Name	•		
Roll No). :		
Invigilo	itor's Signature :	••••••	******
	CS/	MCA/SEM-1/M	(MCA)-101/2009-1
		2009	•
D	ISCRETE MAT	HEMATICAL :	STRUCTURES
Time A	llotted: 3 Hours		Full Marks : 70
	The figures in t	he margin indicate	full marks.
Candi	•	o give their answe is far as practicab	ers in their own words le.
	(Multiple C	GROUP – A choice Type Que	estions)
1. Ch	noose the correct	t alternatives fe	or any ten of the
fol	llowing:	•	$10 \times 1 = 10$
i)	The number of a	arrangements of 2	5 objects where 7 are
	of the first kind,	12 are of the sec	ond kind, 3 are of the
	third kind and 4	are of the fourth	kind is given by
	a) $\frac{25!}{7!2!3!4!}$.	D} -	25! 7! 2!
	c) $\frac{25!}{3!4!}$	d) n	one of these.
ii)	The coefficient of	X^{25} in $(X^3 + X^4 +$	$(X^5 +)^5$ is
•	a) C(9,5)	b) <i>C</i>	(5,9)

d) C(9,9).

[Turn over

c) C(5,5)

11918

- iii) Which one is a singleton
 - a) {0, 1}

b) {1, 11, 111}

c) {0}

- d) None of these.
- iv) If A is a proper subset of a non-empty set S and two subsets A and A' are non-empty, then which one is true?
 - a) $A \cup A' = S$
- b) $A \cap A' = \phi$
- c) both (a) & (b)
- d) None of these.
- v) In the following graph

 $deg(V_3)$ is

a) 1

b) 0

c) 2

- d) 5.
- vi) If A and B are two subsets, then A and B are said to be disjoint if
 - a) $A \cap B = \phi$
- b) $A \cup B = \phi$
- c) $A-B=\phi$
- d) none of these.
- vii) If a set $S = \{1, 2, 3\}$, then the power set of S is
 - a) $\{\phi, S\}$

b) $\{\phi\}$

c) {S}

d) none of these.

viii)		w many ways arranged?	can the lett	er	s of the word 'LEADER"
	a)	72	b)	144
	c)	360	ď)	None of these.
ix)	In a	a binary tree, tl	ne parent m	ay	have
	a)	right child			
	b)	left child			
	c)	both right an	d left childs		
	d)	right or left o	r both child:	s.	
x)		e Fuzzy logic i	s based on	n	napping the universe of
	a)	[0, 1]	b)	(0, 1)
	c)	{0,1}	d))	none of these.
xi)		Prime's Algoritl en as	nm, the weig	gh	t of non-existing edge is
	a)	0	b))	+ ∞
	c)	1	d)		none of these.
xii)			ge given by	L=	${a^n b^n : n \ge 0}$, then L^2 is
		ial to			
	a)	$a^n b^n a^m b^m$:	$n \ge 0, m \ge 0$		
	b)	$\left\{a^n b^n : n \ge 0\right\}$			
	c)	$\{a^n b^n a^m b^m :$	$n \ge 0$	-	
	d)	none of these	• •		
918			3		[Turn over

xiii) If n be the number of vertices, e be the number of edges and k be the number of components of a graph G, then

- a) $e \ge n + k$
- b) $e \ge n k$
- c) $e \le n k$
- d) none of these.

GROUP - B (Short Answer Type Questions)

Answer any three of the following.

- $3 \times 5 = 15$
- 2. Consider the language $L = \{0^n \ 1^n : n \neq m\}$, find a context free grammar G which generates L.
- 3. Show that the maximum number of edges in a simple graph with n vertices is n(n-1)/2.
- 4. Let A be some fixed 10-element subset of S = {1, 2, 3, 4, 5, 50}. Show that A possesses two different 5-element subsets, the sums of whose elements are equal.
- 5. Solve the following using generating function: $a_n - a_{n-1} = 3(n-1), n \ge 1$, and where $a_0 = 2$.
 - Find the coefficient of x^{18} in

$$(x + x^2 + x^3 + x^4 + x^5) (x^2 + x^3 + x^4 + x^5 +)^5$$

- 7. Obtain equivalent disjunctive normal form of $\sim G \land (H \Leftrightarrow G)$.
- 8. Design a finite state machine that performs serial addition.

6.

GROUP - C rank hi dank avord

(Long Answer Type Questions)

Answer any three of the following.

 $3 \times 15 = 45$

9. a) Let
$$X = \{1, 2, 3, \dots, 7\}$$
 and

 $R = \{(x, y) : x - y \text{ is divisible by 3}\}$. Prove that R is an equivalence relation and draw the relation graph.

b) Find the transitive closure of a relation R on the set $\{a, b, c\}$, whose relation matrix M_R is given as

$$M_R = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}.$$

7 + 8

- 10. a) Prove that 21 divides $4^{n+1} + 5^{2n-1}, \forall n > 0$.
 - b) Let M be the finite state machine with state table appearing in the following table:

	supple graph with a seri			a Jan	g	19
SA	а	b	С	а	b	c
S_0	S ₀ :	So	So	0	1	0
S_1	So	So	So	in in ten	Prove t	1
S_2	So	So	So	1 100	0	0

- i) Find the input set A, the state set S, the output set O, and initial state of M.
 - ii) Draw the state diagram of M.

Find the output string for the input string aabbcc.

5 + 10

- 11. a) Prove that if there is one and only path between every pair of vertices in a graph G, then G is a tree.
 - b) Describe Kruskal's algorithm to find the Minimal spanning tree in a graph G. Use this algorithm to find minimal spanning tree for the following graph:

- c) Prove that a simple graph with n vertices and k components cannot have more than $\frac{(n-k)(n-k+1)}{2}$ edges. 5+5+5
- a) Prove that a simple graph has a spanning tree iff it is connected.
 - b) Find the sequence $\{y_x\}$ having the generating function G, given by $G(x) = \frac{3}{1-x} + \frac{1}{1-2x}$.
 - c) By mathematical induction prove that $3^{2n+1} + (-1)^n \ 2 = 0 \ (\text{mod } 5).$ 5 + 5 + 5

function à as given in the followin

13. a) Let $A = \{a, b, c\}$, find L^* and L^* where

i)
$$L = \left\{b^2\right\}$$

ii)
$$L=\{a,b\}$$

b) Prove the following identities:

i)
$$\lambda + 1 * (011) * (1*(011)) * = (1+011) *$$

c) Draw the transition diagram of the non-deterministic finite-state automaton whose next state is given below:

S	0	
S_0	$\{S_0,S_1\}$	$\{S_2\}$
S ₁	De a nuset with	$\{S_1\}$
S_2	$\{S_1,S_2\}$	Φ

$$5 + 5 + 5$$

- 4. a) Show that $(p \vee q) \wedge (-p \wedge \sim q)$ is a contradiction.
 - b) Show that $R \wedge (P \vee Q)$ is a valid conclusion from the premises $P \vee Q$, $Q \Rightarrow R$, $P \Rightarrow M$ and $\sim M$.

c) Determine a DFA from the NDFA $M = (\{q_0, q_1\}, \{0, 1\}, \delta, q_0, \{q_1\})$, with the state transition function δ as given in the following table:

States	Input		
→ q ₀	$\{q_0,q_1\}$	$\{q_1\}$	
q_1 (Final state)	: followin o identit	$\{q_0,q_1\}$	

5 + 5 + 5

15. a) Prove that a simple graph G(V, E) has a spanning tree iff G(V, E) is connected graph.

(110+H= ((110)*1)*(110)*1+A

- b) Define the following by example:
- Minte-state automaton whose next stATO giv(i below
 - ii) NDFA
- c) If (A, \le) and (B, \le) are posets, then prove that $\{(A \times B, \le)\}$ is a poset with partial order \le defined as $(a, b) \le (a, b)$, if $a \le a$ in A and $b \le b$ in B. 5 + 5 + 5