C13-R3: DIGITAL SYSTEM DESIGN

NOTE:

- 1. Answer question 1 and any FOUR questions from 2 to 7.
- 2. Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours Total Marks: 100

1.

- a) Why a combinational circuit is acyclic?
- b) Do you allow to form a combinational gate like the following? If not why?

- c) Show that a NAND gate and a NOR gate can easily be designed using a MUX.
- d) Why Karnough MAP is NOT suitable for computer implementation?
- e) Justify that the undefined prohibited input in R-S Latch is really impractical.
- f) Distinguish between HDL and VHDL.
- g) Why Booth's Algorithm is a well accepted multiplication algorithm? What is its application in Digital System Design?

(7x4)

2.

- a) Simplify the following function using Karnaugh Map $F(w,x,y,z) = \prod M(1,2,5,6,7,9,10,11,14)$
- b) Describe the functionality of a PAL with block diagram.
- c) What is Race Around problem? How is it handled in Master-Slave J-K flip-flop?

(6+6+6)

3.

- a) Show that for n variable switching function 2^{2^n} distinct functions can be generated.
- b) Show with examples that propagation delay of any combinational circuit is proportional to the depth of levels of the circuit.

(10+8)

4.

- a) What are majority and parity functions?
- b) Show that in a full adder circuit majority/parity functions are carry/sum outputs.

(9+9)

- 5.
 a) Give an HDL description of Euclide's algorithm for finding greatest common divisor of two positive integers. Replace division by repeated subtraction.
- b) Compare and contrast VHDL with circuit diagram.

(10+8)

- 6.
- a) Justify the statement 'ROM' is a programmable logic device 'PLD'.
- b) Give conventional and array logic symbols for OR-GATE. Explain clearly the convention.
- c) Design up-down counter using J-K flip-flops?

(6+6+6)

7.

- a) Explain in detail a Carry Look Ahead (CLA) adder?
- b) Show that CLA outperforms ripple carry adder in general in respect of time complexity.

(8+10)