CE5-R3: IMAGE PROCESSING AND COMPUTER VISION

NOTE:

- 1. Answer question 1 and any FOUR questions from 2 to 7.
- 2. Parts of the same question should be answered together and in the same sequence.

Time: 3 Hours Total Marks: 100

1.

- a) What is a Wavelet Transform?
- b) What are the different types of operations that are generally performed in image processing?
- c) What is BLOB (Binary Large OBject) analysis?
- d) How can shape of a surface be determined from shading?
- e) What do you mean by resolution of an image? Relate the resolution with processing time and communication cost.
- f) Describe the linear filtering as a convolution operation.
- g) Compare and contrast Huffman coding and arithmetic coding.

(7x4)

2.

- a) What do you mean by depth imaging? Discuss three basic principles of depth imaging.
- b) What is tomography? Why do we use tomographic methods? Give the basic principle of tomographic methods.
- c) What do you mean by motion detection? Discuss static background motion detection.

(6+6+6)

3.

- a) What is the use of image compression? What are the different classes of compression techniques?
- b) What does a typical image coder look like? Explain with block diagram. Describe Huffman Coding technique.
- c) Discuss JPEG as DCT-based image compression standard.

(6+6+6)

4.

- a) Give reasons for storing gray scale images using 256 levels.
- b) Explain why different neighborhoods are used in neighborhood operations.
- c) Give any one procedure to convert a Color image in RGB into grayscale image.
- d) What do you mean by "Intensity Measurements"? Where do we use it?
- e) When does the technique "shape from shading" fail? Discuss shape from refraction as remedy to it.

(2+4+3+4+5)

5.

- a) Why do we perform image processing in frequency domain although images are generally represented in spatial domain?
- b) Give a general procedure to implement filtering in frequency domain.
- c) Discuss the usefulness of FFT in digital image processing.
- d) Discuss different strategies to reduce the execution time for computation of matrix convolutions.

(4+6+4+4)

- 6.a) What is the result of applying thresholding to an image? How do we choose thresholding level(s)? Give a specific application of thresholding.
- b) What do you mean by registration of an image? Give its applications.
- c) Discuss Quadtree Decomposition of an image. What are its advantages?

(6+6+6)

7.

- a) What do you mean by grayscale morphology?
- b) What is binary morphology? Discuss primary binary morphology and advanced binary morphology.
- c) Discuss dilation and erosion operations.
- d) Explain opening and closing operations.

(4+4+6+4)