Seat No.:	Enrolment No.
Searno	Enrolment No

GUJARAT TECHNOLOGICAL UNIVERSITY

B.E. Sem-IV Examination June- 2010 Subject code: 140503

Subject Name: PROCESS HEAT TRANSFER

Date: 19 / 06 / 2010	J		Time: 10.30 am - 01.00 pm
		Total Marks: 70	

Instructions:

1.	Attempt	all	questions.
----	---------	-----	------------

2. Make suitable assumptions wherever necessary.

	3.	Figures to the right indicate full marks.	
Q.1	(a) (b)	•	07 07
Q.2	(a) (b)	Discuss in detail about the three modes of heat transfer. A 100 ohm coil placed at the centre of a hollow sphere (ID 250 mm,OD 300 mm) is generating heat at a steady supply of 20 ampere current. What is the inside surface temperature when the outer surface has steady temperature of 80°c. Thermal conductivity of sphere material=30W/m-°c OR	07 07
	(b)	Give the formula and significance of all dimensionless numbers involved in convection.	07
Q.3	(a) (b)	Give comparison between natural and forced convection. Discuss Quantum theory of radiation heat transfer. OR	07 07
Q.3	(a)		08
	(b)	Give the statement and equation for following laws with respect to radiation. (1)Stefan Boltzmann's law (2)Wien's displacement law (3)Kirchhoff's law	06
Q.4	(a) (b)	•	07 07
Q.4	(a)	discuss in brief about shell and tube heat exchanger.	09
	(b)	What is LMTD in heat exchanger? Give equation of LMTD for co-	05

OR

(b) Give different methods of feeding employed in evaporation with its 07

(a) Discuss in brief about Boiling point elevation and Duhring's rule

current and countercurrent flow.

block diagram.

Q.5

07

- Q.5 (a) Discuss in brief about the principal measures by which the performance 06 of an evaporator is judged.
 - (b) Crude oil flows at the rate of 10000 kg/hr through the inside pipe of a double pipe heat exchanger and is heated from 32°c to 90°c. The heat is supplied by a petroleum fraction initially at 230°c flowing through the annular space. If the temperature of the heating fluid falls down to 100°c inside the heat exchanger, compare the performances of parallel and countercurrent exchangers with respect to the heat transfer area. Overall heat transfer coefficient is 400 kcal/hr-m²-°c. Specific heats of crude oil and petroleum fraction are 0.56 and 0.60 kcal/kg-°c respectively.
