SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)

Course & Branch :B.Arch - ARCH	
Title of the Paper :Mathematics – I	Max. Marks :80
Sub. Code :621101	Time : 3 Hours
Date :11/05/2010	Session :FN

PART - A

 $(8 \times 4 = 32)$

Answer ALL the Questions

1. Find the sum and product of the eigen values of the matrix

	1	2	1
A =	-1	2	3
	_ 1	1	4

2. Discuss the nature of the quadratic from $Q = x^2 + y^2 + 2xy + 2yz.$

3. Find
$$\int_{0}^{\frac{\pi}{2}} \sin^5 x \cos^2 x dx.$$

4. Shade the region of integration of $\int_{-1-x}^{0} \int_{-1-x}^{1} f(x, y) dy dx$.

- 5. Find the particular integral of $(D^2 + 4) y sin 2x$.
- 6. If the roots of auxillary equation of a differential equation are 2, 2, 3, 3 write its complementary function.
- 7. Find the equation to the plane given that (1, -2, 3) in the foot of the perpendicular from the origin to the plane.
- 8. Find the equation of the sphere concentric with the sphere

 $3x^{2} + 3y^{2} + 3z^{2} - 5x + 2y + 7z + 1 = 0$ and passing through the point (1, -1, 2).

PART – B
$$(4 \times 12 = 48)$$

Answer All the Ouestions

(a) Find the eigen values and eigen vectors of the matrix 9.

$$A = \begin{bmatrix} 1 & 2 & -7 \\ 2 & 0 & 2 \\ 0 & 1 & -4 \end{bmatrix}$$

(b) Using cayley Hamiltons theorem find the inverse of the

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 3 \\ 1 & 3 & 1 \end{bmatrix}$$

- 10. Reduce the quadratic form Q = 2xy + 2yz + 2zx into canonical form by orthogonal transformation.
- 11. (a) Find a reduction formula for $\int \tan^n x dx$

1 2-x(b) Change the order of integration and evaluate •

$$\int_{0} \int_{x^2} x dx dy .$$

(or)

12. (a) Evaluate
$$\int_{0}^{\frac{\pi}{2}} \log \sin x dx$$
.

(b) Evaluate
$$\int_{0}^{\pi} \int_{0}^{a(1+\cos\theta)} r^{2} \sin\theta dr d\theta.$$

13. (a) Solve $(D^2 + D + 1) y = \sin 2x$.

(b) Solve by method of variation of parameter $y'' + y = \tan x$. (or) 14. (a) Solve $x^2y'' - xy' + y = \log x$.

(b) Solve
$$\frac{d^2 y}{dx^2} + 4\frac{dy}{dx} + 4y = e^{-2x}x^2$$
.

15. (a) Find the equation of the sphere passing through the circle $x^2 + y^2 + z^2 - 9 = 0$, 2x + 3y + 4z = 5 and the point (1, 2, 3).

(b) Find the equation of the plane through the point (1, 0, -2) and perpendicular to the planes 2x + y - z = 2 and x - y - z = 3. (or)

16. (a) Find the shortest distance between the lines x + a = 2y = -12z. and x = y + 2a = 6z - 6a.

(b) Find the equation of the sphere that passes through the circle $x^2 + y^2 + z^2 + x - 3y + 2z - 1 = 0$, 2x + 5y - z + 7 = 0 and cuts orthogonally the sphere $x^2 + y^2 + z^2 - 3x + 5y - 7z - 6 = 0$.