[4062]-162

S.E. (Instru. Engg.) (I Sem.) EXAMINATION, 2011 LINEAR INTEGRATED CIRCUITS—I (2008 PATTERN)

Time: Three Hours

Maximum Marks: 100

- *N.B.* :— (i)Answer any *three* questions from each Section.
 - (ii)Answers to the two Sections should be written in separate answer-books.
 - Figures to the right indicate full marks. (iii)
 - (iv)Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
 - Assume suitable data, if necessary. (v)

SECTION I

- 1. (A) How Noise Figure (NF) is associated with signal power and noise power? State the equation. [4]
 - (B) What is inherent noise? (With reference to Op-amp.) [2]
 - What is interference noise? (C) [2]
 - (D) How are these tackled with Op-amp? [4]
 - (\mathbf{E}) Match the *correct* pairs : [6]

 $K(\sqrt{1/f})$ N_{rms}

Resistance Noise (e)

Pink Noise $\sqrt{4 \text{KTR}}$

- 2. (A) How to measure input resistance of an op-amp (IC-741) in non-inverting mode? Let voltage gain be equal to 1.0. Explain with neat circuit diagram. [8]
 - (B) How to measure input bias current in a closed loop circuit using IC 741 ? Explain with circuit diagram. [8]
 - (C) Use of step up transformer decreases signal power. State True or False. [2]
- 3. (A) Refer the amplifier circuit (Refer Fig. 1), Q_1 and Q_2 are identical transistors. How does this circuit work? Two cases of inputs are given :

Case 1 : $V_{in1} = +V_P$ (+ve peak voltage), $V_{in2} = 0$

Case 2 : $V_{in2} = +V_P$, $V_{in1} = 0$.

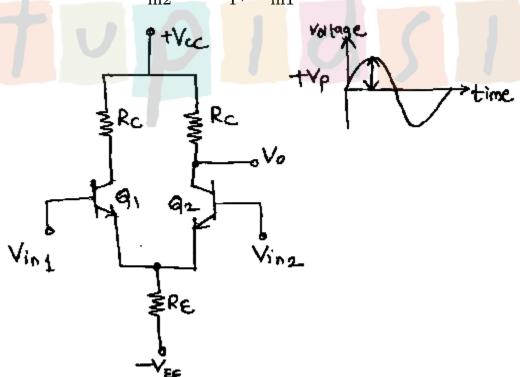


Fig. 1

Also draw waveform V_o with respect to V_{in1} and V_{in2} . [10]

(B) How op-amp acts as buffer amplifier? Where is it used? Explain. [6]

Or

- 4. (A) For inverting and non-inverting op-amps; derive the equations of voltage gain. [10]
 - (B) Draw neat circuit diagrams for both parts of question A. [6]
- 5. (A) Why external feedback resistor R_F is inserted in practical integrator circuit using op-amp? [4]
 - (B) Why external feedback capacitor C_F is inserted in practical differentiator circuit using op-amp? [4]
 - (C) Why external input resistor R_i is inserted in practical differentiator? Explain. [4]
 - (D) State the limitations of op-amp practical differentiator. [4]

Or

6. (A) Let V_{CC} = +/- 15 Volts DC. Two stages of non-inverting amplifiers are connected as shown (Refer Fig. 2) :

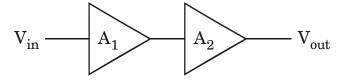


Fig. 2

Let $A_1 = A_2 = 6$.

For given inputs calculate output voltage V_{out} .

V _{in}	V _{out}
10 milli-volts	?
50 milli-volts	?
+1 volts	?
-1.5 volts	?

Show calculations for each answer.

[8]

(B) Write a short note on Instrumentation amplifier.

[8]

SECTION II

7. (A) Design a Schmitt trigger for the given data:

$$V_{UT} = V_{LT} = 2.5$$
 volts.

Let saturation voltage = +/- 12 volts. Show the calculations with circuit. [10]

(B) An open loop circuit using op-amp has inputs connected as shown in table below; show the calculations for output voltages $V_{CC} \ = \ +\!\!/\!- \ 15 \ \text{volts}. \tag{8}$

Pin 2 voltage	Pin 3 voltage	V _{output}
+2 Volts DC +1 Volt DC	+1 Volt DC +2 Volts DC	?
1 Volt peak to peak sine wave 100 Hertz	Zero volt	Draw input-output waveforms

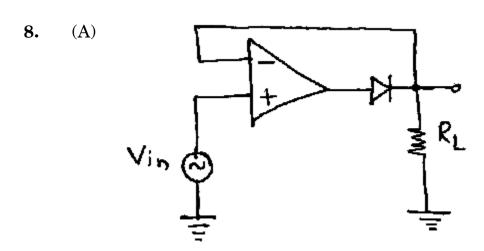


Fig. 1

Why 741 op-amp and diode 1N4007 is not preferred in the above (Refer Fig. 3) precision half wave rectifier? Explain. [6]

(B) State Barkhausen criteria.

- [4]
- (C) Explain how Wien Bridge oscillator works with circuit diagram. [8]
- 9. (A) State the equation for time required for a capacitor to charge through a resistor R from some starting voltate (V_{START}) towards Aiming voltage (V_{aim}) to a stop voltage (V_{stop}) . [4]
 - (B) How much current (maximum) can be drawn from IC 555 ?
 - (C) How a stable multivibrator using IC 555 is designed?

 Explain. [8]
 - (D) Enlist pin names of IC 555. [2]

10.	(A)	Draw a neat circuit diagram with transformer, rectifier,
		IC 7805, filter capacitors that will generate +5 Volts DC. [8]
	(B)	Write a short note on switching regulators. [8]
11.	(A)	Draw frequency responses of ideal Low Pass, High Pass, Band
		Pass, Band Reject filters. [8]
	(B)	Draw practical frequency responses of above filters. [8]
		Or
12.	(A)	How order of a filter is decided ? [2]
	(B)	What is the effect of order of filter on filter response? [2]
	(C)	What are the desi <mark>gn ste</mark> ps of a fi <mark>rst order high</mark> pass
		filter ? [6]
	(D)	How to design a band pass filter ? [6]