electrodischarge machining (EDM), if the thermal condithe specific heat of work piece is low, then the tool wear rate are expected to be respectively (A) high and high (C) high and low (D) low and high (C) high and low (D) low and high (D) low a	subjected to a compressive force of 10 kN due to the internal pressure. The conditions for the rod may be assumed as guided at the piston end and hinged other end. The Young's modulus is 200 GPa. The factor of safety for the piston of the Young's modulus is 200 GPa. The factor of safety for the piston of the Young's modulus is 200 GPa. The factor of safety for the piston of the Young's modulus is 200 GPa. The factor of safety for the piston of the Young's modulus is 200 GPa. The factor of safety for the piston of the Young's grade of the Park of the Young's grade of the Park of		

ME 12/24

Q.60 Two metallic sheets, each of 2.0 mm thickness, are welded in a lap joint configuration by resistance spot welding at a welding current of 10 kA and welding time of 10 millisecond. A spherical fusion zone extending up to the full thickness of each sheet is formed. The properties of the metallic sheets are given as:

ambient temperature = 293 K melting temperature = 1793 K latent heat of fusion = 300 kJ/kg

density = 7000 kg/m³ specific heat = 800 J/kgK

Assume: (i) contact resistance along sheet-sheet interface is 500 micro-ohm and along electrode-sheet interface is zero; (ii) no conductive heat loss through the bulk sheet materials; and (iii) the complete weld fusion zone is at the melting temperature.

The melting efficiency (in %) of the process is

(A) 50.37

(B) 60.37

(C) 70.37

(D) 80.37

Q.61 Capacities of production of an item over 3 consecutive months in regular time are 100, 100 and 80 and in overtime are 20, 20 and 40. The demands over those 3 months are 90, 130 and 110. The cost of production in regular time and overtime are respectively Rs. 20 per item and Rs. 24 per item. Inventory carrying cost is Rs. 2 per item per month. The levels of starting and final inventory are nil. Backorder is not permitted. For minimum cost of plan, the level of planned production in overtime in the third month is

(A) 40

(B) 30

(C) 20

(D) 0

Q.62 In open-die forging, a disc of diameter 200 mm and height 60 mm is compressed without any barreling effect. The final diameter of the disc is 400 mm. The true strain is

(A) 1.986

(B) 1.686

(C) 1.386

(D) 0.602

Q.63 The thickness of a metallic sheet is reduced from an initial value of 16 mm to a final value of 10 mm in one single pass rolling with a pair of cylindrical rollers each of diameter of 400 mm. The bite angle in degree will be

(A) 5.936

(B) 7.936

(C) 8.936

(D) 9.936

Q.64 Match the correct combination for following metal working processes.

Processes

Associated state of stress

P. Blanking

Q. Stretch Forming

R. Coining

S. Deep Drawing

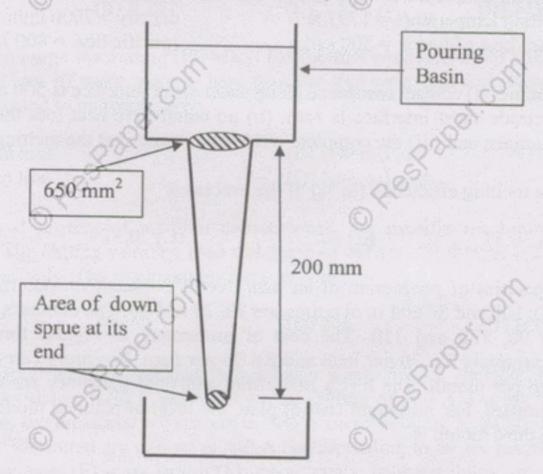
Tension

2. Compression

3. Shear

Tension and Compression

5. Tension and Shear


(A) P-2, Q-1, R-3, S-4

(C) P-5, Q-4, R-3, S-1

(B) P-3, Q-4, R-1, S-5

(D) P-3, Q-1, R-2, S-4

A 200 mm long down sprue has an area of cross-section of 650 mm2 where the pouring basin meets the down sprue (i.e. at the beginning of the down sprue). A constant head of molten metal is maintained by the pouring basin. The molten metal flow rate is 6.5 x 10⁸ mm³/s. Considering the end of down sprue to be open to atmosphere and an acceleration due to gravity of 104 mm/s2, the area of the down sprue in mm2 at its end (avoiding aspiration effect) should be

(A) 650.0

(B) 350.0

(C) 290.7

The force requirement in a blanking operation of low carbon steel sheet is 5.0 kN. The thickness of the sheet is 't' and diameter of the blanked part is 'd'. For the same work material, if the diameter of the blanked part is increased to 1.5 d and thickness is reduced to 0.4 t, the new blanking force in kN is

(A) 3.0

(B) 4.5

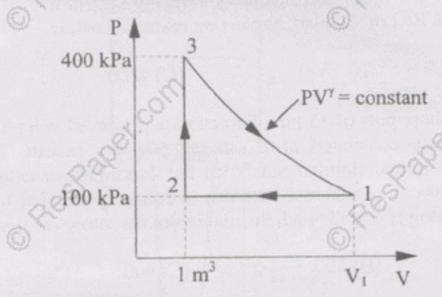
(C) 5.0

(D) 8.0

Match the most suitable manufacturing processes for the following parts.

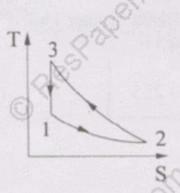
Parts

- P. Computer chip
- Metal forming dies and molds Q.
- Turbine blade
- Glass
- (A) P.-4, Q-3, R-1, S-2

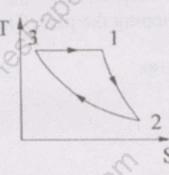

Manufacturing Processes

- Electrochemical Machining
- Ultrasonic Machining
- Electrodischarge Machining 3.
- Photochemical Machining
- (B) P-4, Q-3, R-2, S-1 (D) P-1, Q-2, R-4, S-3

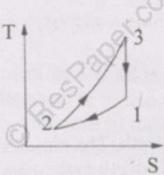
ResPaper Q.68	consumption at	a uniform rate. T	i Series Series OA	and it is achieved with er one and half month throughout the year. O is Rs. 10 per item per st, is	due to
0.0	(A) 800	(B) 2800	(C) 4800	(D) 6800	
Res Paper Co	inventory is allowis 1000. If backle	ntinue simultaneou	1 Doo per	ced at a rate of 1000 per month. The production in inventory is reached.	n and
	(A) 400	(B) 500	(C) 600	(D) 700	
(2)	order respectively	g cost and ordering N. Starting inventor an. The cost of the		tem per week and Rs. 10 ast Unit Cost Technique	. The 00 per control of the control
Deer .	(A) 200	(B) 250	(C) 255 ©	(D) 260	
â		700		an a	
at co		Common D	ata Questions	akin b	
Common	Data S. O.			930	
	Data for Questi			200	
A gear se transmits 5 mm. Th	t has a pinion with a power of 20 kW e length of the line	20 teeth and a gea 7. The teeth are on e of action is 19 mm	ar with 40 teeth. The the 20° full-depth syn.	e pinion runs at 30 rev/s a ystem and have a module	and e of
Q.71- TI	he center distance	for the above gear	set in mm is	and school on the set	
	1) 140	(B) 150°	(C) 160	(D) 170	
Q.72 Th	ne contact ratio of	the contacting tootl	n is	200	
) 1.21	(B) 1.25	(C) 1.29	(D) 1.22	
Q.73 Th	e resultant force o	n the contacting ge		(D) 1.33	
	77.23	(B) 212,20	(C) 225.80	(D) 289.43	
Sec.				500	

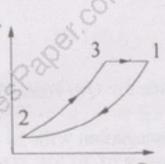

Common Data for Questions 74, 75:

A thermodynamic cycle with an ideal gas as working fluid is shown below.



Q.74 The above cycle is represented on T-S plane by


(A)


(B)

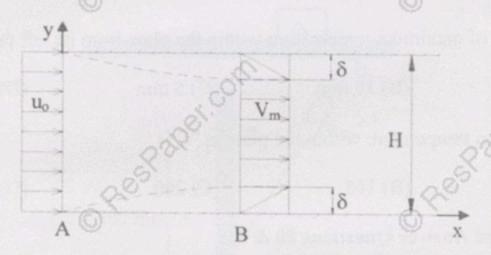
(C)

(D)

Q.75 If the specific heats of the working fluid are constant and the value of specific heat ratio γ is 1.4, the thermal efficiency (%) of the cycle is

(A) 21

(B) 40.9


(C) 42.6

(D) 59.7

Linked Answer Questions: Q.76 to Q.85 carry two marks each.

Statement for Linked Answer Questions 76 & 77:

Consider a steady incompressible flow through a channel as shown below.

The velocity profile is uniform with a value of uo at the inlet section A. The velocity profile at section B downstream is

$$u = \begin{cases} V_{m} \frac{y}{\delta}, & 0 \le y \le \delta \\ V_{m}, & \delta \le y \le H = \delta \end{cases}$$

$$V_{m} \frac{H - y}{\delta}, & H - \delta \le y \le H$$

The ratio V_m/u_o is

$$(A)\frac{1}{1-2(\delta/H)}$$

(C)
$$\frac{1}{1-(\delta/H)}$$

(D)
$$\frac{1}{1+(\delta/H)}$$

Q.77 The ratio $\frac{p_A - p_B}{\frac{1}{2}\rho u_o^2}$ (where p_A and p_B are the pressures at section A and B,

respectively, and p is the density of the fluid) is

$$(A) \frac{1}{(1-(\delta/H))^2} - 12^{-1}$$

$$(C) \frac{1}{(1-(2\delta/H))^2} - 1$$

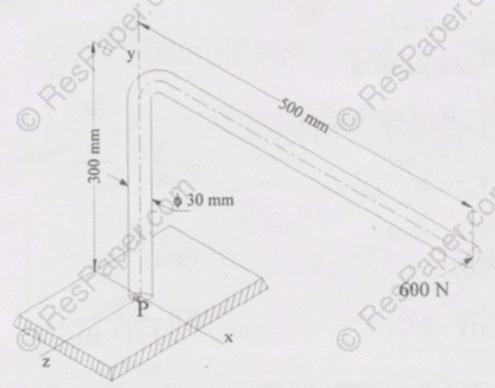
$$(C) \frac{1}{(1-(2\delta/H))^2} - 1$$

$$(C) \frac{1}{(1-(2\delta/H))^2} - 1$$

$$(B) \frac{1}{\left[1 - \left(\delta H\right)\right]^2}$$

(C)
$$\frac{1}{(1-(2\delta/H))^2}-1$$

(D)
$$\frac{1}{1+(\delta/H)}$$


Statement for Linked Answer Questions 78 & 79:

Consider steady one-dimensional heat flow in a plate of 20 mm thickness with a uniform heat generation of 80 MW/m³. The left and right faces are kept at constant temperatures of 160°C and 120°C respectively. The plate has a constant thermal conductivity of 200 W/mK.

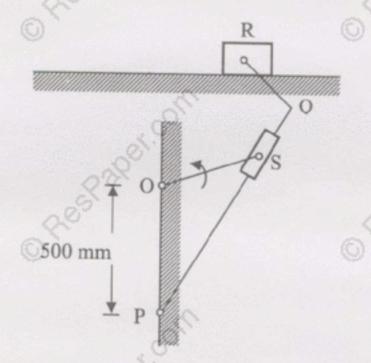
- Q.78 The location of maximum temperature within the plate from its left face is
 - (A) 15 mm
- (B) 10 mm
- (C) 5 mm
- (D) 0 mm
- Q.79 The maximum temperature within the plate in °C is
 - (A) 160
- (B) 165
- (C) 200
- (D) 250

Statement for Linked Answer Questions 80 & 81:

A machine frame shown in the figure below is subjected to a horizontal force of 600 N parallel to z-direction.

- Q.80 The normal and shear stresses in MPa at point P are respectively
 - (A) 67.9 and 56.6

- (B) 56.6 and 67.9
- (C) 67.9 and 0.0 (D) 0.0 and 56.6
- Q.81 The maximum principal stress in MPa and the orientation of the corresponding principal plane in degrees are respectively
 - (A) -32.0 and -29.52


(B) 100.0 and 60.48

(C) -32.0 and 60.48

(D) 100.0 and -29.52

Statement for Linked Answer Questions 82 & 83:

A quick return mechanism is shown below. The crank OS is driven at 2 rev/s in counter-clockwise direction.

Q.82 If the quick return ratio is 1:2, then the length of the crank in mm is

- (A) 250
- (B) 250 √3
- (C) 500
- (D) $500\sqrt{3}$

Q.83 The angular speed of PQ in rev/s when the block R attains maximum speed during forward stroke (stroke with slower speed) is

- (A) 1/3
- (B) 2/3
- (C) 2
- (D) 3

Statement for Linked Answer Questions 84 & 85:

A low carbon steel bar of 147 mm diameter with a length of 630 mm is being turned with uncoated carbide insert. The observed tool lives are 24 min and 12 min for cutting velocities of 90 m/min and 120 m/min respectively. The feed and depth of cut are 0.2 mm/rev and 2 mm respectively. Use the unmachined diameter to calculate the cutting velocity.

Q.84 When tool life is 20 min, the cutting velocity in m/min is

- (A) 87
- (B) 97
- (C) 107
- (D) 114

Q.85 Neglect over-travel or approach of the tool. When tool life is 20 min, the machining time in min for a single pass is

- (A) 5
- (B) 10
- (C) 15
- (D) 20

END OF THE QUESTION PAPER