SATHYABAMA UNIVERSITY

(Established under section 3 of UGC Act, 1956)

Course & Branch: B.Arch - ARCH

Title of the Paper : Mathematics – I Max. Marks :80

Sub. Code :621101 Time : 3 Hours

Date :07/12/2009 Session :FN

PART - A $(8 \times 4 = 32)$ Answer ALL the Questions

- 1. Write the matrix of quadratic form $10x_1^2 + 2x_2^2 + 5x_3^2 + 6x_2x_3 10x_3x_1 4x_1x_2$ and find its characteristic equation
- 2. Verify Cayley Hamilton theorem for the matrix $\begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$
- 3. Evaluate $\int_{0}^{1} dx \int_{0}^{2} dy \int_{1}^{2} x^{2} yzdz$.
- 4. Find the reduction formula for tanⁿx.
- 5. Solve $(D^2 + 9) y = 2 \cos 3x$.
- 6. Solve $(x^2 D^2 + 4xD + 2) y = x^2$.
- 7. Show that the lines

$$\frac{x-5}{4} = \frac{y-7}{4} = \frac{z+3}{-5} \text{ and } \frac{x-8}{7} = \frac{y-4}{1} = \frac{z-5}{3}$$

are coplanar.

8. Prove that the spheres $x^2 + y^2 + z^2 + 6y + 2z + 8 = 0$ and $x^2 + y^2 + z^2 + 6x + 8y + 4z + 20 = 0$ intersect at right angles. Find their plane of intersection.

$$PART - B$$
 (4 x 12 = 48)
Answer All the Questions

9. Find the eigen values and eigen vectors of the matrix

10. Diagonalise the matrix
$$\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$

11. (a) Evaluate
$$\int_{0}^{\pi} x \sin^{9} x dx.$$
 (7)

(b) If $In = \int x^n e^{-x} dx$, n being a positive integer, prove that

$$I_n = -x^n e^{-x} + n I_{n-1}$$
 Hence prove that
$$\int_0^\infty x^n e^{-x} dx = \angle n$$
 (or)

12. Change the order of integration in
$$\int_{0}^{a} \int_{y}^{a} \frac{x}{x^{2} + y^{2}} dxdy$$
 and evaluate it

13. (a) Solve
$$(D^2 + 3D + 2) y = e^{-2x} + \sin x$$
.

(b) Solve
$$(X^2 D^2 - XD - 3) y = x^2 \log x$$
.

- 14. (a) Solve $(D^2 + 2D 3) y = e^x \cos x$.
 - (b) Using method of variation of parameter solve $y^{\parallel} + y = \tan 2x$.
- 15. Find the equation of the sphere passing through the circle $x^2 + y^2 + z^2 6x 2z + 5 = 0$; y = 0 and touching the plane 3y + 4z + 5 = 0.

16. Find the length of the shortest distance between the lines

$$\frac{x-2}{2} = \frac{y+1}{3} = \frac{z}{4}; \ 2x + 3y - 5z - 6 = 0 = 3x - 2y - z + 3.$$