CHEMISTRY

(Inorganic Chemistry)

- 1. Which quantum number exhibits Zeeman effect ?
 - (A) Principal quantum number
 - (B) Azimuthal quantum number
 - (C) Magnetic quantum number
 - (D) Spin quantum number
- 2. LiF is insoluble in water while LiI is soluble because?
 - (A) Fluoride is more electronegative than iodide
 - (B) Size of iodide is greater than that of fluoride
 - (C) The internuclear distance in LiF is smaller than that in LiI
 - (D) Lattice energy of LiF is more than that of LiI
- 3. Which one of the following factors would decrease the stability of clathrates?
 - (A) The guest molecules are tightly held in the cavities of host molecules
 - (B) The guest molecules within the cavities are at maximum potential energy
 - (C) The guest molecules within the cavities are at minimum potential energy
 - (D) The size of guest molecules fits into the cavities of host molecules
- 4. VCl₂ is ionic, VCl₃ is less ionic, while VCl₄ is covalent, because ?
 - (A) With increase in oxidation state of a given transition metal, the ionic character of its compound increases
 - (B) With the increase in oxidation state of a given transition metal, the covalent character of its compound increases
 - (C) With the decrease in oxidation state of a given transition metal, the covalent character of its compound increases.
 - (D) With the decrease in oxidation state of given transition metal, the ionic character of its compound decreases

	(A)	In lanthanides, the additional electron enters 4f orbitals
	(B)	The mutual shielding effect between two electrons residing in 5f orbitals
		(actinides) is poor
	(C)	Actinides form complexes with π-bonding ligands
	(D)	The compounds of lanthanides are more basic
6.	The	isotope that finds use in the pressure vessels for nuclear reactors is :
	(A)	35S
	(B)	74 Se
	(C)	¹³¹ I
	(D)	⁶⁰ ₂₇ Co
7 .	The	element which is required in trace amount by the living organism is:
	(A)	Mn
	(B)	Мо
	(C)	Alo
	(D)	Zn
8.	The	compound which is used as red phosphorus in television and computer-
	tern	ninal display is :
	(A)	Xenotime
	(B)	Uranite
	(C)	Monazite
	(D)	Europium oxide
Chem	nistry	2

Which one of the following statements is not correct?

5.

9.	The	Fe ²⁺ changes from high spin to low spin state during its conversion form
	deox	yhaemoglobin to oxyhaemoglobin, this result is decrease in its size by:
	(A)	22%
	(B)	25%
	(C)	33%
	(D)	36%
10.	The	orbitals of the central metal which will hybridize to give a complex of
	trigo	onal bipyramidal geometry is :
	(A)	d , 2 , , , 2 , S , P 3
	(B)	d_{z^2} , $d_{x^2-y^2}$, $B_1^{p^2}$
	(C)	d ₂ 1, 8. P ³
	(D)	d _{22,2} ,d ₂ 2, p ³
11.	The	normality of 70% (w/w) HNO ₃ having specific gravity of 1.40 will be :
	(A)	7.00 N
	(B)	11.11 N
	(C)	15.56 N
	(D)	15.77 N
12.	The	oxyacid of chlorine which has the pKa ₂ value equal to that of pKa, of
	H_2S	O ₄ is:
	(A)	HCIO
	(B)	HClO_2
	(C)	HClO ₃
	(D)	HCIO ₄
Chemi	istru	. 3 P.T.O.
 Onemistry		ŭ + 1.1.V.

13.	Sodium sesqui-carbonate is represented by the formula:
	(A) NaHCO ₃
	(B) Na ₂ CO ₃ —H ₂ O
	(C) $Na_2CO_3-10H_2O$
	(D) Na_2CO_3 — $NaHCO_3$. $2H_2O$
14.	Sodium iodide (Iodine-131, half life - 8.05 days) is used in the treatment
	of thyroid cancer. If one begins with 25.0 mg of Na ¹³¹ I, the number of
	milligrams of radioactive material remaining after about a month (32.2 days)
	will be:
	(A) 6.25
	(B) 1.56
	(C) 3.12
	(D) 0.78
15.	The complex that violates the EAN rules is:
	(A) Potassium ferricyanide
	(B) Potassium ferrocyanide
	(C) Nickel carbonyl
	(D) Cobalt hexamine chloride
Chen	nistry 4

. 1	l 6 .	EDT.	A forms stable complexes with divalent metals in :	
9		(A)	Acidic medium	
		(B)	Ammonical solution	
		(C)	Aqueous medium	
,	1.8	(D)	All of the above	
į	17.	Acco	rding to autoionisation concept, acetic acid in liquid ammonia i	s a :
		(A)	weak acid	
		(B)	base	
		(C)	strong base	
		(D)	strong acid	
	18.	Whi	ch among the following will be classified as the softest base?	
		(A)	H ⁻ .	
		(B)	OH-	
		(C)	O^{-2}	
		(D)	$SS_2O_3^{2-}$	
	19.	The	lanthanide element which does not occur in nature, is :	
		(A)	Dysprosium	
		(B)	Praseodymium	
		(C)	Promethium	
		(D)	Neodymium	
	Chem	iistry	5	P.T.O.
	~****			

20.	The metal which is involved in the formation of oxygen during photosynthesis	
	in green plants is :	
	(A) Mg	
	(B) Ca	
	(C) Mn	
	(D) Fe	
	(Organic Chemistry)	
21.	Alkaline hydrolysis of 2-bromo, 2-ethyl pentane yields of opposite	
	stereochemistry. This is due to :	
	(A) inversion	
	(B) racemisation	
	(C) retention	
	(D) oxidation	
22.	The major product of the reaction between 2-bromo, 2-methyl butane and	
	sodium ethoxide in the presence of ethyl alcohol is:	
	(A) 2-methyl butanol	
	(B) 2-methyl, 2-butene	
	(C) 2-methyl, 1-butene	
	(D) 2-hydroxy, 2-methyl butane	
Che	emistry 6	

23.	Phenol on treatment with acetic anhydride in the presence of aqueous NaOH,
	gives phenyl acetate, which on heating with AlCl3 gives a mixture of ortho
	and para-hydroxy acetophenone. The name of reaction involved, is :
2	(A) Fries rearrangement
	(B) Friedel-Crafts Alkylation
	(C) Friedel-Crafts Acylation
	(D) Fischer Indole Reaction
24.	Which of the following compounds will not be a reduction product of
	Nitrobenzene in acidic, alkaline and neutral medium?
	(A) Aniline
W	(B) Phenyl hydroxylamine
	(C) Azobenzene
	(D) P-aminophenol
25 .	Which amongst the following methods for the preparation of 1° amines involves
	intermediate formation of a nitrene with a descent of a homologus series?
	(A) Gabriel's phthalimide reaction
	(B) Hoffman bromide reaction
	(C) Reductive amination of acetaldehyde or acetone
22	(D) Azo-coupling

26.	Whic	h amongst the following name reactions is not a method for the preparation
	of ni	trogen heterocyclics ?
	(A)	Skraup's synthesis
	(B)	Bischler—Napieralski reaction
	(C)	Fischer Indole synthesis
	(D)	Hell Volhard Zelinsky reaction
27.	Gluce	ose displays mutarotation due to the presence of :
	(A)	Asymmetric carbon
	(B)	Hemiacetal formation
	(C)	Anomeric centre
	(D)	Acetal formation
28.	When	n treated with sodium ethoxide in ethanol at 25°C, which of the following
	alkyl	bromides would give predominantly elimination product?
	(A)	CH ₃ CH ₂ Br
	(B)	$(CH_3)_2CHBr$
	(C)	$(CH_3)_3CBr$
	(D)	$(CH_3)_3CCH_2B_r$
29.	Whic	h of the following stereochemical relationship exists between alpha and
	beta-	D-glucopyranoses ?
	(A)	Enantiomeric
	(B)	Anomeric
	(C)	Epimeric

(D) Diastereoisomeric

30.	Which amongst the following conjugated proteins has cholesterol as a non-	
	amino acid residue ?	
	(A) Glycoproteins	
	(B) Phosphoproteins	
	(C) Nucleoproteins	
	(D) Lipoproteins	
31.	Which amongst the following drugs has anti-inflammatory action?	
	(A) Phenylbutazone	
	(B) Aspirin	
	(C) Paracetamol	
	(D) Sulphapyridine	
32.	Which of the following is the correct order of decreasing nucleophilic strength	
	of different halides?	
	(A) $I^{\odot} > F^{\odot} > CI^{\odot} > Br^{\odot}$	
	(B) $I^{\odot} > Br^{\odot} > CI^{\odot} > F^{\odot}$	
	(C) $I^{\odot} > CI^{\odot} > Br^{\odot} > F^{\odot}$	
	(D) $I^{\odot} > CI^{\odot} > F^{\odot} > Br^{\odot}$	
33.	How many geometrical isomers are possible for 2, 4-hexadiene?	
	(A) None	
	(B) Two	
	(C) Four	

(D) Six

- 34. Which of the following Fischer Projection formula is that of (R) 2-butanol?
 - $\begin{array}{ccc} \text{(A)} & \text{Me} & \displaystyle \begin{matrix} \text{OH} \\ & + \end{matrix} & \text{H} \\ & \text{Et} \\ \end{array}$
 - (B) H $\stackrel{OH}{+}$ Et
 - (C) HO $\stackrel{\mathbf{Et}}{+}$ H
 - (D) Me $\stackrel{\mathbf{Et}}{\underset{\mathrm{OH}}{+}}$ H
- 35. Methylcyclohexane exists in two conformational forms which are rapidly converting into one another. The ratio of methylcyclohexanes having methyl equatorial and methyl axial at equilibrium is:
 - (A) 50:50
 - (B) 95:6
 - (C) 5:95
 - (D) 40:60
- 36. The relative rates of reaction of alkyl halides CH₃X, CH₃CH₂X, (CH₃)₂CHX and (CH₃)₃ CX are randomly given below. Which of them you would attribute to CH₃X:
 - (A) Zero
 - (B) 0.02
 - (C) 1.00
 - (D) 30

37.		ich of the following sugars does not respond to either Tollen's, Benedict	8
	or I	Fehling's tests?	
	(A)	Maltose	
	(B)	Cellobiose	
	(C)	Sucrose	
	(D)	Fructose	
38.	The	methyl protons in the nmr spectrum of toluene appear at σ :	
	(A)	2.30 as doublet	
	(B)	0.9 as singlet	
	(C)	5.0 as singlet	
	(D)	2.30 as singlet	
39.	The	range of fingerprint regions in the infrared spectrum lies between :	
	(A)	666-1444 cm ⁻¹	
	(B)	1650—1800 cm ⁻¹	
	(C)	3300—3610 cm ⁻¹	
	(D)	1050—1400 cm ⁻¹	
40.	A n	eat sample of ethanol at −40°C, will display the following multiplicity is	n
	prot	on magnetic spectra :	
	(A)	Triplet, quarter	
	(B)	Triplet, multiplet, triplet	
	(C)	Double doublet	
	(D)	Triplet, quartet, triplet	
Chen	nistry	11 P.T.O).

(Physical Chemistry)

The slope of a line whose inclination is 45° will be:

41.

((A)	1
((B)	√3
((C)	1/√3
((D)	$\sqrt{2}$
42.	The	decimal equivalent of the binary number $(1101)_2$ is :
((A)	$(53)_{10}$
((B)	(13) ₁₀
((C)	$(54)_{10}$
((D)	(4) ₁₀
43.	The	temperature at which a real gas shows ideal behaviour is known as:
((A)	Critical temperature
1	(B)	Inversion temperature
1	(C)	Boyle's temperature
	(D)	Charles temperature
		values of the van der Waals' constants "a" for the gases A_2 , B_2 , C_2 and
		re 2, 3, 4 and 5 dm 3 atm mol $^{-2}$ respectively. The gas which can be most
		y liquefied is :
	(A)	-
	(B)	$\mathbf{B_2}$
	(C)	C_2
	(D)	$\mathbf{D_2}$
Chemi	stry	12

45.	The	Miller indices of a crystal plane which cuts through crystal as	es at
	6a, 3	3b, 3c are:	
	(A)	326	
	(B)	111	
	(C)	122	
	(D)	211	
46.	The	rate law for the reaction $A + 2B \rightarrow Products$ is, rate = k [A] [I	3] ² . If
	B is	present in large excess, then the order of the reaction will be	
	(A)	2	
	(B)	1	
	(C)	3	
	(D)	0	
47.	1,000,000,000,000	probability factor existing in the collision theory of reaction rates is re	elated
	to w	hich of the following thermodynamic parameters.	
	(A)	Enthalpy of activation	
	(B)	Entropy of activation	
	(C)	Gibbs free energy of activation	
	(D)	Helmholtz free energy of activation	
48.		ch of the following thermodynamic functions is not equal to zero	for an
	elem	nent in its most stable form ?	
	(A)	Standard enthalpy	
	(B)	Standard Gibbs free energy	
	(C)	Standard entropy	8.
	(D)	Standard Helmholtz free energy	
Chem	istry	13	P.T.O.

- 49. For an ideal gas, Joule-Thomson coefficient is:
 - (A) positive
 - (B) negative
 - (C) zero
 - (D) unity
- 50. At the triple point in the phase diagram of a one component system, which of the following is correct?
 - (A) Three components are in equilibrium
 - (B) The number of degrees of freedom is zero
 - (C) The number of degrees of freedom is three
 - (D) The number of degrees of freedom is one
- 51. The number of components, number of phases and the degrees of freedom for the system $CaCO_{3(s)} \longleftrightarrow CaO(s) + CO_2(g)$.
 - (A) 1, 3, 0
 - (B) 2, 1, 3
 - (C) 1, 1, 2
 - (D) 2, 3, 1
- 52. The molar conductivity of a given solution of MgCl₂ at infinite dilution, given that $\sqrt{\alpha}$ Mg² = 106 ohm⁻¹ cm² mol⁻¹ and $\sqrt{\alpha}$ Cl⁻ = 76 ohm⁻¹ cm² mol⁻¹, will be :
 - (A) $25.8 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$
 - (B) $2.58 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$
 - (C) 258 ohm⁻¹ cm² mol⁻¹
 - (D) 182 ohm⁻¹ cm² mol⁻¹

- 53. The molar conductance of a weak electrolyte at room temperature is 1 × 10⁻⁶ Sm² and the molar conductance at infinite dilution is 500 Sm² mol⁻¹. The degree of dissociation of the electrolyte is:
 (A) 1 × 10⁻⁹
 (B) 1 × 10⁻⁸
 - (C) 2×10^{-8}
 - (D) 2×10^{-9}
- 54. For which values of "n", the principal quantum number, the wave functions for a particle in one-dimensional box are symmetric?
 - (A) Odd values of n
 - (B) Even values of n
 - (C) Zero values of n
 - (D) All values of n
- 55. The operator for the potential energy of electron in hydrogen atom is :
 - (A) e^2/r
 - (B) $-e^2/r$
 - (C) $2e^2/r$
 - (D) $-e^2/2r$
- 56. The molecular orbital which has two nodal planes amongst the following is:
 - (A) oIS
 - (B) $\sigma_2 pz$
 - (C) πPx
 - (D) $\pi^2 P x^*$

P.T.O.

51	57 .	Which of the following molecules is said to be microwave inactive but infra-
		red active ?
		(A) HCl
		(B) H ₂
		(C) CO ₂
		(D) O ₂
	58.	The transitions which are usually non-radioactive involve:
		(A) Internal conversion
		(B) Fluorescence
		(C) Phosphorescence
		(D) Chemiluminescence
	59.	In which of the following molecules, the molar polarization will be independent
		of temperature:
		(A) HCl
		(B) CH ₃ Cl
		(C) CO
		(D) CH ₄
	60.	Cryoscopic constant is a characteristic of:
		(A) solute
		(B) solvent
		(C) solution
		(D) both solute and solvent
	Chemi	istry 16