Roll No.

Total No. of Questions: 09]

[Total No. of Pages: 02

B.Tech. (Sem. - 4th)
SIGNALS AND SYSTEMS
SUBJECT CODE: EC - 206

Paper ID : [A0308]

[Note: Please fill subject code and paper ID on OMR]

Time: 03 Hours

Maximum Marks: 60

Instruction to Candidates:

- 1) Section A is Compulsory.
- 2) Attempt any Four questions from Section B.
- 3) Attempt any Two questions from Section C.

Section - A

Q1)

 $(10\times 2=20)$

- a) What do you mean by a memoryless system?
- b) Define signal to noise ratio?
- c) Consider the sinusoidal signal

$$x(t) = A\cos(\omega t + \phi)$$

Determine the average power of x(t).

- d) Differentiate between periodic and aperiodic sequences?
- e) What do you mean by noise figure?
- f) Define convolution theorem?
- g) Find conjugate symmetric party of the sequence

$$x(n) = ie^{\frac{jn\Pi}{4}}$$

- h) Define sampling theorem.
- i) Define probability of random events?
- j) Define power spectral density?

- Q2) Discuss the response of LTI systems to complex exponentials.
- Q3) Explain the following:
 - (a) Gaussian noise.
 - (b) FET noise.
- Q4) Show that the system described by following equation is linear:

$$\frac{dy}{dt} + t^2 y(t) = (2t+3)x(t)$$

- Q5) State and prove time scaling and multiplication properties of fourier series.
- Q6) For a signal $x(t) = e^{-at}u(t)$. Find the Laplace transform X(s) and its ROC.

Section - C

 $(2 \times 10 = 20)$

- (27) (a) Suppose that we are given the following information about an LTI system:
 - (1) The system is causal.
 - (2) The system function is rational and has only two poles, at s = -2 and s=-4.
 - (3) If x(t) = 1, then y(t) = 0.
 - (4) The value of the impulse response at $t = 0^+$ is 4.
 - (b) Discuss in detail about envelope detector.
- Q8) (a) Discuss the properties of Laplace transform.
 - (b) For a certain LTIC system the impulse response h(t) = u(t).
 - (i) Determine the characteristic root(s) of this system.
 - (ii) Is this system asymptotically or marginally stable, or is it unstable.
 - (iii) Is this system BIBO stable?
 - (iv) What can this system be used for?
- (99) (a) Calculate SNR for matched filter.
 - (b) Discuss relationship between BIBO and Asymptotic stability.

