Third Semester B.E. Degree Examination: May/June 2010 Strength of Materials

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART – A

- Explain the following:
 - i) Generalised Hook's law
- ii) Principles of super position.

(06 Marks)

b. Derive an expression for the elongation of a tapered conical bar subjected to an axial pull.

(06 Marks)

c. A stepped bar is subjected to forces as shown in figure Q1 (c). Determine the stresses (08 Marks) induced in different portions and the net deformation.

a. Define: shear stress, Poisson's ratio, Volumetric strain.

(06 Marks)

Derive the relationship between Young's modulus and bulk modulus.

(06 Marks)

A compound bar shown in figure Q2 (c) is subjected to a temperature raise of 50°C. (08 Marks) Determine the stresses induced and the deformation.

- a. Derive the relationship between rate of loading, shear force and bending moment. (06 Marks) (04 Marks)
 - b. What is pure bending? Explain with example. c. Draw the shear force and bending moment diagrams for the beam shown in figure Q3 (c),
 - (10 Marks) locating the point of contraclexures.

Show that 'the sum of any two orthogonal components of stresses at a point is constant'. (06 Marks)

- 4 b. An element is subjected to stresses as shown in figure Q4 (b). Determine
 - i) Stresses acting on the plane 'PP'.
 - ii) Maximum shear stress and its plane.
 - iii) Principal stresses and principle planes.

(14 Marks)

PART – B

- 5 a. Explain 'Neutral Axis', 'Section modulus' and 'Moment of Resistance' as applied to beams. (06 Marks)
 - b. Derive an equation for the shear stress distribution in rectangular beam. (06 Marks)
 - c. A symmetric I section $10\text{cm} \times 30\text{cm}$ deep with uniform thickness of flanges and web of 10 mm is subjected to a bending moment of 20 kNm and shear force of 60 kN. Sketch the bending stress and shear stress distribution. (08 Marks)
- 6 a. Define 'slope', 'deflection' and 'elastic curve'.

(06 Marks)

- b. State the assumptions made in the moment curvature relationship derivation. (04 Marks)
- c. A simply supported beam spanning 8 m carries concentrated loads of 60 kN and 30 kN at distances of 2 m and 4 m from the left support. Determine i) The slopes at the ends and ii) the location and magnitude of the maximum deflection. Assume E = 200 GPa and $I = 20 \times 10^8 \,\mathrm{mm}^4$. (10 Marks)
- 7 a. Derive an equation for the ratios of Torsional strengths of hollow and solid circular shafts for a given length, material and mass. (06 Marks)
 - b. Derive the relationship between torque and shear stress.

(06 Marks)

- c. A hollow circular shaft is to transmit a torque of 4.05 kNm.
 - i) Determine the shaft dimensions for the following data:

Ratio of inside to outside diameter = 0.8

Allowable shear stress = 40 N/mm^2

Limiting angle of twist = 1° / 20 dia length

Modulus of rigidity = 80 GPa

ii) For the above dimensions, calculate the maximum shear stress.

(08 Marks)

- 8 a. Distinguish between: i) Buckling and crushing ii) Long and short columns. (06 Marks)
 - b. Using Eulers theory, derive an equation for the crippling load of a long column pinned at both ends. (06 Marks)
 - c. A hollow square column of 120 mm outside dimensions and 5 mm thick is 8 m long and is fixed at both ends. Determine the buckling load using Rankine's formula assuming

$$\sigma = 500$$
 MPa and $\alpha = \frac{1}{1600}$. What is the equivalent solid square section? (08 Marks)