Reg. No.....

Name.....

FOURTH SEMESTER M.C.A. DEGREE EXAMINATION NOVEMBER/DECEMBER 2004

NUMERICAL METHODS

Time: Three Hours

Maximum: 75 Marks

Part A

Answer all questions. Each question carries 3 marks.

- What is meant by the method of least square? Illustrate with an example.
- 2. State the equation to represent an exponential curve.
- 3. What is a transcendental equation? Give two examples.
- 4. Write the program segment in C to evaluate

$$Y = Y_1 + (x - x_1) \frac{(y_2 - y_1)}{(x_2 - x_1)}.$$

- 5. Write a program in C to obtain the difference table using 4 arguments and their entries.
- 6. State the Stirling's formula for interpolation and specify the meaning of the terms used.
- 7. Illustrate how the derivative of a function y = f(x) with respect to x can be obtained from Newton's Forward difference formula.
- 8. State Simpson's $\frac{1}{3}$ rule for integration of f(x) and write down the expression in C programming language when $f(x) = \frac{1}{1+x}$.
- 9. Briefly explain Euler's method to solve ordinary differential equation.
- 10. State how loops are generated in programming with C language.

 $(10 \times 3 = 30 \text{ marks})$

Part B

Answer six questions, taking not more than two questions from each unit.

Each question carries 7½ marks.

Unit I

11. The table below gives the temperature T (in °C.) and length l (in mm.) of a heated rod. If $l = a_0 + a_1$ T, find the best estimates of a_0 and a_1 .

T	20	30	40	50	60	70
L	800-3	800-4	800-6	800-7	800-9	801.0

- 12. Find a real root of the equation $x^3 2x 5 = 0$ using bisection method.
- 13. Solve the following system of equations using Gauss-Jordan method:-

$$2x + y + z = 10$$

$$3x + 2y + 3z = 18$$

$$x + 4y + 9z = 16.$$

"Unit II

14. The table below gives the values of $\tan(x)$ for selected values of x. Find $\tan(0.12)$:

x	0-10	0.15	0.20	0.25	0.30
$y = \tan(x)$	0.1003	0.1511	0.2027	0.2553	0.3073

15. From the following table find the value of $e^{1.17}$ using Gauss forward formula:—

x	1.0	1.05	1.10	1.15	1.20	1.25	1.30
ex	2.7183	2.8577	3.0042	3.1582	3-3201	3.4903	3.6693

16. Suppose for x = 2, f(2) = 0.69315; x = 2.5, f(2.5) = 0.91629 and for x = 3, f(3) = 1.09861. Find the value of x for which f(x) = 0.98261.

Unit III

17. The following table gives the angular displacements θ (radians) at different intervals of time t (seconds):—

							
θ	0.052	0.105	0.168	0.242	0.327	0.408	0.489
t	0	0.02	0.04	0.06	0.08	0.10	0.12

Calculate the angular velocity at t = 0.06.

- 18. Evaluate $\int_{1}^{3} \frac{1}{x} dx$ by Simpson's rule using 9 arguments correct to 5 decimals.
- 19. Solve the equation $\frac{dy}{dx} = x + y^2$ with y(0) = 1 using Picard's successive approximation.