S.E. (Electrical) (First Sem.) EXAMINATION, 2010 ANALOG AND DIGITAL ELECTRONICS (2008 COURSE)

Time : Three Hours Maximum Marks : 100
N.B. :- (i) Answer any three questions from each Section.
(ii) Answers to the two Sections should be written in separate answer-books.
(iii) Neat diagrams must be drawn wherever necessary.
(iv) Figures to the right indicate full marks.
(v) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
(vi) Assume suitable data, if necessary.

SECTION I

1. (a) Explain input-output characteristics of CE configuration with neat connection diagram and characteristic curve.
(b) Explain AC-DC load line analysis using common emitter configuration.
Or
2. (a) Draw and explain multistage amplifier. Also state advantages and applications.
(b) Define the following terms associated with FET :
(i) Transconduction
(ii) Amplification factor.
(c) What is significance of transfer and drain characteristics of FET ? Draw and explain.
[8]
3. (a) Explain with neat diagram Schmitt trigger as an application of op-amp.
(b) Explain grounded type load voltage to current converter. [8] Or
4. (a) What is the role of op-amp as an instrumentation amplifier? Explain 3-op-amp instrumentation amplifier.
(b) Explain open loop and close loop configuration of op-amp. [8]
5. (a) Draw and explain monostable multivibrator. Also state applications.
(b) Using LM317 explain variable voltage regulator with neat diagram.
Or
6. (a) Explain sine wave generator using op-amp. Draw output w/fs.
(b) Explain with neat connection diagram low pass filter. [8]

SECTION II

7. (a) Convert the following numbers into equivalent BCD : [6]
(i) $\quad(11011011)_{2}$
(ii) $\quad(333)_{8}$
(iii) $\quad(\mathrm{DB})_{16}$
(b) State De Morgan's theorem and using Boolean algebra prove the following :

$$
(\overline{\mathrm{A}}+\mathrm{B})(\mathrm{A}+\mathrm{B}+\mathrm{D}) \overline{\mathrm{D}}=\mathrm{B} \overline{\mathrm{D}} .
$$

(c) Explain Excess-3 code in detail.

Or
8. (a) If

$$
f=\mathrm{a} m(4,5,6,7,8,12)+d(1,2,3,9,13,14)
$$

using K-map reduce expression and realise using logic gates. [6]
(b) Explain binary number system in detail. Also give the difference between binary number system and BCD.
(c) Design 1-bit comparator using K-map and realise it using logic gates.
9. (a) Explain J-K flip-flop in detail with input and output waveforms. Also give the functions of preset and clear pin. [8]
(b) Design and explain MOD 5 asynchronous counter with related timing diagram.

Or

10. (a) Design 3-bit synchronous up counter using J-K flip-flops and K-map.
(b) Explain edge triggered and level triggered flip-flops. Also explain D-flip-flop in detail.
11. (a) Explain 1:4 demultiplexer along with logic diagram and truth table.
(b) Explain dual slope ADC in detail.

Or
12. Write short notes on :
(i) Static RAM
(ii) Dynamic RAM
(iii) EPROM
(iv) EEPROM.

