[This question paper contains 4 printed pages]

5864

Your Roll No

B.Sc. (Hons.) / II

J

MICROBIOLOGY - Paper X

(Microbial Genetics and Molecular Biology)

(NC - Admissions of 2004 & onwards)

Time 3 Hours

Maximum Marks 60

(Write your Roll No on the top immediately on receipt of this question paper)

Attempt Five questions in all Q 1 is compulsory
All questions carry equal marks

- 1 (a) State true or false giving a suitable explanation
 - (1) Galactose operon is transcribed even in the presence of glucose
 - (11) Rifampicin is a translational inhibitor
 - (iii) The Cro repressor is needed for lysogenic cycle
 - (iv) Attenuation is also controlled by translation
 (2×4=8)

PTO

(b) Write down the contributions of the following scientists in the field of molecular biology

(i) Fire and Mellow

(ii) Nirenberg and Matthei

(iii) Zinder and Lederberg

(iv) C Venkatraman

(1×4=4)

Write short notes on any three

(i) Eukaryotic 'RNA polymerases and their promoters

(ii) Yeast mating switch

2

- (iii) Specialized transduction
 - (iv) Bacterial transcription termination (3×4=12)
- 3 Write the function of the following (any twelve)
 - (i) TFIIH

2

- (11) Ruv C
- (iii) RISC
- (iv) rpo H
- (v) EF-G
- (vi) PABP
- (vii) Kozak sequence

- (viii) RF -1
 - (ix). ERE elements
 - (x) IRES
 - (x1) Copia
- (xII) RNase H
- (xiii) Tus protein
- (xiv) DNA polymerase 1 $(1\times12=12)$
- 4 (a) Differentiate between the replication initiation in prokaryotes and eukaryotes (4)
 - (b) Termination of mRNA synthesis is combined with polyadenylation in eukaryotes Explain (4)
 - (c) What is the difference between replicative and non-replicative transposition? (3)
 - (d) Why is liver microsomal fraction used in Ames test? (1)
- 5 (a) 16S rRNA plays an active role in protein synthesis Explain (2)
 - (b) How is competence induced in bacterial cells for DNA uptake? (2)
 - (c) Number of proteins in a human cell is much higher as compared to its genes Explain (3)

PTO

(d)	Name the amino acids that are generally phosphorylated What is the function of phosphorylation of proteins? (3)
(e)	What are the properties of 2 µ plasmids of Saccharomyces cerevisiae? (2)
(a)	What are the reasons for spontaneous mutations?
(b)	How are t-RNAs charged correctly with their respective amino acids by acyl t-RNA synthetases?
(c)	How are the errors incorporated during replication repaired? (3)
(d)	What types of mutations are generated by acridine orange and alkylating agents? (3)
Write in brief about the following	
(1)	Catabolite repression
(11)	Regulation of plasmid copy number
(111)	Conditional mutations
(1 V)	Tn 10
(v)	t-RNA suppressors
(VI)	Mutator genes (2×6–12)

(400)****