12/31/11 **ALCCS**

ALCCS

Code: CS42 Subject: OPERATIONS RESEARCH AND SYSTEM SIMULATION Time: 3 Hours Max. Marks: 100

MARCH 2010

NOTE:

- Question 1 is compulsory and carries 28 marks. Answer any FOUR questions from the rest. Marks are indicated against each question.
- Parts of a question should be answered at the same place.
- All calculations should be up to three places of decimals.
- **Q.1** a. Discuss how revised simplex method can be used to improve computational efficiency of solving a linear programming problem.
 - b. Discuss the economic interpretation of the dual problem.
 - c. Differentiate between unbounded solution and infeasible solution in the context of solution to linear programming problem.
 - d. Explain what is an unbalanced transportation problem.
 - e. Discuss four applications of integer programming.
 - Discuss degeneracy in linear programming problem?
 - g. Discuss the role of Operations Research in decision making.

 (7×4)

- a. What is the standard form of linear programming problem and how do you obtain it? Also discuss special cases that **Q.2** arise in application of simplex method. (9)
 - b. Use penalty method to solve the following linear programming problem:

Maximize z=

 $2x_1+x_2+x_3$

Subject to
$$4x_1+6x_2+3x_3 \le 8$$
, $3x_1-6x_2-4x_3 \le 1$, $2x_1+3x_2-5x_3 \ge 4$

and $x_1, x_2, x_3 \le 0$.

(9)

- a. What are various algorithms for finding initial basic solution for a transportation problem? Discuss Q.3them. (9)
 - b. Determine the basic feasible solution, if exists, to the following transportation Approximation method.

problem using Vogel's

	Distribution Centres							
Sources	D1	D2		D3		D4	Supply	
S1	2	3		11		7	6	
S2	1	0		6		1	1	
S3	5	8		15		9	10	
Requirement 7		5	3		2			
							(9)	

a. What are various algorithms for solving an Integer Linear programming problem? Discuss branch and bound method in **Q.4** detail. (9)

12/31/11 ALCCS

b. Using the cutting plane method, solve the following Integer Linear Programming Problem

Maximize
$$z = 7x_1 + 10x_2$$

Subject to $-x_1 + 3x_2 \le 6$, $7x_1 + x_2 \le 35$, x_1 , x_2 are non-negative integers. (9)

Q.5 a. Discuss in detail the various parameters for designing and evaluating a simulation based experiments.(9)

b. A student has to take examination in three courses x, y, z. He has three days available for study. He feels that it would be best to devote a whole day to study the same course so that he may study a course for one day, two days or three days or not at all. His estimates of grades he may get by studying are as follows.

Study days/courses	X	У	Z
0	1	2	1
1	2	2	2
2	2	4	4
3	4	5	4

How should the student plan to study so that the grades obtained are maximized?

(9)

Q.6 a. Discuss Hungarian Assignment algorithm in detail. (9)

b. A department has five employees with five jobs to be performed. The time (in hrs) each man will take to perform each job is given by the following cost matrix:

			Employees					
		I	Π	III	IV	V		
Jobs	A	10	5	13	15	16		
	В	3	9	18	13	6		
	C	10	7	2	2	2		
	D	7	11	9	7	12		
	Е	7	9	10	4	12		

How should jobs be allocated one per employee so that total the man-hours can be maximized?

(9)

- Q.7 Write a short note on any **THREE** of the following:
 - (i) GPSS.
 - (ii) Degeneracy in Transportation Problem.
 - (iii) Sensitivity and Parametric Analysis.
 - (iv) Monte Carlo Method.

(6+6+6)