

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2006

DISCRETE MATHEMATICAL STRUCTURE

SEMBSTER - 1

Time: 3 Hours]

| Full Marks: 70

Graph sheet is provided on Page 31.

Group - A

(Multiple Choice Questions)

1.	Choose the corre	ct alternatives for any	ten of the following questions:	$10 \times 1 = 10$
			U 1	

1) Out of the following the singleton set is

a)
$$A = \{x : 3x - 2 = 0, x \in Q\}$$

b)
$$B = \{x : x^2 - 1 = 0, x \in R\}$$

c)
$$C = \{x : 30x - 59 = 0, x \in N\}$$

d)
$$D = \{x : x^2 - 1 = 0, x \in Z\}$$

where, Q is the set of all rational numbers, R is the set of all real numbers, N is set of all natural numbers and Z is the set of all integers.

ii) If A, B & C are any three arbitrary sets, then $A - (B \cap C)$ is

a)
$$(A-B) \cup (A-C)$$

b)
$$(A-B)\cap (A-C)$$

c)
$$(A-B)\cap(C-A)$$

d)
$$(B-A) \cup (A-C)$$
.

iii) The mapping $f: R \to R$ defined by $f(x) = (x^2 + 1)^{2006}$. Then the mapping is

- a) bijective
- b) only injective
- c) only surjective
- d) neither injective nor surjective.

	The second of th					and the second second
iv)	Out of the	a fallyrraina	atatamanta	the formula	fam tana	ـذــدام
10)	Out of un	C IOHMORIS	Statements	uie iorinuia	. IOF LAUL	.OIO2V IS
•		· C				

a) $(p \lor q) \rightarrow q$

- b) $p \lor (q \rightarrow p)$
- c) $p \lor (p \rightarrow q)$
- d) $p \rightarrow (p \rightarrow q)$.

v) The total number of different ways that 3 letters can be posted into six letter boxes is

a) 6^3

b) 36

c) 18

d) 27

vi) If $N = \text{set of all natural numbers, then } f: N \to N \text{ defined as}$ [2n, if n is even]

$$f(n) = \begin{cases} 2n & \text{if } n \text{ is even} \\ n & \text{if } n \text{ is odd} \end{cases}$$

a) onto

- b) one-one
- c) both of (a) & (b)
- d) none of these.

vii) The type of the grammar, which consists of the following productions

$$s \rightarrow aA$$
, $A \rightarrow aAB$, $B \rightarrow b$, $A \rightarrow a$ is

a) type - 0

b) type - 1

c) type - 2

d) type – 3.

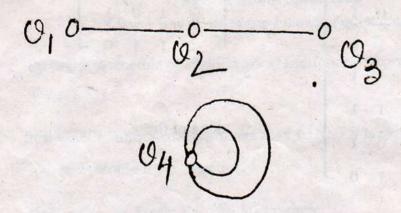
viii) A tree (acyclic connected graph) of n vertices has exactly

a) n-1

b) 1

c) $\frac{n-1}{2}$

d) $\frac{n+1}{2}$


edges.

/MCA/SEM-1/M M(MCA)-101/06

5

ix) In the following graph:

deg (v_4) [degree of the vertex v_4] is

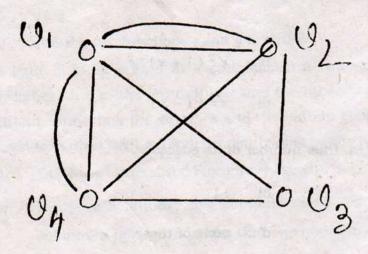
a) 2

b) (

c) 4

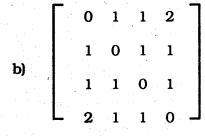
d) 5.

x) Number of relations from $A = \{a, b, c\}$ to $B = \{1, 2\}$ are


a) 6

b) 9

c) 5


d) 8.

xi) The adjacency matrix of the following graph is

a)
$$\begin{bmatrix} 0 & 2 & 1 & 2 \\ 2 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 2 & 1 & 1 & 0 \end{bmatrix}$$

- c) 0 2 1 1 1 2 0 1 1 1 1 0 1 1 1 0
- d) none of these.

xii) The pre-image of the point y = 0, with respect to the mapping $f: R \to R$, defined by, $y = f(x) = \sin x$, $\forall x \in R$, is

- a) $n\pi$, $n = 0, 1, 2, 3, \dots$
- b) $n\pi$, $n = 0, -1, -2, -3, \dots$
- c) $n\pi$, $n = 0, \pm 1, \pm 2, \ldots$
- d) $\frac{n\pi}{2}$, $n = 0, \pm 1, \pm 2, \ldots$

xiii) The generating function of the following sequence

is

a)
$$x^2(1+x)^{-1}$$

b)
$$x^2(1+x)^{-2}$$

c)
$$x(1-x)^{-1}$$

d)
$$x^2(1-x)^{-1}$$

xiv) If a tree has 10 vertices, then number of its edges is

Group - B

(Short Answer Questions)

Answer any three of the following questions.

 $3 \times 5 = 15$

- 2. i) By using "Principle of Mathematical Induction", prove that $n^3 + 2n$ is divisible by 3, for $n \ge 1$.
 - ii) If $n = \text{set of all natural numbers and } f: N \to N \text{ is given by } f(n) = n (-1)^n \text{ for } n \in \mathbb{N}, \text{ examine if } f \text{ is bijective.}$
- 3. i) Define Convex Fuzzy set with an example.

2

ii) Consider following two Fuzzy sets:

$$\mu_1$$
: {(4, 0, 2), (6, 0, 4), (8, 0, 6), (10, 1)}

$$\mu_2:\{(1,0,9),(2,0,7),(3,0,5)\}$$

then determine $\mu_2' \& \mu_1 \bigcup \mu_2'$.

3

4. Let $A = \{x \in R : x \neq 2\} \& B = \{x \in R : x \neq 1\}$, and let the following two functions

 $f: A \rightarrow B$, & $g: B \rightarrow A$, are defined by

$$f(x) = \frac{x}{x-2}$$
, $\forall x \in A$ and $g(x) = \frac{2x}{x-1}$, $\forall x \in B$

then find the following:

i) $f \circ g$

2

ii) Are the two functions f and g invertible?

3

- 5. A light bulb is located at a staircase in a two-storied building and there are two switches, one in the ground floor and the other in the first floor. Design a switching circuit connecting the switches and the bulb in such a way that either switch may be used to control the light independently of the state of the other.
 5
- 6. i) State the Generalized Pigeonhole Principle.
 - Suppose a laundry bag contains many red, white and blue socks. Find the minimum number of socks that one needs to choose in order to get two socks of the same colour.

 2 + 3

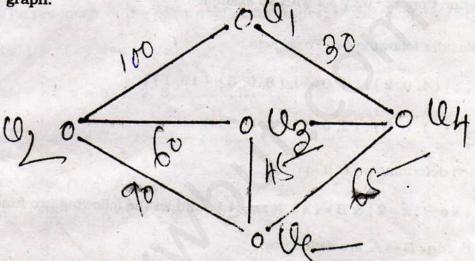
7. Solve the following difference equation with the help of generating function:

 $a_n - a_{n-1} = 3 (n-1), n \ge 1$ and where $a_0 = 2$.

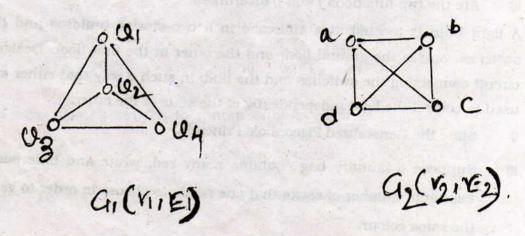
5

8. Show that a connected graph of n vertices and (n-1) edges is a tree.

5


Group - C

(Long Answer Questions)


Answer any three of the following questions.

 $3 \times 15 = 45$

9. i) Define minimum Spanning Tree of a graph with an example. Apply Kruskal Algorithm to determine the minimum spanning tree of the following weighted graph.

- ii) Prove that a simple graph G(V, E) has a spanning tree iff G(V, E) is connected graph.
- 10. i) Explain the term 'graph isomorphism' by an example. Test whether the following two graphs G_1 (V_1 , E_1) & G_2 (V_2 , E_2) are isomorphic to each other or not?

ii) Solve the following recurrence relation:

$$a_{n+2} = 6a_{n+1} - 9a_n + 3*2^n + 7*3^n, n \ge 0$$

with $a_0 = 1, a_1 = 4$.

iii) Prove that in a Distributive Boolean Algebra (B, +, ..., /) if

$$x_1 \lor x_2 = x_1 \lor x_3 \&$$

$$x_1 \wedge x_2 = x_1 \wedge x_2$$

then
$$x_2 = x_3$$
, where $x_1, x_2, x_3, x_4 \in B$.

- 11. i) Define the following by examples:
 - a) D.F.A.
 - b) N.D.F.A.
 - ii) Determine a D.F.A. from the N.D.F.A. $M = \{\{q_0, q_1\}, \{0, 1\}, \delta, q_0, \{q_1\}\}\}$, with the state transition function δ as given in the table:

States	Input		
$\rightarrow q_0$	$\{q_0, q_1\}$	{q ₁ }	
q ₁ (final states)	Φ	$\{q_0, q_1\}$	

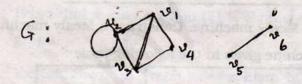
$$5 + 10$$

12. i) Define Moore machine and Mealy machine. Construct a Mealy machine which is equivalent to the Moore machine given in the following table:

Present States	Next States		Output
	0	1	
$\rightarrow q_0$	q ₁	q ₂	1
q_1	q ₃	q ₂	0
q_2	q ₂	q_1	1
q ₃	q ₀	q ₃	1

ii) Find the number of parallelograms formed by intersecting of two sets of m and n parallel straight lines in a plane. 10 + 5

- 13. i) If all the vertices of an undirected graph are each of odd degree k, show that the number of edges of the graph is a multiple of k.
 - ii) Let $A = \{1, 2, 3\}, B = \{w, x, y, z\} \text{ and } f: A \to B$.
 - a) How many functions f are there?
 - b) How many of them are injective?


7 + 8

14. i) Define Adjacency matrix of a Graph. A graph G has following as Adjacency matrix:

$$\left[\begin{array}{cccccc}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 0 & 1
\end{array}\right]$$

Draw the Graph and examine if it is connected.

ii) Find Adjacency matrix of Graph G as under.

8 + 7