2/27/12 Code: A-20

AMIETE - ET (OLD SCHEME)

Time:	NOTE: There are 9 Question		Subject: MICROWAVE THEORY & TECHNIQUES Max. Marks: 100 in all. nd carries 20 marks. Answer to Q.1 must be written in the space provided for it in		
an • Ou	swer t of tl	book supplied and nowhone remaining EIGHT Quo		ach question carries 16 marks.	
Q.1	Cho	oose the correct or the bo	est alternative in the following:	(2×10)	
	a.	In a circular waveguide wi	th radius 'r', the dominant mode is		
		(A) $^{\text{TE}}_{01}$ (C) $^{\text{TE}}_{11}$	(B) $^{\text{TM}}_{01}$ (D) $^{\text{TM}}_{11}$		
	b.	The propagation constant is	is		
		(A) Real quantity(C) Both (A) & (B)	(B) Complex quantity(D) None of these		
	c.	TE and TM waves have an	n axial component of the		
		(A) Circuit(C) Circuit and Field	(B) Field(D) None of the above		
	d.	There is a rectangular way dominant mode. The cut o	_	GHz signal propagated in this waveguide in the	
		(A) 10 cm (C) 25 cm	(B) 15 cm (D) 20 cm		
	e.	The main disadvantage of t	he two-hole directional coupler is		
		(A) narrow bandwidth(C) poor directivity	(B) low directional coupling(D) high standing wave ratio		
f. In transmission line, at a point exactly a quarter			oint exactly a quarter wavelength from the le	pad, the current is	
		(A) maximum.(C) infinite	(B) permanently zero(D) none of these.		

- g. A short-circuited line less than $\lambda/4$ long behaves as a
 - (A) pure capacitance.
- **(B)** pure inductance.

2/27/12 Code: A-20

(C) both (A) and (B)

	h.	For transmission line load matching over a range of frequencies, it is best to use a					
		(A) balance-to-unbalance	transformer or balun				
		(B) broadband directional	coupler				
		(C) double stub					
		(D) single stub of adjustab	le position				
	i.	A transmission time terminated with open circuit having input impedance					
		(A) 0	(B) jZo t	anβl			
		(C) - jZo cot βℓ	(D) 1				
	j.	A ferrite is					
		(A) a non conductor with magnetic properties					
		(B) An inter metallic comp	-	-			
		* *	ulator which heavily attenuates magnetic fields				
		(D) A microwave semicon	ductor invented by Fa	ıraday			
		Answ	er any FIVE Questi		Questions.		
			Each question	carries 16 marks.			
Q.2	a.	Derive the transmission line equations. (8)					
	b.	The terminating impedance . The first stub is placed at length of the short-circuited line by the double stub of matching?	0.4λ away from the lastubs where the mat	e load. The spacing b tch is achieved. What	etween the 2 stu t terminations are	nbs is 3/8 \(\lambda\). Determine for matching	the the
Q.3		a. Derive the wave waveguide.	equation for a TM	wave and obtain (8)	all the field co	emponents in a rectang	;ular
		b. A rectangular waveguing permittivity 3. (i) Determine has an attenuation of 3π ne	the cut off frequency		•	with a dielectric of relative at which this m	
Q.4	a.	Derive an expression for res	sonant frequency f_{O} in	a rectangular cavity r	esonator.	(6)	
	ł	b. What is the power passi	ing through a rectang	ılar waveguide propa	gating in the TE ₁	node when the maxim	num
		signal strength is 100×10^{-3} GHz.	³ V/m? The dimension	ons of the waveguide (6)	are 3 cm × 1.5	cm and the frequency is	; 10
	c.	Briefly discuss loop coupling	g and aperture couplir	ng.	(4)		
Q.5	a.	. In an H plane Tee junction Calculate the power delive		• •	•	•	

None of the above.

(D)

2/27/12 Code: A-20

		respectively.	(8)		
	b.	Explain how amplification is achieved in a Magnetron with neat sketch.	(8)		
Q.6	a.	Explain the operation of two-cavity klystron amplifier with neat sketch.	(8)		
	b.	Obtain the scattering matrix of a Eplane Tee.	(8)		
Q. 7	a.	Describe the method for microwave frequency and Noise Factor measurer	ment.	(8)	
	b.	b. Mention the chief advantages and disadvantages of microwave communication systems.			
Q.8	a.	Explain in detail the operation of PIN diode.	(6)		
	b.	Compare stripline and micro strip lines.	(4)		
	c.	What are the limitations of conventional tubes at microwave frequencies?	(6)		
Q.9		Write short notes on the following (Any <u>TWO</u>).			
		(i) Varactor diode-operation in detail(ii) Microwave Antennas(iii) IMPATT diode			
		(iv) Measurement of high VSWR.	(8 × 2)		