Andhra University Common Entrance Test (AUCET) Now it is

Andhra University Region Post Graduation Common Entrance Test (AURPGCET)

Paper: Biochemistry

Year: 2003

http://biochemistryden.blogspot.com http://biohunting.blogspot.com http://lifescience-exampapers.blogspot.com

Note: The given papers are previous AUCET Biochemistry papers

http://biochemistryden.blogspot.com/http://biohunting.blogspot.com/just visit for more study materials and latest info & GATE previous papers to CSIR-
UGC-NET Examinations papers

Andhra University Common Entrance Test (AUCET) Biochemistry – 2003

PART-A	11. In biological membranes basic structures are
- sain the set used to the set of the set	due to meeting private to the to and did W .
1. pH of human blood is	1. Carbohydrate, Protein interaction
1. 6.8 2. 7.0 3. 7.4 4. 7.8	2. Covalent bonds between adjacent structures
2. Ceruloplasmin is a second mitrolinopped a	3. Bilayar of amphipathic lipids
1. Calcium binding protein	4. Lipids are carbohydrate interaction
2. Copper binding protein	12. Cloning of gene means
3. Iron binding protein and fiber and patrollal	1. Transcription of gene analysis based and g
4. Cobalt binding protien	. 2. Disruption of generation of the tool better to
3. Vitamin that is necessary for blood clotting	3. Introduction of gene from one species into another
1. Vit E 2. Vit A 3. Vit K 4. Vit B ₆	4. None of the above
4. A promoter site on DNA	13. Protein synthesis occurs in
1. Intiates replication	1. Mitochondria 2. Ribosomes melle a
2. Intiates transcription	3. Nucleolus 4. Golgi apparatus
3. Codes for RNA polymerase	14. B. lymphocytes are responsible for - immunity
4. Intiates translation	1. Humoral 2. Cellular 3. Both 4. None
5. Methionine codon is	15. IgM are
1. AUC 2. AUG 3. UGC 4. UGA	1. Dimers 2. Pentrmers 3. Trimers 4. Tetramers
6. Wobble hypothesis was hyphothesized by	16. About 70% of the human Ig. molecules carry
1. Francis crick 2. Wobble	light chain 1 Kanna 2 Lamda 3 Gama 4 Beta
3. Watson 4. Okazaki	I. Mappa 2. Damaa 0. Gama
7. Reverse transcriptase is	17. Immunoglobulin which does not cross the pla-
1. DNA directed RNA polymerase	centa 1. Ig G 2. Ig M 3. Ig E 4. Ig A
2. RNA directed RNA polymerase	1. Ig G 2. Ig M 3. Ig E 4. Ig A 18. The basic unit of all Ig molecules consist of
3 DNA directed DNA polymerase	polypeptide chains linked by
4. RNA directed DNA polymerase	1. 2 chains, di-sulphide bonds
8. Meselson & stahl provided experimental proof	2. 4 chains, H- bonds
for	3. 4 chains, di-sulphide bonds
1. DNA is a genetic meterial	4. 4 chains, weak interactions
2. Semi Conservative mode of DNA replication	19. Thyroid function is determined by the use of
3. Existance of plasmids	the isotopes
4. Enzymatic nature of RNA	1. Na^{24} 2. K^{42} 3. Ca^{45} 4. I^{131}
 Enzymatic nature of http://denine.base.pairs In a double stranded DNA Adenine base pairs 	20. Major role of DNA poymerase I in replication
9. In a double stranded Divi Adenne base parts	1. To ensure fidelity in replication
1. Guanine 2. Thiamine 3. Thymine 4. Cytocin	2. For repair processess
	3. To replicate DNA
10. RBC life span is	4. To convert double std DNA into chromatin
1. 100 days 2. 90 days 3. 120 days 4. 200 days	

21.	Nucleosomes consist of	33. Which of the following hormone that does not
	1. RNA and protein	promote hyperglycemia
	2. DNA, bound around collection of Histone molecule	1. Epinephrine 2. Insulin
	3. Basic histones and non histone proteins	3. Glucogon 4. Thyroid hormone
	4. Proteins and small quantity of RNA	34. (Alfa) α-particles are
22.	The atoms having the same atomic number	1. Fast moving protons
	but different atomic mass are said to be	2. Fast moving neutrons
	1. Isobars 2. Isotopes 3. Isomers 4. Isotrons	3. Fast moving helium nuclei
23.	Poly peptide synthesis inside a cell origins from	4. Electro magnetic waves
	1. Amino terminal	35. Many ribosomes on the same m RNA molecule
	2. Carboxy terminal	forms
	3. Both ends simultaneously	1. Poly ribo nucleotides
	4. None of the above	2. Rough endoplasmic reticulum
24.	PCR Technique is related to	3. Polysomes
	1. To trim the size and quantitate specific protein	4. Ribozymes
	2. DNA transfer technique	36. What is the average caloric requirement of an
	3. Identification and purification of specific clones	adult male
	4. Amplification of DNA sequence	1. 1000 kilo calaries/day 2.10,000 k. calaries/day
25.	Using the following enzyme cDNA copies can	3. 500 kilocalaries/day 4. 3000 kilo calaries/day
	be made from mRNA templats	37. Catechol ring is present in — hormone
	1. Class II Restriction endo nucleases	1. Insulin 2. Glucagon
	2. Ribozymes	3. Epinephrin 4. Calcitonin
	3. Reverse transcriptase	38. —— is a Ovarian steroid hormone
	4. RNA polymerase	1. Human chorionic gonadotropin
26.	Molecular aggregates with following symmetry	2. Chorionic somato mammotrophin
	encase the genetic material of many viruses	3. Androgen
	1. Hexagones 2. Icosahedral	4. Estrogen
	3. Pentagones 4. Heptagones	39. Caloric value of Fat is
27.	Phospho lipid bilayer membranes are almost	
	impermeable to	1. 4.1 k. cal/gm 2. 5.6 k. cal/gm
	1. Charged molecules 2. Neutral molecules	3. 9.4 k. cal/gm 4. 3.4 k. cal/gm
	3. Uncharged molecules 4. All	40. Siderosis is a toxicity disease of — mineral
28.	Substances which can bind to antibodies but	1. Iron 2. Sodium 3. Selenium 4. Iodine
	cannot elicit an immune response are called	PART-B
00	1. Carrier 2. Antigens 3. Haptens 4. Epitopes	41. Enzymes catalyse the reactions by
29.	Many m RNAs of prokaryotes are	1. Increasing entropy of a system
	1. Polycistronic 2. Monocistronic	2. Increasing substrate energy
0.0	3. Interupted 4. None	3. Altering reaction equilibrium
30.	In prokaryotes all polypeptide chains proba-	4. Decreasing free energy of activation
	bly are intiated with the amino acid 1. Methionine	42. —— is the coenzyme of transaminases
	2. N-Formyl methionine	0. 11'
	3. Cystein	
01	4. Any "S" containing amino acid	3. Thiamine pyrophosphate
31.	Fluidity of a membrane increases by —— the	4. Lipoic acid
	phospholipid fatty acid chains 1. Shortening 2. Increasing	43. Induced fit model for enzyme substrate com-
		plex formation was proposed by 1. Fischer 2. Michaelis & Menten
	3. Saturating 4. Unsaturating	
	In addition to methionine the other amino acid which is specified by one codon is	3. Jacob & Monod 4. Kush land
		44. Pellagra can be prevented by treatment with
	1. Tyrosine 2. Phenylalanine 3. Tryptophan 4. Arginine	1. Thiamine 2. Niacin
	a. Arginine	3. Pyridoxin 4. Vit B ₁₂

http://biochemistryden.blogspot.com/http://biohunting.blogspot.com/just visit for more study materials and latest info & GATE previous papers to CSIR-
UGC-NET Examinations papers

46. 47.	 Biotin is involved in which of the following types of reaction 1. Hydroxilations 2. Carboxilations 3. Transamination 4. Deamination Glycolsis is the only ATP producing path way in 1. RBC's 2. Hepatocytes 3. Adipocytes 4. Neurons Which of the following is a low energy phosphate 1. ATP 2. UDP 3. GTP 4. Glycerol - 3'- Phosphate Which of the following has higher redox 	 59. — is the uncoupling agent of oxidative phosphorylation Antimycin A Dicoumarol Barbiturates Pencillin 60. Number of ATP formed per turn in TCA cycle 10 12 15 8 61. Synthesis of glucose from non carbohydrate precursors is known as Glycolysis Hexose monophosphate shunt Gluconeogenesis
	potential in respiratory chain	4. Glycogenolysis
Nes C	1. Cyt aa ₃ 2. Ubiquinone	62. Transamination of Alanine gives
	3. FMN 4. NAD	1. Pyruvate 2. Oxaloacetate
49.	In anerobic glycolysis of glucose end product is	3. α ketoglutarate 4. Glycine
	1. Acetylco A 2. Lactate	63. The major carrier of activated acyl com- pounds in cells is
50	3. Pyruvate 4. Fructose1-6-biphosphate	A CALL AND AN AND AND A STOLEN BUILD AND AN AND AND AND AND AND AND AND AND
50.	Mitochondria is the poweer house of the cell because	
	1. Burns food consumes ATP	
	2. All energy released is made available in oxidiz-	64. Protein deficiency in children leads to the widespread disease of malnutrition known as
	ing equivalents	1. Kwashiorkar 2. Down's syndrom
	3. Produces ATP by oxidative phosphorylation	3. Grave's disease 4. Addision's disease
	4. All the above	65. Aspartate trans carbomylase of E coli is
51.	Final common metabolic path way for oxida-	allosterically inhibited by
	tion of major food items is	1. ATP 2. GTP 3. CTP 4. UTP
	1. Glycolysis 2. Beta oxidation 3. TCA cycle 4. Lipolysis	66. Only fatty acids with even number of carbon
52	3. TCA cycle 4. Lipolysis Total number of ATP produced per oxidation	atoms produce —— upon oxidative degrada
U.M.	of a molecule of glucose in aerobic condition	1. Propionyle Co A 2. Coenzyme A
- San	1. 32 2. 38 3. 36 4. 34	3. Pyruvate 4. Acetyl Co A
53.	Purines catabolize to form	67. —— is a ketone body
	1. Urea 2. Ammonia	1. Acetic acid 2. HMG CoA
	3. Uric acid 4. All of the above	3. β -hydroxy butiric acid 4. α -etogluta
54.	Ribozyms are	68. ——— is an example for isoenzyme
	1. Enzyme like substances present in RNAs	1. Pyruvate dehydrogenase
	2. Not highly specific for substrates	2. Malate dehydrogenase
and the	3. Proteins	3. Glutamate dehydrogenase
	4. Help in intron splicing events in conversion of	4. Lactate dehydrogenase
55	pre mRNA to mature mRNA Cobalt is a constituent of	69. Km of an enzyme is — concentration at which
00.	1 T 11 11 0 11 1 1 0 1 1	$V_0 = \frac{V_{max}}{2}$
56.	When substrates are oxidized through NAD	
	linked dehydrogenases the P : O ratio is	1. Enzyme 2. Coenzyme
	1.1 2.2 3.3 4.4	3. Substrate 4. Inhibitor
	The most abundant class of enzymes	70. — inhibitors do not alter the V_{max} of an
	1. Transferases 2. Isomerases	enzyme catalyzed reaction
	3. Oxido reductases 4. Ligases	1. Irreversible inhibitor
	The first purified and crystallised enzyme is	2. Uncompetitive inhibitor
Nation Colored	1. Amylase 2. Invertase	3. Competitive inhibitor
	3. Ribonuclease 4. Urease	4. Non competitive inhibitor

http://biochemistryden.blogspot.com/http://biohunting.blogspot.com/just visit for more study materials and latest info & GATE previous papers to CSIR-
UGC-NET Examinations papers

			PART-	C			1	82. N	lumber	r of ba	se pai	rs per	turn in	n B - D	NA
PART-C71. One letter abbreviation for tryptophan1. R2. T3. W4.Y72. Which of the following is a cation exchange resin1. CM cellulose2. Dowex - 13. DEAE - cellulose4. Agarose73. The greatest buffering capacity at physiological pH would be provided by a protein rich1. Lysine2. Histidine 3. Valine4. Glycine74. The highest concentration of cystein can be found in1. Melanine 2. Myosin3. Keratine 4. Collagen75. All 20 common (standard) amino acids are optically active except1. Lysine2. Cystine3. Glycine4. Serine76. An important polysaccharide mixture isolated from marine red algae (Rhodophyceae)1. Alginate2. Agar3. Optical isomers4. Geometrical isomers78. Valency of C (carbon) is1. 22.43. 54.679. Inulin is a poly saccharide of1. D- ribose2. D - arabinose3. D - fructose4. D - xylose80. Which of the following sugar does not form as					logi- h ne n be gen ated gen rs m as	 82. Number of base pairs per turn in B - DNA 12 2. 10.4 3. 11.4 4. 12.4 83. Double helical regions of RNA has									
1. Maltose 2. Lactose 3. Sucrose 4. Mannose 81. Unusual modified bases are present significantly in 1. Eucaryotic mRNA 2. t RNA 3. r - RNA 4. Prokaryotic m RNA														mifi-	
					3	AN	15	WE	ER!	S					
1.3	2.2	3.3	4.2	5.2	6.1	7.4	8.2	9. 2	10.3	11.3	12.3	13.2	14.1	15.2	16.3
17.2	18.3	19.4	20.2	21.2	22. 2	23.1	24.4	25.3	26.2	27.1	28.3	29.1	30.2	31.4	32.3
33.2	34.3	35.3	36.4	37.3	38.4	39.3	40.1	41.4	42.1	43.4	44.2	45.2	46.1	47.2	48.1
49.2	50.3	51.3	52.2	53.3	54.4	55.3	56.3	57.3	58.4	59. 2	60.2	61.3	62.1	63.4	64.1
	66.4	67.3	68.4	69. 3	70.3	71.3	72.3	73.2	74.3	75.3	76.2	77.2	78.2	79	80.3
65.1															

http://biochemistryden.blogspot.com http://biohunting.blogspot.com http://lifescience-exampapers.blogspot.com http://bioscienceden.blogspot.com