Code: AE-11

Subject: CONTROL ENGINEERING

JUNE 2007

Time: 3 Hours Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or best alternative in the following:

(2x10)

a. For the first order system described by the transfer function

$$\frac{Y(s)}{R(s)} = \frac{4}{2s+1}, \text{ the unit ramp response for } r(t)=t \text{ is}$$

(A)
$$4(t-4+2e^{-t/2})$$

(B)
$$2(t-2+4e^{-t/4})$$

(C)
$$3(2-t+4e^{-t/4})$$

(D)
$$4(t-2+2e^{-t/2})$$

b. The feedback control system shown in Fig.1 is stable if the scalar gain factor K satisfies the condition:

(C)
$$-\infty < \mathbb{K} < \infty$$
.

$$(\mathbf{D})$$
 0 \ll <6

- c. The open-loop transfer function of a feedback control system is given by

 The gain margin of the system is
- $G(s)H(s) = \frac{10}{s(s+20)}$

(A) Infinity

(B) 20 dB.

(C) 10 dB.

- **(D)** 2 dB.
- c. In the system shown in Fig.2, $r(t) = \operatorname{Sin} t$, $t \ge 0$. In steady-state C(t) is given by

(A) $\sin\left(t-45^{\circ}\right)$

(D)
$$\sqrt{2} \sin \left(t - 45^{\circ}\right)$$

In feedback control system, the purpose of providing integral feedback is to

- (A) improve the stability margin.
- **(B)** improve the transient response.
- **(C)** reduce the steady-state error.
- (**D**) stabilize the unstable system.

f. A stable, type-0 unity-feedback control system has a position error constant equal to 1. The steady-state error for a unit step input will be

(A) 0

(B) 1

(C) 0.5

(D) 2

The characteristic equation of a linear unity feedback control system is given by $s^3 + 5s^2 + 4s + 30 = 0$. The system is

(A) unstable.

(B) stable.

(C) marginally stable.

(D) conditionally stable.

In the signal flow graph shown in Fig. 3, the number of pairs of non-touching loops is

- **(A)** 1.
- **(B)** 2.
- **(C)** 3.
- **(D)** 4.

Κ

A system transfer function of the form $(1 + \varepsilon T_1)$ can be represented in the Bode plot at frequencies $\infty >> T_1$ by a slope of

- (A) 8 dB/octave.
- (B) $\frac{-12 \, dB}{decade}$. (D) $\frac{-20 \, dB}{decade}$.
- (C) $= 24 \frac{dB}{decade}$.

The impulse response of a linear time invariant system is given by $h(t) = Ke^{-\alpha t}$. The system can be characterized by

- (A) first-order system.
- **(B)** second-order system.
- **(C)** third-order system.
- **(D)** fourth-order system.

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. Determine the values of K and p of the closed-overshoot in unit-step response is 25% and the peak time is 2 seconds.

12/26/11 Code: A-20

b. Find out the stability of the system when K=1 and p=1.

Q.3 a. Find out the transfer function of an armature controlled D.C. servo-motor.

(12)

(4)

(4)

(4)

- b. What do you mean by the terms
 - (i) type of control systems and
 - (ii) steady-state error.

Q.4 Consider a unity-feedback control system whose open-loop transfer function is $G(s) = \frac{0.4s + 1}{s(s + 0.6)}$

- (i) Obtain the response to a unit-step input. (8)
 - (ii) What is the rise time for this system? (4)
 - (iii) What is the maximum overshoot? (4)

Q.5 Consider the system shown in Fig.5. Sketch the root loci as α varies from 0 to ∞ . Determine the value of α such that the damping ratio of the dominant closed-loop poles is 0.5. (16)

Q.6 a. Explain Nyquist stability criterion.

b. Using Nyquist stability criterion find the critical value of K for the stability of closed-loop system having the following open-loop transfer function:

12/26/11 Code: A-20

$$G(s)H(s) = \frac{K}{s(s+1)(2s+1)}.$$
 (12)

- Q.7 a. The open-loop transfer function of a feedback control system is given by $G(s)H(s) = \frac{K(1-s)}{(s+1)}.$ Sketch a Nyquist locus for this system. Using the Nyquist stability criterion, determine the range of K for stability.

 (12)
 - b. What is the effect of feedback on stability of control system? (4)
- **Q.8** Write short notes on any **TWO** of the following:
 - (i) Synchros.
 - (ii) P-I-D controller.
 - (iii) Two-phase servo-motor.

(8+8)

Q.9 a. The characteristic equation of a feedback control system is given as

$$s^4 + 20s^3 + 15s^2 + 2s + K = 0$$

Determine the value of K so that the system is marginally stable and the frequency of sustained oscillation, if applicable. (12)

b. Discuss the effects and limitations of phase-lag compensation. (4)