

Second Semester Examination - 2007 BASIC ELECTRONICS

Full Marks - 70

Time - 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

- Answer the following questions: 2×10
 - (a) What is the significance of virtual ground of an OP-AMP ?
 - (b) Distinguish Avalanche and Zener breakdown.
 - (c) (i) Convert (30.3)₁₀ to equivalent binary number.
 - (ii) What is the decimal equivalent of hexadecimal number (BAD)₁₆?

P.T.O.

- (c) Why is the field effect transistor called a unipolar transistor? What is the significance of the term field-effect?
- (d) A BJT is a current controlled device whereas a FET is a voltage controlled device. Why?
- (e) If FA53 Hex is the input to the inverter, what will be the inverted output of inverter in Hex and binary?
- (f) If AB+AB=C then show that AC+AC=B
- (g) Define mobility and conductivity.
- (h) Mention few three applications of an OP-AMP.
- (i) What are the industrial applications of a counter?
- (j) How can a wave-form displayed in a CRO?

- (a) Explain the following terms: Fan out,
 Noise margin, and propagation delay of logic gates.
 - (b) Explain and draw the circuit of a full adder.
- 3. (a) Discuss how a transistor can be used as a current amplifier?
 - (b) Sketch the structure of an n-channel depletion type of MOSFET. Explain how the depletion region is produced in the channel?
- Consider the voltage-amplifier circuit model shown in the fig.1 given in A_{vo}=10 v/v under the following conditions:
 - (a) $R_i = 10R_s$, $R_L = 10R_o$
 - (b) $R_i = R_s$ $R_L = R_o$
 - (c) $R_i = R_s/10$ $R_L = R_0/10$

Calculate the overall voltage gain v_o/v_s in each case, expressed both directly and in dB.

Figure - 1

- 5. A particular diode, for which n = 1, is found to conduct 3mA with a junction voltage of 0.7 volt.
 - (a) What is saturation current Is?
 - (b) What current will flow in this diode if the junction voltage is raised to
 - (i) 0.71V (ii) 0.8V?
 - (c) What current will flow in this diode if the junction voltage is lowered to
 - (i) 0.69V (ii) 0.6V?

- (d) What change in junction voltage will increase the diode current by a factor of 10 ?
- 6. Consider the half-wave rectifier circuit of the fig. 2 shown below with R = 1 KΩ and the diode having the characteristics and piecewise-linear shown in the fig. 3 (V_{Do} = 0.65V, r_D = 20 Ω). Analyse the rectfier circuit using the piecewise-linear model for the diode and thus find the output voltage v₀ as a function of v₁, for 0≤ v₁ ≤10V. For v₁ being sinusoidal with 10V peak, sketch and clearly lebel the waveform v₀.

Figure - 2

 Design the self-biasing circuit for transistor to meet the following specifications.

$$I_C = 2$$
 mA, Voltage gain = -100, $R_L = 5 k\Omega$

Figure - 4

- 8. (a) The peak-to-peak value of an AM voltage has a maximum value of 8V and a minimum value of 2 V. What is the percentage of modulation and amplitude of the unmodulated carrier?
 - (b) Distinguish between frequency and amplitude modulation.

