F. E. (Semester - II) Examination - 2009
 ENGINEERING MATHEMATICS
 (June 2008 Pattern)

Time : 3 Hours]
Instructions :
(1)
(1) Answer Q. 1 or Q. 2, Q. 3 or Q. 4, Qor Q. 6 from section I. Answer Q. 7 or Q. 8, Q. 9 or Q. 10, Q. 11 or Q. 12 from section II.
(2) Answers to the two sections should written in separate answer-books.
(3) Figures to the right indisate furl marks.
(4) Neat diagrams must be dran wherever necessary.
(5) Use of logarithmic ta slide rule, electronic pocket calculate is allowed.
(6) Assume suitable da necessary.

SEPION - I

Q.1) (A) Define resultan System of Forces. What are the various methods to etermine the resultant of concurrent forces ?
(B) A uniforr wheel of 50 cm diameter and 1 kN weight rests against a reg rectangular block of thickness 20 cm . Considering all surfaces smooth, determine
(i)
nt pull to be applied through the centre of wheel to ast turn it over the corner of block.

Reaction of block

(C) Determine moment of hydrostatic force on the dam gate about hinge ' O '.

Q.2) (A) Explain how a system of non-concurre orces can be reduced to an equivalent force-couple sym.
(B) A joist of length 4 m and weig 200N is raised by pulling a rope as shown in figure. Determine the tension T induced in the rope and reaction Or A of joist.

(C) Three idercal boxes, each having length l and weight W are placed as $s W_{w n}$ in figure. Find out the maximum possible distance ' m ' through which the top box can extend out from the botten so that there is no possibility of topping the stack. [06]

Q.3) (A) State conditions of equilibrium for -
(i) Co-planer Concurrent Forces
(ii) Concurrent Forces in Space
(iii) Co-planer Non-concurrent Forces
(iv) Non-concurrent Forces in Spas
(B) Find support reactions for the beam oaded as shown in figure.

(C) A mast of height is supported by three cables AB, AC and AD placed equidistant around the circumference of circle of radius r on th gound level. Determine the resultant of tensions at A tension in each cable is T.

OR

(C) The rail AB of foundary crane is horizontal and is 20 m long. End A is hinged to vertical wall and end B is tied to a tie rod BC making an inclination of 30° with the rail. The other end C of tie rod is connected to wall. If a load of 400 N is placed on rail at a distance of 8 m from end A , find the tension produced in the tie rod and reaction developed end A .

Q.5) (A) Name different methods of finding out the forces in members of a truss. When do you use se Methods ?
(B) A truss is loaded and suppras shown in figure. Find forces in members

(C) A steel shelf 1.5 m high 1.0 m wide and weigling 400 N is mounted on bushes A and 4 . hese bushes do not rotate when the shelf is moved along the floor. ming that the coefficient of friction Detween the bushes and floor is 0.75 , work out force required just to cause the shelf to move. If the shelf is not to
 tip over, determine the maximum height at which the force can be applied.

OR

Q.6) (A) Define the terms :
(i) Coefficient of Friction
(ii) Angle of Friction
(iii) Angle of Repose
(iv) Cone of Friction
(B) A cable AB supports three loads as shown idure. If the dip at central load is 2 m , work out the coments of reaction at supports, the sag under 4 kN load and tan in portion CD and DE of the cable.

(C) The lever $B C D$ is hinged at C and is attached to a control rod at B. If $\mathrm{P}=200 \mathrm{~N}$ Dermine :
(i) the tension in rod AB
(ii) the reaction at C

P.T.O.

SECTION - II

Q.7) (A) The acceleration of point ' A ' is defined by the relation $\mathrm{a}=600 \mathrm{x}\left(1+\mathrm{kx}^{2}\right)$, where ' a ' and ' x ' are expressed in $\mathrm{m} / \mathrm{s}^{2}$ and meters respectively and k is constant. Knging that the velocity of A is $7.5 \mathrm{~m} / \mathrm{s}$ when $\mathrm{x}=0$ and 1 p s when $\mathrm{x}=0.45 \mathrm{~m}$, determine the value of k .
(B) A 90 kg block rests on a horizontal plane. Find magnitude of the force ' P ' required to give the block an gcceleration of $3 \mathrm{~m} / \mathrm{s}^{2}$ to the right. The coefficient of friction between the block and the plane is ${ }_{k}=0.25$.

Q.8) (A) Two ships ' A ' and ' B ' ase at a given instant 4 km away from each other and beth gre on south-east line. Ship ' A ' is travelling at 8 kmph dug east and ship ' B ' is travelling at 12 kmph due north. Determne-
(i) Velocit of ' B ' with respect to ' A '.
(ii) The shortest distance between the two ships.
(iii) Time to get the shortest distance.
(B) The system shown in fig. is initially at rest. Neglecting friction, determine
(i) The force ' P ' required if the velocity of the collar ' B ' is to be $5 \mathrm{~m} / \mathrm{s}$ after 2 sec .

Q.9) (A) A speed of racing car is ingreasing at constant rate from 100 kmph to 120 kmp over a distance of 180 m along a curve of 240 m radius. Determin magnitude of total acceleration of car after it has traved 120 m along the curve.
(B) A motor cyclist ismoving in a spherical cage of 3.6 m radius in a circus show. Themass of motor cycle and the rider together is 240 kg . at shall be the minimum speed with which the Motor Cyclist an pass through the highest point without loosing th@ ${ }^{\text {ntact inside the cage ? }}$
If he is moving with 36 kmph , what force is transmitted to the

OR

Q.10) (A) \quad rojectile is fired with an initial velocity of $240 \mathrm{~m} / \mathrm{s}$ at a Wget ' B ' located 600 m above the gun and at a horizontal distance of 3600 m . Neglecting air resistance determine the value of the firing angle
(B) At what uniform speed of rotation around the vertical axis AB will the ball ' C ' and ' D ' of equal weight ' W ' begin to lift the weight 'Q' of the device as shown in fig. ? Neglect all frictions and weights of four hinged bars of length ' l '. The weight 'Q' can slide freely along the shaft 'AB'. Take $\mathrm{W}=44.5 \mathrm{~N}$, $\mathrm{Q}=89 \mathrm{~N}, l=250 \mathrm{~mm}$.

Q.11) (A) A small weight ' W ' staws from rest from point ' A ' and rolls without friction along the loop 'ABCD'. What is the least height ' h ' above the top of the loop at which car can start without falling off the wesk at point ' B ' and for such starting position, what veld the car will have along the portion CD of the track ?

(B) A 20 g bullet is fired with a velocity of magnitude $\mathrm{V}_{\mathrm{o}}=600 \mathrm{~m} / \mathrm{s}$. into a 4.5 kg block of wood which is stationary. Knowing that the coefficient of kinetic friction between the block and the floor is 0.4 , determine
(i) How far the block will move.
(ii) The percentage of the initial energy lost in fric Detween the block and the floor. Refer the fig.

OR
Q.12) (A) A collar of mass 10 kg move a vertical guide as shown in fig. Neglecting friction andween the guide and collar, find the velocity of the collar (tter) it has fallen 700 mm , starting from rest from the postion A as shown. The unstretched length of the spring is 200 mm and its stiffness is $200 \mathrm{~N} / \mathrm{m}$.

