S.E. (Instrumentation & Control) (I Sem.) EXAMINATION, 2010 LINEAR INTEGRATED CIRCUITS—I

(2008 COURSE)

Time: Three Hours

Maximum Marks: 100

- N.B. :— (i) Answers to the two sections should be written in separate answer-books.
 - (ii) Neat diagrams must be drawn where er necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Your answers will be valued as a whole.
 - (v) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
 - (vi) Assume suitable data, if necessary.

SECTION I

- (a) Enlist any five dc characteristics and any three ac characteristics of operational amplifier. [8]
 - (b) Select any four characteristics and mention their ideal and practical values. [8]

Or

2. (a) Write absolute maximum ratings of IC741:

[8]

- (i) Supply voltage
- (ii) Power dissipation
- (Differential input voltage
- (iv) Input voltage range.

- (b) Draw equivalent circuit of operational amplifier. What is important difference between IC OP-07 and IC 741 and IC-324 ? [8]
- (a) Draw the circuit diagram of voltage series feedback and voltage shunt feedback circuit. Compare them.
 - (b) Analyze voltage shunt shunt feedback circuit for closed loop gain equation. [8]

Or

- (a) How negative feedback increases input resistance of op-amp?
 Explain in case of non-inverting amplifier. [8]
 - (b) Write a short note on voltage follower. [8]
- 5. (a) Analyze summing ampitter (inverting) with three inputs V_1 , V_2 , V_3 and obtain closed loop gain equation. [10]
 - (b) Design a circuit that follows given equation: [8]

$$y = mx + c$$

where y = output voltage

$$m = \text{slope} = 2.5$$

x = input voltage

c = reference voltage (0.5 V)

- (a) Analyze first order active differentiator circuit using op-amp.
 Derive the equation for cut-off frequency. [10]
 - (b) Write a short note on integrator using op-amp.

[8]

SECTION II

- 7. (a) List important comparator characteristics. Explain their importance. How are comparators used in practice? [10]
 - (b) Write a short note on ZCD and its se. [8]

Oi

- 8. (a) Explain operation of Wien bridge and C phase shift oscillator. [10]
 - (b) How a precision full wave recifier works? Explain with wave forms. [8]
- 9. (a) In a 555 monostable circuit:

[8]

$$V_{CC} = 12 V$$

$$R = 33 k\Omega$$

$$C = 0.47 \mu F$$

What is the minimum trigger-voltage that will produce an output oulse? What is maximum capacitor voltage? What is width of the output pulse?

(b)	Design	a	555	astable	circuit,	for	given	data
-----	--------	---	-----	---------	----------	-----	-------	------

[8]

[8]

Output frequency = 40 kHz

 $V_{CC} = 9 V$

Timing capacitor = 0.001 µF

Or

- 10. (a) What are requirements of a good voltage regulator? What is line and load regulation? Explain. [8]
 - (b) How to generate +5 V using IC 7805? Explain the design. [8]
- 11. (a) Compare active and passive filter.
 - (b) Draw the response of Butterworth, Ehebyshev and Bessel Filter (Low pass). [8]

()r

- 12. (a) Compare step response of Butterworth, Chebyshev and Bessel low pass filter.
 [8]
 - (b) Design an active first order low pass filter of cut-off frequency 10 kHz. Assume voltage gain of 1.58, Assume capacitor value as 0.01 uF. [8]