S.E. (Mechanical \& Mechanical S/W) (I Sem.) EXAMINATION, 210

Time : Three Hours

FLUID MECHANICS

N.B. :- (i) Answer three questions from each Sectio
(ii) Answers to the two Sections should be ten in separate answer books.
(iii) Neat diagrams must be drawn whelever necessary.
(iv) Figures to the right indicate ful marks.
(v) Use of logarithmic tables, side rule, Mollier charts, electronic pocket calculator and tean tables is allowed.
(vi) Assume suitable dat if necessary.

1. (a) Explain the following terms :
(i)
pressure
 inclined at 30° to the horizontal and covered by a thin film of
viscosity $2.3 \times 10^{-3} \mathrm{Ns} / \mathrm{m}^{2}$. If the thickness of the film is 0.02 mm , determine the speed of the block.
(c) Differentiate between pathline, streakline and streamlin Or

2. (a) For the flow of an incompressible fluid the yelocty component in the x-direction is $u=a x^{2}+b y$ and the velocity component in the z-direction is zero. Find the component v in the y-direction such that $v=0$ at 0 .
(b) Explain how the flows assified.
(c) A glass tube af intenal diameter 2 mm is partially dipped in glycerine its lower end 30 mm deep below surface. Air is bow in the tube so as to form an air buble at its bot end of the tube. If specific weight and surface tension of glycerine are $12.356 \mathrm{kN} / \mathrm{m}^{2}$ and $0.0637 \mathrm{~N} / \mathrm{m}$, find the pressure of air blown.

Unit II

3. (a) Derive expression for total pressure and centre of pressure on inclined plane surface completely submerged in static liquid.

[8]
(b) A wooden block 60 cm long, 30 cm wide and 20 cm deep has its shorter axis vertical with the depth itmersion 15 cm . Calculate the position of the metacentre and comment on the stability of the block.

$$
\begin{equation*}
\pm \tag{8}
\end{equation*}
$$

4. (a) Explain with neat sketch, the condition of equilibrium for floating and submerged \mathbf{X} digs.
Cos
(b) A square plate of diagonal 2 m is immersed in water with its diagonarertical and upper corner 0.5 m below the free surface Find the hydrostatic force on the plate and the depth centre of pressure from the free surface of water.

Unit III

5. (a) Derive Euler's equation of motion along a streamline and hence derive Bernoulli's equation from that.
(b) Show that an error of 1% in the measurement of head roduces an error of 1.5% in the discharge over a rectaguar notch and produces an error of 2.5% in the discharge over a triangular notch.

6. (a) Water flows through an inclined anturmeter. The inlet and throat diameters are 10 cm ard 5 cm respectively and their height difference $\left(z_{2}-t_{1}\right)$ is 20 cm A mercury manometer located across the inlet and throat dicates 12 cm mercury column at a given flow rate. differe ce tween inlet and the throat $\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right)$:
neglecting friction
(ili) when friction loss is 10%
of the head indicated by the manometer.
(b) Explain the terms :
(i) End contractions and
(ii) Velocity of approach.

How is the discharge over a rectangular notch arect dy these ?

SECTION II

Unit IV
ら
7. (a) Assuming the viscous force F ery by a fluid on sphere of diameter D depends on visedty μ ', mass density ' ρ ' and velocity of sphere ' v '. Obtain evression for the viscous force.
(b) A fluid is flowing rough a smooth circular pipe of uniform \bigcirc
diameter ' d ' with velocity ' u '. Reynolds number for the flow is 1800. Deve the expression for the velocity profile at any crosssector of the pipe. Assume density of the fluid as ρ and dynamic scosity as μ. Draw the velocity profile for the flow.
8. (a) The performance of an oil ring consuming a discharge Q of oil depends on the internal diameter ' d ' of the ring, the reanal speed N of the shaft the density ρ, the viscosity μ, su act tension λ and specific weight of the oil ω, show that

$$
\mathrm{Q}=\mathrm{N} d^{3} \Phi\left\{\frac{\mu}{\rho \mathrm{~N} d}, \frac{\lambda}{\rho \mathrm{~N}^{2} d^{2}}, \frac{\omega}{\rho \mathrm{~N}^{2}}\right\}
$$

(b) A laminar flow is taking place in aiye of diameter of 200 mm . The maximum velocity is 1.5 m . Find the mean velocity and the radius at which th curs. Also calculate the velocity at 40 mm from the waly the pipe.
9. (a) A horizentab pipeline 40 metres long is connected to a water tank at one and discharges freely into the atmosphere at the other
. For the first 25 metres of its length the pipe is 15 cm diameter and then its diameter is suddenly enlarged to 30 cm . The height
of water level in the tank is 8 mts above centre of pipe. Considering all losses of head which occur determine the rate of flow. Take $f=0.01$ for both the sections of the pipe.
(b) A siphon of diameter 200 mm connects two reservoi Baving a difference in elevation of 15 mt . The total lenght of siphon is 600 m and summit is 4 m above the wat in the upper reservoir. If separation takes place at $2 . \delta \mathrm{m}$ water absolute, find the maximum length of siphon from uper reservoir to summit take friction coefficient as 0.004 atmospheric pressure as 10.3 m of water.
10. (a) Oil is pumped in a horizontal 150 mm dia pipe 200 m long. The specific gravity of oil is 0.89 and kinematic viscosity is 1.3 stron. The friction factor for the flow is given by $\frac{64}{\mathrm{Re}}$. 25 HP to drive the pump of efficiency 65%. Find the

> low rate of oil.
(b) A main pipe divides into two parallel pipes which again forms one pipe. The length of parallel pipes is 2000 m and diameters are 1.0 m and 0.8 m respectively. Find the flow in each aratel pipe if total flow in the main pipe is $3 \mathrm{~m}^{3} / \mathrm{sec}$. Assume anficient of friction for each pipe as 0.005 .

Unit VI
11. (a) A plate $3 \mathrm{~m} \times 3 \mathrm{~m}$ is held vercally n water moving at 1.25 $\mathrm{m} / \mathrm{sec}$ parallel to its length If the flow in the boundary layer is laminar at the leadir erge, find :
(i) Distance from the leading edge where the flow become turbule?
(ii) ness of the boundary layer at this section.

Assume the viscosity of water as $0.001 \mathrm{~Pa} . \mathrm{sec}$.
(b) Velocity distribution in boundary layer is given by $\left(\frac{r}{\mathrm{~V}}\right)=\left(\frac{y}{\delta}\right)^{\frac{1}{7}}$.

Calculate displacement thickness, momentum thickness and ene thickness of the boundary layer.
(c) What is boundary layer? Explain Laminar sublayer in tyrbulent boundary layer.

s
12. (a) What is drag ? Explain different of drag on an immersed body.

[6]
(b) A metallic ball of diamater 0.02 m drops in a fluid of specific gravity 0.95 and osity 15 poise. Density of ball is $12000 \mathrm{~kg} / \mathrm{m}^{3}$, find : ζ
(i)

Terminal velocity of the ball.
(c) A flat plate $1.5 \mathrm{~m} \times 1.5 \mathrm{~m}$ moves at a speed of 50 kmph in stationary air of density $1.15 \mathrm{~kg} / \mathrm{m}^{3}$. Coefficient of drag and lift are 0.15 and 0.75 respectively. Determine :
(i) The lift force on plate
(ii) The drag force on plate

(iii) Resultant force on plate
(iv) Direction of the resultant fo ce
(v) Power required to keep he plate in motion.

